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Abstract  
With the rapid development of deep learning, traditional medical image segmentation methods 

are gradually eliminated. The mainstream tasks of medical image segmentation include tumor 

segmentation, multi-organ segmentation, cardiac segmentation, and retinal segmentation. For 

the common multi-category segmentation problem in medical segmentation, due to the large 

differences in individual shapes and textures between categories, it is difficult to achieve 

segmentation. Taking medical segmentation as an example, we propose an efficient and 

powerful network architecture for medical segmentation, CN-Unet. CN-Unet is a U-shaped 

symmetric network based on deep convolution, and its basic unit comes from CN-Block in 

ConvNeXt. To cope with small object segmentation in medical images, we design a multiple 

data augmentation module, in which the slice fusion branch can subtly capture the adjacent 

information of medical slices. Experiments on two public datasets (Synapse and ACDC) show 

that the segmentation ability of CN-Unet outperforms other state-of-the-art methods. 
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1. Introduction 

As technology evolves, various fields of our lives have benefited to varying degrees; deep learning 

has also begun to penetrate more professional areas, such as the military, medicine, education, 

transportation, and other regions [1]. As an essential task in the medical field, medical image processing 

has always received significant attention from medicine and some interdisciplinary experts [2]. 

Therefore, combining deep learning and medical image processing to solve various subtasks on medical 

images has become a hot topic in recent years [3]. Due to the rapid development of medical imaging 

equipment, medical imaging equipment such as magnetic resonance imaging (MRI), computed 

tomography (CT), and X-ray imaging has gradually become essential in medical image analysis. As the 

primary method of medical image analysis, medical image segmentation can assist doctors in obtaining 

information about organs or lesions, which is of significance for a series of medical analysis tasks such 

as disease observation, treatment plan formulation, and anatomical structure modeling. Due to the 

characteristics of medical images, it has a series of problems, such as complex image format, difficulty 

acquiring data sets, and difficulty extracting features. Therefore, medical image segmentation remains 

a challenging task. 

  When AlexNet first appeared, it won the ImageNet LSVRC-2010 championship, and its accuracy 

far exceeded the second place. Since then, the craze of the convolutional neural network has risen to a 

new height. The convolutional neural network has also indicated that it is about to become the trend in 

the image field. In 2015, Ronneberger et al. [4] proposed a U-shaped network structure (U-Net) for 

medical image segmentation, and its excellent segmentation performance and ingenious network 

structure attracted the attention of scholars. Since then, the U-shaped structure's application in medical 

                                                      
COLINS-2023: 7th International Conference on Computational Linguistics and Intelligent Systems, April 20–21, 2023, Kharkiv, Ukraine 
EMAIL:liuwei001@vip.sina.com (W. Liu);lijunwei7800@gmail.com (J. Li); weizhiye121@126.com (Z. Ye); orest.v.kochan@lpnu.ua (O. 

Kochan)  

ORCID: 0009-0003-2912-5405 (W. Liu); 0009-0009-1122-3051 (J. Li); 0009-0006-3234-7377 (Z. Ye); 0000-0002-3164-3821 (O. Kochan) 

 
©️  2023 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



images has been extensively recognized [5]. As the most classic neural network in medical image 

segmentation, U-Net is characterized by a symmetrical U-shaped structure and skip connections that 

can combine features. The U-shaped system consists of an encoder and a decoder. The encoder can 

extract features from the input original image layer by layer from shallow to deep; the decoder can 

restore the extracted features to the original size layer by layer through upsampling operations. The skip 

connection can fuse the features of different levels; the purpose is to reduce the loss of information in 

the recovery process to achieve a better segmentation effect. 

  Currently, the medical image segmentation methods with deep learning backgrounds are divided 

into 2D and 3D segmentation [6]. In the 2D segmentation method, we generally decompose the 3D 

medical image data into many 2D slices, then input each slice into the segmentation model; the model 

will output the segmentation effect. 2D segmentation has strong generalization ability, 2D segmentation 

model also has better transferability, and the training process has the advantages of fewer parameters 

and faster training speed. In contrast, 2D image segmentation may lose some contextual information in 

data processing and feature extraction. In the 3D segmentation method, the data is superimposed by 

multiple layers of slices. Compared with the 2D data, there is one more z-axis, so the (x, y, z) three 

directions are encoded in the convolution process. This may allow the model to obtain richer feature 

information, but 3D segmentation will consume more memory and obtain several times the number of 

parameters of 2D segmentation. Due to the matching problem between the amount of data and the 

number of model parameters, the 3D segmentation model needs more data to train. Otherwise, it may 

lead to overfitting problems [7]. 

In this paper, we propose a depthwise convolution-based 2D medical image segmentation 

architecture, CN-Unet. CN-Unet is a U-shaped symmetric architecture based on deep convolution based 

on CN Block as the basic unit. To take full advantage of the powerful feature extraction capability of 

CN Block, we divide the encoder and decoder of CN-Unet into four stages, and set the CN Block ratio 

of several stages to (3, 3, 9, 3). We add skip connections between each symmetry stage to recover the 

contextual information of the feature maps. To improve the segmentation ability of CN-Unet for small 

and medium organs in Synapse, we propose a multiple data augmentation module in which the slice 

fusion branch is presented according to the characteristics of medical images. We use two different 

datasets, Synapse and ACDC, to evaluate the segmentation performance of CN-Unet. We achieve the 

best results on the Synapse dataset and break through 80% DSC on the semantic class of gallbladder. 

To verify the feasibility of our structure, we do in-depth comparative experiments on the Synapse 

dataset, and our base CN-Unet architecture outperforms ConvNeXt [8] in results. 

 

2. Related works 
2.1. Medical image segmentation method based on deep learning 

With the advent of convolutional neural networks, deep learning-based segmentation models have 

been widely used in medical impact. In 2015, Ronneberger et al. pioneered the coder-decoder structure 

network, U-Net [4]. U-Net is the first deep learning network applied to medical image segmentation. 

Its unique structure and excellent segmentation performance later became the benchmark for medical 

image segmentation networks. To make U-Net's skip connections work more fully, U-Net series 

networks have been proposed successively (U-Net+, U-Net++, U-Net+++). Since 3D methods have 

become popular in the image field, medical imaging scholars have also begun to apply 3D network 

models to various tasks in medical image analysis, such as 3D-U-Net and V-Net. With the advent of 

visual transformers (VITs), researchers began to try to combine Transformers to design medical 

segmentation models. TransUNet proposed by Chen et al. [15], is the first medical segmentation model 

that combines CNN [16] and Transformer. The authors used it for multi-organ and heart segmentation, 

and its performance was better than the state-of-the-art network. In the past two years, Transformer-

based medical image segmentation network structures have begun to emerge, such as Swin-Unet [9], 

MISSFormer [11], UNETR [12], nnFormer [10], etc. These advanced structures have all performed 

segmentation tasks on datasets such as multiple organs and have achieved positive results in DSC 

values. Until the emergence of ConvNeXt, Liu et al. [8] designed a convolutional neural network 

according to the idea of Swin Transformer. They proved through many experiments that the 



convolutional neural network is not worse than the transformer-based networks, even better than the 

Transformer structure in some aspects. 

2.2. Data Augmentation Methods in Medical Image Segmentation 

Access to medical data has always been challenging due to the specialized nature required to label 

medical data. In this context, the augmentation of medical data is significant. Methods used for medical 

image enhancement typically have transformations such as rotation, random cropping, elastic 

deformation, and inversion, which generate a training image that resembles a specific training example. 

With the rapid development of deep learning, the effect of these commonly used data augmentation 

methods on model performance appears to be gradually missing. In 2019, Wang et al. [21] proposed a 

theoretical formulation of test-time augmentation for deep learning and applied it to medical image 

tasks. However, many enhancement methods, such as DAGAN augmentation [19], have not been 

popularized in the downstream tasks of medical images. The method generates semantic maps through 

labels, and adds semantic maps and labels to the training set in pairs, which is an advanced and effective 

data augmentation method. 

2.3. Method 

CN-Unet is an encoder-decoder structure, and its overall architecture is shown in Fig 1. It has the 

same U-shaped structure as the classic U-Net, mainly composed of encoder, bottleneck, decoder, and 

skip connections. The basic unit of CN-Unet is the CN block. Specifically, the encoder consists of one 

embedding layer, three CN modules, and two downsampling layers. Symmetrically, the decoder branch 

contains three upsampling layers and three CN modules. Furthermore, the bottleneck consists of a 

downsampling layer and two CN modules to provide a large receptive field to support the decoder. 

Inspired by U-Net, we design a symmetric encoder-decoder structure and add skip connections between 

the feature cones of each corresponding CN module. The fusion of multi-scale features helps recover 

fine-grained details in predictions to compensate for the loss of spatial information caused by 

downsampling. 

 

 
Figure 1: The archietecture of CN-Unet 

 

2.4. Encoder 

The input of CN-Unet is the 2D slice 𝑥 ∈ 𝑅𝐻×𝑊  after slice fusion (𝑥  is obtained by scaling, 

cropping, and rotating the original image), and H and W represent the height and width of each input 



scan. Slices of size 512×512 are sent to the Embedding Layer. The Embedding Layer contains a 

downsampling layer and a normalization layer. Unlike the general average pooling and maximum 

pooling, our downsampling layer is composed of The convolution operation is completed with a kernel 

size of 4×4 and a stride of 4. Same as CN Block, Embedding Layer uses layer normalization. After 

passing through the Embedding Layer, the number of input channels increases to 96, and the 

normalization is completed. At this time, the data will pass through the first CN Block. On both sides 

of the entire symmetric structure, we set the stage scale of CN Block to (3, 3, 9, 3), so the first CN Block 

layer contains three independent CN Block blocks. We call the matrix entering the CN Block 𝑥𝑖𝑛 . 

Before 𝑥𝑖𝑛 passes the inversion bottleneck, we will perform a 7×7 depthwise separable convolution 

operation on it, then pass through an LN layer. The process formula is as follows: 
𝑦1 = 𝐿𝑁(𝑆𝑒𝑝𝐶𝑜𝑛𝑣7×7(𝑥𝑖𝑛)), (1) 

Then 𝑦1 first performs the permute method to transform the dimension and enters the bottleneck 
layer. The bottleneck layer contains two fully connected layers and a GELU activation function. The 
order is FC, GELU, FC. After that, it will continue to use permute to transform the dimension, then go 
through a DropPath layer to delete the multi-branch structure randomly. Finally, adding 𝑥𝑖𝑛  to the 
matrix obtained here is a complete CN Block operation, and its formula is as follows: 

𝑥𝑝𝑢𝑡 = 𝐷𝑟𝑜𝑝𝑃𝑎𝑡ℎ (𝐹𝐶 (𝐺𝐸𝐿𝑈(𝐹𝐶(𝑦1)))), (2) 

The ratio range of DropPath is set between 0 and 0.4. Since the stage ratio of CN Block is (3, 3, 9, 

3), we average it into 18 regions in the range of 0 to 0.4, of which the first DropPath of the CN Block 

is about 0.022, the DropPath of the second CN Block is about 0.044, and so on, the DropPath of the last 

CN Block of the encoder part is 0.4. 

 In the U-shaped structure, the encoder usually has a down-sampling operation to increase the 

receptive field and highlight the features of the image to better extract shallow features. The entire 

encoder structure of CN-Unet contains three downsampling layers located in the middle of every two 

CN Block layers. In order to obtain better fusion information and achieve the effect of feature extraction 

and feature dimensionality reduction, we use 2×2 convolution downsampling in the downsampling 

stage. We set the step size of convolution downsampling to 2, which can obtain enough receptive field 

and avoid over-sampling. Since we put four stages for both the encoder and the decoder, the feature 

size of each stage of the encoder will increase by four times, so each downsampling layer is double 

downsampling. 

2.5. Decoder 

 The decoder of CN-Unet also contains four stages, maintaining symmetry with the encoder. The 
ratio of (3, 3, 9, 3) is also maintained in the layout of CN Blocks. After obtaining the shallow feature 
information, the feature map first passes through a bottleneck containing three CN Blocks,  then passes 
through the first one. Upsampling layer. The traditional upsampling method generally uses a preset 
interpolation method, so the preset interpolation method cannot bring better learning ability to the 
network. In CN-Unet, our upsampling layer uses transposed convolution to extract deep features, then 
concatenates a layer for normalization to make the gradient more stable. Before connecting the next CN 
Block layer, we use skip connections to connect the feature maps from the upsampling layer with the 
feature maps from the CN Block at the same stage in the encoder. Assuming that the feature map before 
entering the first upsampling layer in the decoder is 𝑥1, the input of the next CN Block is 𝑥2, and the 
output of the corresponding CN Block in the encoder is 𝑦1, we can use the following formula to express 
the above Operation of sampling layers and skip connections: 

𝑥2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐺𝐸𝐿𝑈(𝐷𝑒𝑐𝑜𝑛𝑣4×4(𝑥1)), 𝑦1), (3) 

In the decoder, this procedure is performed three times to restore the feature maps of each stage to 

the same size as the encoder. In each CN Block layer stage of the decoder, the jump connection between 

the upsampling layer and the encoder is passed before the input. After that, the number of channels of 

the feature map changed from C to 2C. To restore the number of channels to C, we add a convolutional 

layer inside each CN Block layer of the decoder; the convolution kernel size is 3×3, the stride is set to 

1, and the padding is set to 1. In this way, we complete the design of the entire decoder. Finally, we 



send the output of each CN Block layer of the decoder to the Upper Head to complete the medical image 

segmentation. 

2.6. Multiple Data Augmentation Modules 

In the process of solving downstream tasks in the image field, data augmentation is usually used to 

increase the number of samples and enrich the diversity of samples. At the same time, data augmentation 

can also improve the model's generalization ability. Due to the medical professionalism and privacy 

required for medical image labeling, it is tough to obtain medical data sets, which is also one of the 

main reasons why the problems in the field of medical image processing are difficult to solve [18]. To 

avoid letting the lack of data affect the model's efficiency, we propose multiple data augmentation 

modules specifically for medical data.The MDA module contains the following three branches: 
 DAGAN data augmentation:Before inputting the images to CN-Unet, we randomly selected the 

labels of 1280 samples, then fed them into the DAGAN [19] network for a semantic generation. 
Through the DAGAN network, we can obtain an additional 1280 generated pictures, then expand these 
generated pictures and the corresponding labels of the input into the data set. The specific steps are shown 
in Figure 2. 

Slice Fusion augmentation:When cutting medical CT images, we have some understanding of the 
characteristics of medical data. After completing the cutting of a single case, we quickly switch the 
picture to check whether the cutting effect is ideal roughly. Interestingly, this group of slices is like a 
video with a timeline, and we can see the internal changes in this case. This means that we can regard 
this case as a whole, then after cutting it into several slices, each of its adjacent slices has a specific 
relationship. If we feed the slices into the network structure one by one, we lose this association, the 
so-called contextual information. Our approach is to merge three adjacent single-channel grayscale 
slices into a single 3-channel RBG image so that we will effectively preserve the contextual information 
of the data. Of course, we can also directly convert a single-channel slice into a 3-channel image, but 
this simply copies the information of a single slice, which not only fails to capture the information 
between adjacent slices, but also causes data redundancy. 

 

 

Figure 2: The process of DAGAN data enhancement 

 

Test-Time Augmentation:We introduce test-time data augmentation [21] in the multiple data 

augmentation module to further reduce the generalization error at training time. The augmentation in 

Section 4.3 is first performed on the test image, consistent with what was done during training. We let 



the model make predictions for each augmented picture and return a set of those predictions, which is 

the step of de-augmentation. Finally, performing a merge operation completes the test-time data 

enhancement. The effect of TTA will be discussed later, with the results in Table 4. 

2.7. Loss function 

This paper uses weighted cross-entropy (WCE) loss to replace the commonly used cross-entropy 
loss. The WCE loss is a variant of the CE loss. All positive samples are multiplied by a coefficient for 
weighting. This loss function is widely used in class-imbalanced problems. The formula is as follows: 

𝑙𝑜𝑠𝑠𝑊𝐶𝐸 = − ∑ 𝑤 ∗ 𝑦𝑖 ∗ log(𝑙𝑜𝑔𝑖𝑡𝑆𝑖) + (1 − 𝑦𝑖) ∗ log(1 − 𝑙𝑜𝑔𝑖𝑡𝑆𝑖) , (4) 

The Synapse dataset's training set and the background class have nine categories. The number of 

samples in each category is 𝑛𝑖, and 𝑖 ranges from 1 to 9. The median balance method can be used to 

calculate w. 

3. Experiments 

In this section, to verify the effectiveness of CN-Unet, we conduct experiments on two commonly 

used datasets: Synapse Multi-Organ Segmentation and Automatic Cardiac Diagnosis Challenge 

(ACDC). We chose to compare with current state-of-the-art ConvNets and transformer-based 

architectures, using the reported results to explore the research space in the field of medical image 

segmentation and demonstrate the superiority of CN-Unet. 

3.1. Datasets 

Synapse for multi-organ CT segmentation.：The dataset consists of abdominal clinical CT scan 

images of 30 patients, which contains 3779 axial abdominal images. After using the split in [15], 18 
sample cases were constructed as the training set, and the remaining 12 sample cases were divided into 
the test set. Using the mean Dice Similarity Coefficient (DSC) and mean Hausdorff distance (HD) [28] 
as evaluation metrics, we assessed CN- Unet performance. 

ACDC for automated cardiac diagnosis：The ACDC challenge obtained examinations of 100 

patients using an MRI scanner. The MR image is a series of short-axis slices, the heart area is covered 
from the left atrium to the apex, and the thickness of the slices is 5 to 8 mm. Each data was manually 
labeled for left ventricle (LV), right ventricle (RV), and myocardium (MYO). The entire dataset was 
split into 70 training samples (1930 axial slices), ten validation samples, and 20 test samples. Like [9], 
we evaluate our method using the average DSC index. 

3.2. Evaluation metrics 

We use Dice score and 95% Hausdorff distance (HD95) [28] to evaluate the accuracy of 

segmentation results. The Dice score is calculated based on the accuracy and sensitivity of the test 

samples and is a result of balancing the two criteria. Hausdorff distance is often used as a segmentation 

indicator, mainly used to measure the segmentation accuracy of the boundary. For a given semantic 

class, we denote the ground truth and predicted values of each pixel as Xi and Yi, respectively, and X' 

and Y' represent the surface point set of ground truth and predicted values. The evaluation formula of 

Dice score and HD is as follows: 

𝐷𝑖𝑐𝑒 =
2 ∑ XiYi

I
i=1

∑ Xi + ∑ Yi
I
i=1

I
i=1

 
(5) 

 



HD = max{dXY, dYX} = max     yxyx
XxYyYyXx

,minmax,,minmax


, (6) 

 
95% HD is similar to Max HD. However, it is based on calculating the 95th percentile of the distance 

between boundary points in X and Y. The purpose of using this measure is to remove the effect of a 

minimal subset of outliers. 

3.3. Experimental details 

CN-Unet is implemented on Python 3.6, PyTorch 1.8.1, and Ubuntu 20.04. For data preprocessing 

on Synapse, we adopt the method introduced in Swin-Unet. For all samples in the training set, data 

augmentation methods such as random cropping, scaling, and rotation are used to increase the diversity 

of samples. In the training phase, we use a batch size of 2, and the input image size is 256×256×3. We 

used the AdamW optimizer to train the model, set the initial learning rate to 0.0001, and set the weight 

decay to 0.05 to prevent overfitting during gradient descent; exponential decay of the first and second 

moment estimates The rates were set to 0.9 and 0.999, respectively. All training procedures are 

performed on an NVIDIA 3080ti GPU with 12GB memory. 

 

Table 1 
Compared with other advanced methods 

Method HD95 DSC Aor Gall Lkid RKid Liv Pan Spl Sto 

TransUNet 31.69 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 
CoTr 27.38 78.08 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55 

Swin-Unet 21.55 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 
U-NETR 22.97 79.56 89.99 60.56 85.66 84.80 94.46 59.25 87.81 73.99 

MISSFormer 18.20 81.96 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81 
nnFormer 15.80 86.56 92.13 70.54 86.50 86.21 96.88 83.32 90.10 86.83 
nnUNet 13.69 86.79 93.20 71.50 84.39 88.36 97.31 82.89 91.22 85.47 

ConvNeXt 12.43 87.14 89.86 68.73 94.65 93.32 96.48 73.03 93.62 87.43 
CN-Unet 12.53 90.23 91.74 81.23 94.64 93.13 96.63 78.08 94.69 91.70 
P-values <1e-2(HD95),<1e-2(DSC) 

3.4. Results 

To evaluate our CN-Unet, we compare current state-of-the-art medical segmentation methods with 

CN-Unet, including TransUNet, CoTR [24], Swin-Unet, UNETR, MISSFormer, nnFormer, and 

nnUNet [25]. The segmentation results of all models are shown in Table 1; our CN-Unet achieves the 

best scores of 90.23 and 10.53 on the average Dice score and the average HD95 score, respectively. 

The Dice score of 90.23 shows that our CN-Unet segmentation's accuracy is the best among all models. 

In contrast, the HD95 score of 10.53 represents the superior performance of CN-Unet on organ edge 

segmentation. Excluding ConvNeXt, the average Dice score and average HD95 score of the second 

nnUNet are 86.79 and 13.69, respectively. In contrast, our CN-Unet is 3.44 and 3.16 higher than 

nnUNet, a remarkable achievement for Synapse Improve. Regarding semantic categories, our CN-Unet 

achieves the best Dice scores on the three categories of aorta, spleen, and stomach, outperforming the 

second-place Dice scores by 9.73, 2.77, and 4.87, respectively. The gallbladder breaks the 80% level 

on Synapse for the first time with a Dice score of 81.23, which shows that our CN-Unet has significantly 

improved the segmentation of small organs. From Figure 4, we can see that CN-Unet outperforms other 

methods in segmenting small objects and is comparable to nnFormer in edge detection. The boxplots 

in Figure 5 show that CN-Unet has higher upper and lower quartiles than the rest of the methods, which 

validates the average superiority of CN-Unet over Synapse’s categories. 
 



 

Figure 3: Visual comparison with current state-of-the-art methods on the Synapse dataset. 

3.5. Ablation experiment 

As shown in Table 1, the U-shaped symmetric structure based on CN Block is 0.9 higher than the 
tiny version of ConvNeXt.  In each semantic category, our base structure outperforms ConvNeXt in five 
categories. The line graph in Figure 4 shows that CN-Unet reaches the optimal value range faster than 
ConvNeXt. The experimental results demonstrate the feasibility of our CN-Unet infrastructure in 
general. 

After determining the feasibility of CN-Net's infrastructure, we conducted in-depth research on the 
MDA module. The results of each branch on the ACDC dataset are shown in Table 2. Each branch has 
improved the performance of CN-Unet, and slice fusion has improved the average DSC by 1.13, which 
is the branch with the most contribution in MDA.Overall, the progress of the MDA module on CN-Unet 
is considerable, and each branch of MDA contributes to the whole module to varying degrees. 

 

 

Figure 4: DSC line graphs per 1000iterations for CN-Unet and ConvNeXt. 



Table 2 
Ablation experiments 

Method Average RV Myo       LV 

CN-Unet* 87.37 87.26 83.35 91.52 
CN-Unet*+SF 88.50 88.92 84.45 92.13 
CN-Unet*+SF+DAGAN 89.35 89.75 84.62 93.68 
CN-Unet*+MDA 90.43 90.89 86.74 93.66 
P-value <1e-2(DSC) 

 

4. Conclusion 

In this paper, we propose a 2D medical segmentation network, CN-Unet. CN-Unet is a robust deep 
convolutional network, we design it as a U-shaped symmetrical structure, and the basic design is the 
same as Swin-Unet. CN Block is an advanced convolution block proposed in ConvNeXt. CN Block 
absorbs the advantages of Swin Transformer Block and ResNet Block simultaneously. It can not only 
accurately obtain encoded spatial information but also build standard hierarchical objects. To give full 
play to the feature learning ability of CN Block, we divide the encoder and decoder into four layers and 
use skip connections to connect each corresponding layer to recover contextual information. To improve 
the small object segmentation ability of CN-Unet, we propose the MDA module. Experiments on 
Synapse and ACDC datasets show that our CN-Unet achieves promising results on 2D medical 
segmentation, which shows that CN-Unet has good segmentation performance and robustness. 
Especially on Synapse, the HD95 and DSC scores obtained by CN-Unet exceed the current state-of-the-
art methods, and DSC, for the first time in the semantic class of gallbladder breaks through 80%, 
reflecting CN-Unet’s performance in small object segmentation. We also conduct comparative 
experiments with the original ConvNeXt on the Synapse dataset, demonstrating the effectiveness of our 
encoder-decoder structure. 
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