
Technology of Ukrainian-English Machine Translation Based on
Recursive Neural Network as LSTM

Myroslav Konyk
1, Victoria Vysotska

1,2, Svitlana Goloshchuk
3, Roman Holoshchuk1, Sofia

Chyrun 1 and Ihor Budz1

1 Lviv Polytechnic National University, S. Bandera Street, 12, Lviv, 79013, Ukraine
2 Osnabrück University, Friedrich-Janssen-Str. 1, Osnabrück, 49076, Germany
3 University of Economics in Bratislava, Dolnozemská cesta 1, Bratislava, 85235, Slovak Republic

Abstract
The paper presents a novel approach to developing Ukrainian-English machine translation

technology using neural machine translation. A comparative analysis of the developed software

product with analogues such as Google Neural Machine Translation, Microsoft Translator and

OpenNMT is conducted. The study focuses on the analysis of their main advantages and

disadvantages. Here, we introduce an effective solution for the typical architecture of the

intelligent Ukrainian-English machine translation system based on recurrent neural networks.

The main functional requirements for similar systems are determined, and the technical task is

developed. The neural network model test results have shown that the confirmation loss

stopped decreasing after 25 epochs.

Keywords 1
Machine translation, deep learning, Ukrainian language, machine learning, recurrent neural

network, English language, RNN, LSTM, Long Short-Term Memory

1. Introduction

Machine translation (MT) is widely used in various areas of our lives as it speeds up natural language

translation and improves the traditional translation process. Its relevance is due to the constant demand
for translation as a type of information activity and the rapid increase of information exchange value.

The digital translation still needs improvement, but the text obtained from an electronic translator allows

you to understand the document’s meaning in most cases. Further, the user may edit the document with
basic knowledge of a foreign language and a command of the subject area the translated information

belongs to. Due to the development of machine learning technologies, it is possible to achieve better

results than ever. Neural Machine Translation (NMT) is a recently proposed approach to machine
translation that differs from traditional statistical machine translation as it focuses on building a single

artificial neural network that can be jointly configured to maximise translation performance.

This work aims to study the use of recurrent neural networks for machine learning; to determine the

main features and principles of the sequence-to-sequence model for deep learning in machine
translation. The subject of research is a recurrent neural network for machine translation. The object of

research is machine translation.

The study material is a set of bilingual pairs of sentences with tab separators taken from the open
database of sentences and translations Tatoeba [1].

Unlike other approaches, such as neural/rule-based/statistical machine translation uses an extensive

neural network that applies artificial intelligence to work like the human brain. It is the most advanced

COLINS-2023: 7th International Conference on Computational Linguistics and Intelligent Systems, April 20–21, 2023, Kharkiv, Ukraine

EMAIL: myroslav.konyk.mnsam.2022@lpnu.ua (M. Konyk); victoria.a.vysotska@lpnu.ua (V. Vysotska); svitlana.l.holoshchuk@lpnu.ua (S.

Holoshchuk); roman.o.holoshchuk@lpnu.ua (R. Holoshchuk); sofiia.chyrun.sa.2022@lpnu.ua (S. Chyrun); ihor.s.budz@lpnu.ua (I. Budz)

ORCID: 0000-0001-7259-351X (M. Konyk); 0000-0001-6417-3689 (V. Vysotska); 0000-0001-9621-9688 (S. Holoshchuk); 0000-0002-

1811-3025 (R. Holoshchuk); 0000-0002-2829-0164 (S. Chyrun); 0000-0002-5400-0984 (I. Budz)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

form of machine translation available, with tremendous progress made in recent years through AI-
powered self-learning, huge data collection and deep learning. Modern neural machine translation

engines are a basis for developing professional translations. Recent technological advances have

enabled an increasing number of multinational institutions to use NMT engines to support internal and

external communication.
Advantages of using neural machine translation:

 High accuracy: drawing from ever-extending data sets and language modelling, NMT engines

can mine the broader context of words and phrases to create more accurate and fluent
translations, which can be improved over time. In contrast, conventional phrase-based MT only

considers the context of a few words next to the translated word.

 Fast training: neural networks can be trained quickly using automated processes instead of the
expensive and largely manual methods required for rule-based MT.

 Simple integration and flexibility: the advantage that NMT carries over its statistical

predecessor includes its integration via an application programming interface (API) and

software development kit (SDK) into any software and applied to many content files formats.
 Customisation: to improve the results, the user can set up the NMT output and update the model

with terminological databases, brand-specific glossaries, and other data sources.

 Cost-efficiency: human translation can be expensive, especially in projects that involve long
texts and many languages. NMT produces highly accurate and fast translation systems at low

costs. If needed, the user may address human translators for post-editing.

 Scalability: when your translation needs to scale up, neural machine translation can help meet
increased demand quickly and efficiently [2].

2. Related works

In recent years, the technology of neural machine translation, based on artificial neural networks

with representation learning (deep learning), has rapidly developed. That is why many companies have
decided to use this technology for their products. Despite several reviews in the literature that address

the importance of neural machine translation, none of the recently published articles has

comprehensively examined the critical roles of these technologies in the process of Ukrainian-English

translation based on a recursive neural network. In our research, we will first study and discuss these
products (Fig. 1) [3-8].

Figure 1: Google and Google Translate [3-4], Microsoft Translator [6-7] and OpenNMT [8] logos

Google Neural Machine Translation (GNMT) is a neural machine translation (NMT) system

developed by Google. The GNMT network can undertake interlingual machine translation by encoding

the semantics of the sentence rather than by memorising phrase-to-phrase translations. Next, we will

consider the main benefits and drawbacks of the GNMT system [3].
The benefits of Google neural machine translation can be summed up as follows:

 Google Translate is free. An experienced professional translator can sometimes be costly, but the

quality balances the expenses spent.

 Google Translate is quick. One of the main advantages of Google Translate is that it is speedy. A

human translator(s) cannot compete with the speed nor, as a result, the number of translations that
Google Translate can perform. In an average workday, an experienced translator can translate about

2,000 words maximum (300-400 words/hour), depending on the difficulty of the text. In contrast,

Google Translate can produce a translation with the same number of words in seconds [5].

 Google Translate uses a statistical method to form an online translation database based on
language pair frequency. Google Translate uses a statistical approach to develop an online database

for translations often made by humans and available online.

The main drawbacks include the following:

 Google Translate may “lose” the word meaning because there is no way to incorporate context.
The complexity of the text and any context that cannot be interpreted without accurate language

knowledge make the error probability higher. Direct translation is standard with Google Translate
and often results in nonsensical literal translations, while professional translators make much effort

to ensure this does not happen. They use well-established online glossaries, back translation

methods, proofreaders and reviewers to achieve this.

 The quality of translation relies on the language pair. The source and target languages involved

also affect the quality of the translation. Since Google’s web-based translation database is built
primarily from existing online translations, standard translations for languages, e.g. German or

English, tend to be more accurate. The translations for other languages that are not available in

Google’s database are less likely to be precise.

 Google Translate often translates with significant grammatical errors. Since Google’s translation
system uses a method based on language pair frequency, grammatical rules are not considered [5].

 Google Translate does not have a system to correct translation errors. There is no way of reporting

errors to avoid repeating them, nor is there a way to proofread what has been translated unless one

is fluent in both the source and the target language [5].
Microsoft Translator is the main competitor of Google Translate. The advantages of the Microsoft

Translator App include the following features [7]:

 Group Interactions: The programme’s distinctive feature is its compatibility with conversating

with a large group of people. It generates a conversation code for a user that can be shared with

everyone interested in a discussion.

 Website and Skype Integration: Skype and web integration are another outstanding application
feature. The users do not have to worry if the website is in a foreign language, as the Microsoft

Translator application can interpret it easily. Users can also enjoy the software’s benefits when

using Skype.

 Interprets all Common Vernaculars: The software can translate the world’s most spoken
languages; no matter which device the application is used, it can translate the tongues smoothly.

 Friendly Interface: Microsoft has offered a functional and pleasant interface. It does not make

people feel bored and businesslike. Moreover, it provides easy solutions to its users by offering a

simple procedure.
The Microsoft Translator App also has the following disadvantages:

 Limited Languages.

 Interpretations of One Type.

 Not Always Accurate.

Open-Source Neural Machine Translation (OpenNMT) is an open-source ecosystem for neural

machine translation and neural sequence learning [8]. OpenNMT contributes to academia and industry

by removing limitations and barriers through an open-source engine. The system is designed to be easy
to use and expandable, maintaining efficiency and state-of-the-art accuracy.

It provides implementations in two popular deep learning frameworks:

1. OpenNMT-py: user-friendly and multimodal, benefiting from PyTorch ease of use.
2. OpenNMT-tf: modular and stable, powered by the TensorFlow ecosystem [8].

Each implementation has its own set of unique features but shares similar goals:

 Highly configurable model architectures and training procedures;

 Efficient model serving capabilities for use in real-world applications;

 Extensions allow other tasks such as text generation, tagging, summarisation, image-to-text,

and speech-to-text [8].
In summary, we may conclude that the advantage of neural machine translation systems is that they

are end-to-end models that do not have a pipeline of specific tasks. The disadvantage is the need for a

bilingual set and the ongoing problem of processing rare words.

3. Methods

The Python programming language and the Jupyter programming environment are used to develop

the neural machine translation system. A set of Keras tools is employed for the natural process of

building the model.

Python. A brief review of the programming language itself is worth our attention. Python is the
most common programming language for artificial neural networks. It has a low entry threshold: no

one writes neural networks in Python from scratch because it is time-consuming. There are libraries for

Python neural networks already written by experts. Thus, a whole neural network community has

formed around Python.
The advantages of using Python include the following main features:

 Conciseness and interoperability: The language allows you to develop complex algorithms

in a short time. It is distinguished by simplicity, conciseness and expressiveness. In addition, it

has a powerful interoperability mechanism with C\++, which allows for fast calculations.
Because of this, engineers can create simple and complex neural networks in Python.

 Flexibility: Neural networks are primarily small programs, but there is a need to change them

often, choosing the best architecture, data processing, and other parameters. Therefore, there

are practically no difficulties with legacy code, but there is a need for rapid development.
Creating and building neural networks in Python is an option that meets these requirements

better than using C++ or Java.

Keras. The next stage of our study is to consider the toolkit built based on TensorFlow Keras. It is

a powerful platform that can scale to large clusters of GPUs or an entire TPU module [9]. Keras is a
deep learning API written in Python that operates on top of the TensorFlow machine learning platform.

It is designed to emphasise the possibility of rapid experimentation, as moving from idea to result as

quickly as possible is the key to good research [10]. Benefits of using Keras:
 Simple: Keras reduces the developer’s cognitive load, so they focus on the parts of the issue

that really matter.

 Flexible: Keras adopts the progressive disclosure of complexity principle: simple workflows
should be fast and easy. In contrast, arbitrarily advanced workflows should be possible through

a clear path that builds on your learning.

 Powerful: Keras provides industry-strength performance and scalability: it is used by

organisations and companies, including NASA, YouTube and Waymo [10].
Figure 2 shows the popular open-source NMT toolkits on GitHub.

Figure 2: Popular NMT toolkits

Jupyter. JupyterLab is the latest web-based interactive development environment for
notebooks, code, and data. Its flexible interface allows users to configure and arrange workflows in data

science, scientific computing, computational journalism, and machine learning. A modular design

contains extensions to expand and enrich functionality [11]. Jupyter Notebook is the original web

application for creating and presenting data science projects [11].

Figure 3: Jupyter logo [11]

Jupyter Notebook integrates code and its output into a single document that combines

visualisations, narrative text, mathematical equations, and other important media. We assume it is a

single document where users can run code, display the output, add explanations, formulas, and charts,
and make their work more transparent, understandable, repeatable, and shareable [12].

Using Notebooks is now a significant part of the data science workflow at companies across

the globe. If the software developer’s goal is to work with data, using a Notebook will speed up their
workflow and make communicating and sharing the results more accessible. Another essential feature

of the programme is that as part of the open-source Project Jupyter, Jupyter Notebooks are entirely free.

The software can be downloaded independently or as part of the Anaconda data science toolkit [12].
NMT Model. The general architecture of our model is explained below. It is a sequence-to-

sequence (Seq2Seq) neural network model with inner layers of recurrent neural networks [13-15].

Figure 4: Neural machine translation [13-14]

Each Seq2Seq model contains two main components:
 Encoder outputs some value for each word in the input sentence. For every input word, the

encoder outputs a vector and a hidden state and uses the hidden state for the next input word

[16-17].

 Decoder reads the encoder’s output vector(s) and outputs a sequence of words to create a
translation [17].

Long Short-Term Memory (LSTM) is a type of RNN capable of learning long-term

dependencies. All recurrent neural networks have the form of a chain of recurrent neural network
modules. LSTMs also have this chain architecture, but the repeated module has a different structure.

Instead of having one layer of a neural network, four interact exceptionally [18-19].

The visualisation of the architecture of our neural machine translation model is shown in Fig. 5 [20].

Figure 5: Architecture of Seq2Seq model [19]

4. Experiments, results and discussion

There are several ways we can formulate the task of training an RNN to write text, in this case,
Ukrainian-English translation. However, we choose to introduce it as a many-to-one sequence mapper

[19-29]. In the first stages of system design, the main task is to analyse the implementation process of

this system. It is necessary to build a model describing the work process, containing all the essential
information about the processes’ functions and the work organisation’s peculiarities [30-39].

Use case diagram is the initial conceptual model of the system in the process of its design and
development (Fig. 6). It consists of actors, use cases, and relationships between them.

Figure 6: Use case diagram for the neural machine translation

Below is a description of the main options for using the system and actors. The actors of the offered
system include [21-23]:

 Translator: actor performing the process of using the neural machine translation system.

 Application options:

1. Load raw data: loading raw data (a pair of two languages)

2. Pre-processing the text: the process of text pre-processing.

a. Clean the text: the process of cleaning the text
i. Rid of the punctuation

ii. Convert to lowercase

b. Text to Sequence Conversion: the process of converting input and output sentences
into whole sequences of a fixed length

i. Vectorize text data: the process of converting our sentences into sequences of

integers
3. Build a model: the process of building a neural machine learning model

a. Split the data into train and test sets: the process of dividing data into training and test

sets for model and evaluation training

b. Define Seq2Seq model for training data: the process of defining the seq2seq2
architecture

4. Optimise model: model optimisation process

5. Train the model: model training process (30 epochs with a packet size of 512)
6. Save the best model with the lowest validation loss: retaining the best model with a minor

validation loss

7. Make predictions: the process of making predictions
a. Load model – the process of downloading the created model

b. Convert prediction to text – the process of converting numerical predictions into text

8. Display predictions – the process of output on the screen

A component diagram is a UML modelling language element having a static diagram structure. It
shows the structural components of the software system and the relationships between them [24].

Figure 7: Component diagram of the neural machine translation system model [24]

The following interfaces are used in this diagram:

 A diagram of components of the neural machine translation system model (ITP) is an interface
for transferring downloaded text data to the input of the word processor.

 Interface Input Text Processing (IITP) – an interface for transmitting user-entered text to a

primary word processing module.

 Interface Machine Translation (IMT) is used for loading the most effective stored machine

translation model for further use in the process of neural machine translation of pre-processed
text entered by the user.

 Interface Machine Translation Model Training (IMTMT) transmits the original processed

(cleaned, normalised, tokenised, digitised) training data to the machine translation model

training input.

 Interface Processing-Machine Translation (IPMT) transfers the output (from the text translation
module) processed text data, entered by the user to be translated, to the input module of the

direct NMT.

 Interface User-Application (IUA) is the interface for transferring the resulting translation of the

user’s text to the User Interface module for its final output.

Activity diagram is another crucial behavioural diagram in UML diagram to describe dynamic
aspects of the system. An activity diagram is an advanced flow chart that models the flow from one

activity to another in the system [25-27].

Figure 8: Activity diagram for a neural machine translation system [25-27]

An activity diagram is a great tool for achieving the following goals:

 to write an algorithm logic;

 to illustrate a business process or workflow between users and the system;

 to simplify and improve any process by identifying complex use cases;

 to model software architecture elements such as method, function, and operation.
The first thing we need to do is import the necessary libraries.

Next, we will write a function for reading data in Jupyter Notebook [19]:

Then, another function for dividing the text into English-Ukrainian pairs separated by a symbol’ \n’

is defined. Further, we correspondingly split these pairs into English and Ukrainian sentences [19].

Now we can use these functions to read text into an array of the necessary format [19]:
data = read_text(“ukr.txt”)

ua_eng = to_lines(data)

ua_eng = array(ua_eng)

The actual data consists of over 150,000 sentence pairs. However, we will only use the first 50,000

per item to reduce the training time of the model [19].
ua_eng = ua_eng [: 50000 ,:]

Next, we pre-process the text. It is an essential step in any project, especially in NLT. The data we

process is often unstructured, so there are certain things we need to take care of before moving on to

the model-building stage [1, 19].

a) Text cleaning

First, we analyse our data as it helps us decide which pre-processing steps to take:
ua_eng

The next step is to remove punctuation and convert text into lowercase.

Remove punctuation

ua_eng[:,0] = [s.translate(str.maketrans('', '', string.punctuation)) for s in

ua_eng[:,0]]

ua_eng[:,1] = [s.translate(str.maketrans('', '', string.punctuation)) for s in

ua_eng[:,1]]

for i in range(len(ua_eng)): # convert text to lowercase

 ua_eng[i,0] = ua_eng[i,0].lower()

 ua_eng[i,1] = ua_eng[i,1].lower()

b) Converting text into a sequence

The Seq2Seq model requires us to convert input and output sentences into fixed-length integer
sequences. Before doing that, we visualise the length of the sentences by collecting the length of all

sentences in two separate lists for English and Ukrainian languages [19].

for i in ua_eng[:,1]:

 ua_l.append(len(i.split()))

length_df = pd.DataFrame({'eng':eng_l, 'ua':dua_l}) length_df.hist(bins = 30)

plt.show()

Figure 9: Sentence length graphs [19]

We may assume that the maximum length of English sentences is six words, and there are eight in

Ukrainian sentences. Next, we vectorise our text data using the Keras Tokenizer() class. It turns out

sentences into sequences of integers. We can then pad these sequences with zeros to make all rows the
same length. And afterwards, the lexemes for both Ukrainian and English sentences are prepared [19].

 eng_tokenizer = tokenization(ua_eng[:, 0]) # prepare an english tokeniser

 eng_vocab_size = len(eng_tokenizer.word_index) + 1

 eng_length = 8 # print('English Vocabulary Size: %d' % eng_vocab_size)

 ua_tokenizer = tokenization(ua_eng[:, 1]) # prepare Ukrainian tokeniser

 ua_vocab_size = len(ua_tokenizer.word_index) + 1

 ua_length = 8 # print('Ukrainian Vocabulary Size: %d' % ua_vocab_size)

The shown below code block contains a function to prepare sequences. It also performs string

complements up to the maximum sentence length as stated above [19].

Then we proceed to build our model. First, we divide the data into training and test sets for model

training and its evaluation [19].

The next step is to code our sentences. We encode Ukrainian sentences as input sequences and English

sentences as target sequences. It is done for both training and testing datasets.

Subsequently, we define the architecture of the model. As mentioned earlier, we use an embedding

layer and an LSTM layer for the encoder; for the decoder, we use another LSTM layer and then a dense
layer [19].
def build_model(in_vocab,out_vocab, in_timesteps,out_timesteps,n):# build NMT model

 model = Sequential()

 model.add(Embedding(in_vocab, n, input_length=in_timesteps,

 mask_zero=True))

 model.add(LSTM(n))

 model.add(RepeatVector(out_timesteps))

 model.add(LSTM(n, return_sequences=True))

 model.add(Dense(out_vocab, activation='softmax'))

 return model

We use the RMSprop optimiser in this model because it shows positive results in dealing with

recurrent neural networks [19].
model compilation (with 512 hidden units)

model = build_model(ua_vocab_size, eng_vocab_size, ua_length, eng_length, 512)

rms = optimizers.RMSprop(lr=0.001)

model.compile(optimizer=rms, loss='sparse_categorical_crossentropy')

We should mention that we use ‘sparse_categorical_crossentropy’ as the loss function. It is

reasoned by the function’s ability to use the target sequence in its pure state instead of a one-time
encoded format. Using such a vast vocabulary, the former encoding of target sequences can fully

exhaust the system’s memory. We train our model for 30 epochs, with a batch size of 512 and a

validation distribution of 20%. The model is trained with 80% of the data; the rest is left for evaluation.

Finally, we can download the saved model and make predictions on unseen data – testX [19].
model = load_model('model_UA_to_ENG')

preds = model.predict_classes(testX.reshape((testX.shape[0], testX.shape[1])))

These predictions are sequences of integers. We need to convert these integers into their

corresponding words, so we need to define a function for that [19]:

The obtained sequences of integers representing predictions are converted into an English text:

Next, we place the original English sentences in the test data set and the predicted sentences in the

data frame:
pred_df = pd.DataFrame({'UA': test[:,1], 'actual_ENG' : test[:,0], 'predicted_ENG'

: preds_text})

pd.set_option('display.max_colwidth', 200)

Finally, we can run a benchmark test and review the results (Fig. 10 - 11).
pred_df.head(15)

Figure 10: Obtained results (the first 15 pairs)

pred_df.tail(15)

Figure 11: Obtained results (the last 15 pairs)

Now we would like to describe the model training statistics. For this, we apply a function called

ModelCheckpoint() [28]. Application of the ModelCheckpoint():

The following arguments of the ModelCheckpoint function are used:

filename : string or PathLike, path to save the model file. The directory of the filepath should

not be reused by any other callbacks to avoid conflicts [28].

monitor : the metric name to monitor.

Note:
 Prefix the name with “val_” to monitor validation metrics.

 Use “loss” or “val_loss” to monitor the model’s total loss [28].

verbose : verbosity mode, 0 or 1. Mode 0 is silent, and mode 1 displays messages when the callback
takes action [28].

save_best_only: if save_best_only=True, it only saves when the model is considered the “best”

and the latest best model according to the quantity monitored will not be overwritten.

mode : one of {‘auto’, ‘min’, ‘max’}. If save_best_only=True, the decision to overwrite the

current save file is made based on either the maximisation or the minimisation of the monitored

quantity. For val_loss, this should be min [28].

So, we will build a graph and compare the model’s training loss and validation loss.
plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.legend([‘train’, ‘validation’])

plt.show()

Figure 12: Loss and accuracy graph of the proposed model

As we can see in the diagram above, the validation loss ceased decreasing after 25 epochs.

5. Conclusions

In the course of work, we developed a project, the objective of which was to design a system of

Ukrainian-English translation using the means of neural machine translation. First, we discussed
essential considerations in developing the research question, defined objectives and tasks, constructed

the subject and object of research, scientific novelty and practical value of the developed project.

The first stage of our study compared the developed product with analogues such as Google Neural

Machine Translation (GNMT), Microsoft Translator and OpenNMT were carried out, determining their
advantages and disadvantages. Then, a system analysis of the developed product was conducted, and

UML diagrams were constructed (use case diagram, components diagram and activity diagram). After

that, the research hypothesis and the technical task were formulated.
The next stage of our study dealt with selecting methods and means of the developed product. We

proved the advantages of Python, the Keras toolkit and the Jupyter Notebook development environment

as the necessary tools for our work. The general architecture of the Seq2Seq model using LSTM layers

was also presented. Having analysed the software process and its structure, we performed system testing

to evaluate system specifications and describe the results. Then we made the training statistics of the
model with a description of its outcome. All things considered, it seems reasonable to assume that future

research should explore improving the translation’s system accuracy and increasing the model’s speed,

which will involve exploring additional or alternative architectural solutions.

6. Acknowledgement

Part of this paper was written within the project which received funding from the EU

NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-

03-V01-00118.

7. References

[1] Tatoeba. URL: https://tatoeba.org/uk/, https://tatoeba.org/en/.

[2] Machines That Think: The Rise of Neural Machine Translation. URL:

https://www.memsource.com/blog/neural-machine-translation/.
[3] Google neural machine translation. URL: http://surl.li/cdbya.

[4] Google Translate for Android has become smarter. URL: https://itechua.com/technologies/83561.

[5] The Pros and Cons of Google Translate vs. Professional Translation. URL:

https://www.languageconnections.com/blog/the-pros-cons-of-google-translate/.
[5] Microsoft Translator. URL: https://ehlion.com/magazine/microsoft-translator/.

[6] Microsoft Translator App, The Advantages and Disadvantages. URL:

https://www.dutchtrans.co.uk/microsoft-translator-app-the-advantages-and-disadvantages/.
[7] OpenNMT. URL: https://opennmt.net/.

[8] Exascale Machine Learning. URL: https://keras.io/.

[9] About Keras. URL: https://keras.io/about/.

[10] Jupyter. URL: https://jupyter.org/.
[11] What is Jupyter Notebook? URL: https://www.dataquest.io/blog/jupyter-notebook-tutorial/.

[12] A. Geitgey. Machine Learning is Fun Part 5: Language Translation with Deep Learning and the

Magic of Sequences. URL: https://medium.com/@ageitgey/machine-learning-is-fun-part-
5language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa.

[13] Course:CPSC522/Recurrent Neural Networks. URL:

https://wiki.ubc.ca/Course:CPSC522/Recurrent_Neural_Networks
[14] NLP from Scratch: Translation with A Sequence to Sequence Network and Attention. URL:

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html.

[15] Sequence to Sequence Models. URL: https://www.analyticsvidhya.com/blog/2020/08/a-

simpleintroduction-to-sequence-to-sequence-models/.
[16] Long short-term memory. URL: https://en.wikipedia.org/wiki/Long_short-term_memory.

[17] W. Koehrsen, Recurrent Neural Networks by Example in Python. URL:

https://towardsdatascience.com/recurrent-neural-networks-by-example-in-python-ffd204f99470.
[18] P. Joshi. A Must-Read NLP Tutorial on Neural Machine Translation. URL:

https://www.analyticsvidhya.com/blog/2019/01/neural-machine-translation-keras/

[19] J. Brownlee. How to Clean Text for Machine Learning with Python. URL:
https://machinelearningmastery.com/clean-text-machine-learning-python/

[20] R. Agrawal. Text preprocessing. URL:

https://www.analyticsvidhya.com/blog/2021/06/mustknown-techniques-for-text-preprocessing-

in-nlp/
[21] A. Takezawa. Seq2Seq LSTM Model in Keras. URL: https://towardsdatascience.com/how-

toimplement-seq2seq-lstm-model-in-keras-shortcutnlp-6f355f3e5639

[22] R. Hinno. Tuned version of seq2seq tutorial. URL: https://towardsdatascience.com/tuned-
versionof-seq2seq-tutorial-ddb64db46e2a

[23] H. Patel. Neural Machine Translation (NMT) with Attention Mechanism. URL:

https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-

mechanism5e59b57bd2ac

http://surl.li/cdbya
http://surl.li/cdbya

[24] Dive into Deep Learning. Machine Translation and the Dataset. URL:
https://d2l.ai/chapter_recurrent-modern/machine-translation-and-dataset.html

[25] Xuanming Zhang. Analysis of State of the Art Deep Learning based Techniques for Medical

Natural Answer Generation. URL: https://www.billyzhang.me/uploads/billyzhang_thesis.pdf

[26] Deepika Singh. Natural Language Processing - Machine Learning with Text Data. URL:
[27] https://www.pluralsight.com/guides/nlp-machine-learning-text-data

[28] ModelCheckpoint. URL: https://keras.io/api/callbacks/model_checkpoint/.

[29] Callbacks API. URL: https://keras.io/api/callbacks/
[30] M. Garcarz, Legal Language Translation: Theory behind the Practice, CEUR Workshop

Proceedings, Vol-3171 (2022) 2-2.

[31] N. Hrytsiv, I. Bekhta, M. Tkachivska, V. Byalyk, Sylvia Plath’s I felt-Narrative Label of The Bell
Jar in Ukrainian Translation, CEUR Workshop Proceedings, Vol-3171 (2022) 240-255.

[32] M. Bekhta-Hamanchuk, H. Oleksiv, T. Shestakevych, Y. Shyika, Quantitative Parameters of J.

London's Short Stories Collection “Children of the Frost” and its Translation, CEUR Workshop

Proceedings, Vol-3171 (2022) 697-710.
[33] K. S. Mandziy, U. V. Yurlova, M. P. Dilai, English-Ukrainian Parallel Corpus of IT Texts:

Application in Translation Studies, CEUR Workshop Proceedings, Vol-3171 (2022) 724-736.

[34] N. Hrytsiv, T. Shestakevych, J. Shyyka, Corpus Technologies in Translation Studies: Fiction as
Document, in: CEUR Workshop Proceedings, Vol-2917 (2021) 327-343.

[35] A. Lutskiv, R. Lutsyshyn, Corpus-Based Translation Automation of Adaptable Corpus Translation

Module, CEUR Workshop Proceedings, Vol-2870 (2021) 511-527.
[36] V. Lytvyn, P. Pukach, V. Vysotska, M. Vovk, N. Kholodna, Identification and Correction of

Grammatical Errors in Ukrainian Texts Based on Machine Learning Technology. Mathematics 11

(2023) 904. https://doi.org/10.3390/math11040904

[37] A. Kopp, D. Orlovskyi, S. Orekhov, An Approach and Software Prototype for Translation of
Natural Language Business Rules into Database Structure, CEUR Workshop Proceedings 2870

(2021) 1274-1291.

[38] S. Kubinska, R. Holoshchuk, S. Holoshchuk, L. Chyrun, Ukrainian Language Chatbot for
Sentiment Analysis and User Interests Recognition based on Data Mining, CEUR Workshop

Proceedings, Vol-3171 (2022) 315-327.

[39] A. Dmytriv, S. Holoshchuk, L. Chyrun, R. Holoshchuk, Comparative Analysis of Using Different

Parts of Speech in the Ukrainian Texts Based on Stylistic Approach, CEUR Workshop
Proceedings, Vol-3171 (2022) 546-560.

	1. Introduction
	2. Related works
	3. Methods
	4. Experiments, results and discussion
	5. Conclusions
	6. Acknowledgement
	7. References

