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Abstract  
Predictive maintenance (PdM) is a technique that uses performance indicators of some unit to 

detect anomalies in its behavior. In data measured by sensors it is possible to find unusual 

patterns, such as growing engine vibration or high power consumption. Usually, malfunctions 

are preceded by some unusual behavior of the machine. The huge amount of the existing 

sensors is generating a huge volume of data. Machine learning algorithms can gather and 

analyze patterns from  the data and create models to estimate the necessary machine health 

metrics. This paper examines the structure of the convolutional neural network (CNN) and its 

training methods for solving the problem of aggregate maintenance prediction in combination 

with the method of converting one-dimensional data into images. The data transformation 

step is very important for further use of CNN. A generalized model of rotating equipment 

was used to evaluate the proposed approach. The data was preprocessed, transformed into an 

image, and fed to a customized classifier. The simulation results showed that the combination 

of CNN with the data dimensionality enhancement method outperformed traditional machine 

learning methods (random forest, support vector machine), and forecasting methods based on 

MLP, LSTM and 1-d CNN neural-networks. 
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1. Introduction 

Predictive maintenance is a powerful tool that enables companies to predict and prevent equipment 

failure, minimizing downtime, and increasing productivity. With the advent of deep learning 

techniques, predictive maintenance has become more accurate and efficient, leading to better 

equipment performance and reduced costs. Predicting the behavior of complex machines is an 
important scientific and technical problem that allows predicting the behavior of production processes 

and significantly reducing risks in environmental, economic, social and other systems. The relevance 

of the task of predicting possible malfunctions of complex systems is especially growing recently. 
This is due to the availability of powerful computing tools for collecting and processing information 

[1–5].  

The development of prognostics as a science in recent decades has led to the creation of many 
models and methods, procedures, techniques of forecasting, unequaled in their importance. According 

to estimates of foreign and domestic experts in prognostication, there are already more than a hundred 
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methods of forecasting, in connection with which the task of choosing methods that would provide 

adequate forecasts for the investigated processes or systems arises. 
Until recently, the statistical approach was the main one in solving the forecasting problem. Within 

the framework of statistical models, the tasks of forecasting, finding hidden periodicities in data, 

analyzing dependencies, assessing risks in decision-making, and others are solved. A general 

disadvantage of statistical models is the difficulty of choosing the type of model and selecting its 
parameters. 

It should be noted that strict statistical assumptions regarding the properties of time series, which 

describe signals from machine sensors, significantly limit the possibilities of classical forecasting 
methods. In addition, when using a statistical approach, one of the main requirements for time series 

is its stationarity, which consists in the fact that the distribution of its values is invariant with respect 

to the moment in time for which it was constructed. It also significantly limits the capabilities of 
classical forecasting methods. 

An alternative to statistical methods can be the methods of computational intelligence, among 

which artificial neural networks (ANNs) should be included in the first place [1-2]. Being universal 

approximators, some types of ANNs allow to restore with a given accuracy any arbitrarily complex 
continuous nonlinear function, using the representation of the approximated function in the form of a 

neural network formed by neurons, the parameters of which are determined by its training. The ability 

of a neural network for versatile processing of information stems from its ability to generalize and 
highlight hidden dependencies between input and output data. A significant advantage of ANNs is 

that they are capable of learning and generalizing accumulated knowledge. The use of these methods 

to solve forecasting tasks is due to the presence of complex regularities, a priori and current 
uncertainty, non-stationarity, emissions, etc. [6–8]. 

Intelligent forecasting methods built in this way, like classical ones, require the creation of a 

mathematical model, the quality of which determines the accuracy of forecasting. It should be noted 

that the same criteria are used for building the model (choosing its structure and estimating 
parameters) that characterize the accuracy of forecasting [9-10]. 

When studying time series, it is almost impossible to get an absolutely accurate forecast, for this 

reason, it is considered an important task to evaluate various forecasting models from the point of 
view of certain quality criteria. At the same time, the reliability of the selected forecasting model is 

assessed by periodic comparison of the actual and forecasted values of the series. When solving 

practical problems, the analysis of prediction error or prediction accuracy is considered more 

significant [11]. 
In this article, we will explore how encoding signals by Gramian Angular Fields and further 

recognition by Convolutional Neural Networks (CNNs) can enhance predictive maintenance. 

Gramian Angular Fields (GAF) is a powerful tool for encoding time-series data into image-like 
representations, allowing it to be processed by convolutional neural networks [12-16]. GAF is a 

matrix that represents the phase relationships between the values of the time series. It can be thought 

of as a signal's "footprint in the phase space," and it contains information about the signal's frequency 
and amplitude characteristics. GAF has several advantages over traditional time-series data processing 

techniques. For example, GAF is able to preserve the structure of the time series, allowing it to 

capture complex patterns and trends. Additionally, GAF is computationally efficient, making it 

suitable for large datasets. 
The aim of this work is to develop a structure for predictive maintenance of equipment using a 

combination of the GAF method used to transform a signal into an image and a convolutional neural 

network CNN. The use of CNN is a significant advantage over traditional machine learning methods, 
as it allows the use of fairly well-researched and proven neural network models. Since the health of 

the system is constantly analyzed in this approach, a deviation from the standard behavior 

immediately indicates that the machine needs to be called for unscheduled maintenance. The paper 
shows that the proposed approach makes it possible to detect anomalous data sequences and give 

more accurate recommendations on the need to perform system maintenance. Modern production 

systems contain a significant set of sensors that collect a huge amount of data from which the 

combination of GAF and CNN methods can extract hidden patterns and get better results compared to 
traditional statistical forecasting methods. A small amount of work in this area is due to the fact that 

previously similar methods machine learning has not been used with 1D data from analog sensors.  



2. Related Works 

Predictive maintenance is a crucial aspect of modern industry that aims to reduce downtime, 
optimize maintenance schedules, and enhance overall productivity. Recent advancements in deep 

learning have led to the development of several innovative PdM techniques based on machine 

learning algorithms, such as CNNs. In this section, we review some of the related works in the field of 
PdM using CNNs and highlight the contributions of this research in the context of encoding time-

series data into images. 

In recent years, CNNs have emerged as a powerful tool for PdM due to their ability to learn 
complex features from raw data. Several studies have investigated the use of CNNs for fault detection 

in industrial systems. For example, Xiang et al. [17] proposed a deep learning approach based on 

CNNs for the early detection of gear faults in wind turbines. Similarly, Guo et al. [18] presented a 

CNN-based method for detecting bearing faults in rotating machinery. 
One of the key challenges in PdM is the representation of time-series data, which is typically high-

dimensional and complex. To overcome this challenge, several studies have explored the use of 

image-based approaches to represent time-series data. One such approach is the GAF and it has been 
used for encoding time-series data in several domains, such as finance [14] and health [19]. 

In the context of PdM, Choudhary et al. [20] proposed a CNN model for the fault diagnosis of 

rolling element bearings. They showed that their approach achieved better results than traditional 

feature-based methods. Lee et al. used GAF-based CNNs for the rolling element fault diagnosis under 
various operating and noisy conditions [21]. They demonstrated that their method outperformed other 

state-of-the-art approaches. 

In summary, the proposed method in this article builds on the mentioned works by exploring the 
use of GAF-based CNNs for predictive maintenance in industrial systems. The contribution of this 

research lies in the evaluation of the proposed method on a dataset generated with using of the 

rotating machine emulator and the comparison with other state-of-the-art techniques. 

3. Proposed Method 

To apply GAF to predictive maintenance, we start by collecting data from sensors on the 

equipment. This data can include vibration, temperature, pressure, and other relevant signals. We then 

use GAF to encode this data into image-like representations, which can be further processed by 
CNNs. 

CNNs are a powerful class of deep learning models that are capable of learning complex patterns 

and structures in images. In predictive maintenance, CNNs can be trained to recognize specific 

patterns in the GAF-encoded time series data, such as changes in vibration amplitude or frequency. 
By detecting these patterns, CNNs can predict when equipment failure is likely to occur, enabling 

maintenance personnel to take action before the failure occurs. 

To train the CNN, we start by splitting the data into training and validation sets. We then use the 
training data to train the CNN to recognize patterns in the GAF-encoded time series data. Once the 

CNN is trained, we use the validation data to evaluate its performance and make any necessary 

adjustments. 
Once the CNN is trained and validated, it can be used to predict when equipment failure is likely 

to occur. This can be done by feeding new GAF-encoded time series data into the CNN and using its 

output to make a prediction about the equipment's health. If the CNN predicts that equipment failure 

is likely, maintenance personnel can take action to prevent the failure from occurring. Overall method 
description is presented at Fig.1. 

 



 
Figure 1: GAF based predictive maintanance 

4. Сonversion of one-dimensional signals into images 

The Gramian Angular Field (GAF) visualization is an effective encoding method of one-

dimensional signals from sensors in the form of images. This method has been proposed Wang and 

Oates in [12].This method has become very popular due to the fact that it allows the use of well-
established convolutional neural networks for signal processing, which turn out to be much more 

effective than traditional methods for processing one-dimensional signals. 

Converting 1D signals to images is one option for data dimensionality enhancement as it 
transitions from 1D data to 2D or even 3D. Dimensionalization is an important step when using CNN 

models. In [13], an approach called Gramian Angular Field (GAF) is presented for encoding time 

series into images to improve classification. The GAF method uses a matrix based on polar 
coordinates to encode time series into an image, since they have the ability to store information about 

temporal correlation, unlike Cartesian coordinates [13]. The algorithm for converting signals to GAF 

images contains the following steps: 

1) Initial time series is normalized and reduced to values in the interval [−1, 1] using the 
expression 

   

 

max( ) min( )
,

max( ) min( )

i i

i

i

x X x X
x

X x X

  


 
 

(1) 

where 1 1ix    the normalized value of each original signal value
ix . 

2) The second step in building time series using the GAF method is to present normalized time 

series X in polar coordinates, which are calculated by finding the angular cosine of each normalized 
value and the timestamp, represented as a radius, using the expressions: 

arccos( )ix   (2) 

itr
M

 , 
(3) 

where θ – the value of the time series in the format of polar coordinates; it - timestamp of time series 

data; M is some constant used to stabilize the space of the polar coordinate system. 

3) After obtaining the polar coordinates for each value of the time series, the trigonometric sum is 

calculated to find the spatial correlation between the polar points as follows: 

cos( ) .i jGAF        

GAF has the following several advantages: 

 according to[14-16], temporal correlation is represented by a superposition of time intervals; 

 in the GAF matrix, the main diagonal contains the original value and angle information;  



 the GAF method preserves the temporal correlation of the time series input data, which is 

necessary to build an efficient forecasting system.  

In this regard, GAF provides high-quality images for CNN, which allows to reveal complex 
relationships between various states of a rotating machine. 

Fig.2. shows a graphical representation of the conversion of time series to GAF images 

 
Figure 2: Graphical representation of the conversion of time series to GAF images 

 

5. Convolutional Neural Network (CNN) 

The Convolution Neural Network (CNN) was first proposed in [22, 23] as a development of the 

neocognitron model designed for efficient image recognition. Subsequently, based on the CNN, R-

CNN networks (Regions With CNNs) were built to apply CNN to the object detection problem. R-

CNN creates a bounding box for each object in an image, or a suggestion of regions, using a selective 
search process. Fast R-CNN, which has increased the performance of R-CNN, performs the 

classification of the objects of each region along with tighter bounding boxes. The next Faster R-CNN 

network improved the mechanism for generating candidate regions used in it by calculating regions 
not from the original image, but from the feature map obtained from the CNN. To do this, a module 

called the Region Proposal Network (RPN) was added. Finally, the Mask R-CNN network develops 

the Faster R-CNN architecture by adding another branch that predicts the position of the mask 
covering the found object, and thus solves the instance segmentation problem. When receiving an 

image, the network issues objects (bbox), bounding boxes, classes (class) and masks (mask). 

It should be noted that Mask R-CNN is the fastest network at the moment. 

5.1. Structure of a Convolutional Neural Network 

Initially, the structure of a convolutional neural network was created taking into account the 

structural features of some parts of the human brain responsible for vision. The development of such 

networks is based on three mechanisms: 

 local perception; 

 formation of layers in the form of a set of feature maps (shared weights); 

 subsampling. 

By local perception it is meant that not the entire image, but only some part of it, comes to the 
input of the neuron. This allows to save the configuration of the image when moving from layer to 

layer. 

The idea of shared weights implies that a small set of weights is applied to a large number of links, 
i.e. each area of the image into which it is divided will be treated by the same set of weights. With 

such an artificially created weight restriction, the generalization property of the network improves.  

The CNN consists of layers of convolution, subsampling and layers of a fully connected neural 
network. 

5.2. Convolutional Neural Network Layers 

CNNs get their name from the "convolution" operator. The main purpose of convolution in case of 

CNN is to extract elements from the input image. Convolution preserves the spatial relationships 
between pixels by learning the features of an image using small squares of the input.  



Each neuron in the convolutional layer plane receives its inputs from some area of the previous 

layer (local receptive field), that is, the input image of the previous layer is scanned with a small 
window and passed through a set of weights, and the result is mapped to the corresponding neuron in 

the convolutional layer. 

The subsampling layer scales down the planes by locally averaging the neuron output values. 

Thus, a hierarchical organization is achieved. Subsequent layers extract more general characteristics 
that are less dependent on image distortion. 

Each convolutional layer is followed by a subsampling layer, or computational layer, which 

performs image dimensionality reduction by locally averaging the neuron output values (Fig. 3). In 
the architecture of a convolutional network, it is generally accepted that the presence of a feature is 

more important than information about its location. Therefore, from several neighboring neurons in 

the feature map, the maximum is selected and its value is considered to be one neuron in the feature 
map of a lower dimension. The difference between the subsampling layer and the convolution layer is 

that in the latter, the regions of neighboring neurons overlap, which does not happen in the 

subsampling layer. 

 
Figure 3: Convolutional Neural Network Structure 

 

Thus, the CNN is built by alternating layers of convolution and subsampling. At the output of the 

network, several layers of a fully connected neural network are usually installed, at the input of which 

finite feature maps are fed. Each neuron of this layer is a perceptron that has a non-linear activation 
function. 

5.3. Convolutional Neural Network Parameter Tuning Methods 

To train convolutional neural networks, both the standard backpropagation method and its various 

methods can be used modifications. Let's consider one of them. 
Consider training a multilayer perceptron (MP) with M inputs and L outputs, S layers, the number 

of neurons in the output layer P, hidden - N, all neurons of which have an activation function of the 

form 

1
( )

1 x
f x

e 



 

 

Let us introduce the following notation: 

 * * * *

1 2( ) ( ), ( ),..., ( )
T

s s s s

pW k W k W k W k – matrix of optimal weights of the output layer PxL; 

 * * * *

1 2( ) ( ), ( ),..., ( )
T

s s s s

i i i iLw k w k w k w k – is the vector of optimal weights of the i-th neuron of the output 

layer Px1; 

 1 2( ) ( ), ( ),..., ( )
T

s s s s

pW k W k W k W k – matrix of estimates of the weights of the output layer of the MP 

PxL; 

 1 2( ) ( ), ( ),..., ( )
T

s s s s

i i i iPw k w k w k w k – is the vector of estimates of the weights of the i-th neuron of the 

output layer Px1; 

 * * * *

1 2( ) ( ), ( ),..., ( )
T

i i i i

pW k W k W k W k – is the matrix of optimal weights of neurons of the i-th hidden 

layer ( 1,..., 1.i S  ) NxP; 
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– is the vector of activation 

functions of neurons in the output layer Lx1; 

1 2( , ) [ ( ( ), ( )) ( ( ), ( )) ... ( ( ), ( ))]T T T

Lf x w diag f w k x k f w k x k f w k x k      – is the matrix of derivatives of the 

activation functions of the LxL layer; 

( ( ), ( ))T

if w k x k – is the first derivative of the activation function of the i-th neuron. 

Then the output signals and the approximation error can be represented as follows: 
- required vector of output signals 

* * *

1( ) ( ) ( , ( )) ( ),s s sy k W k F x w k k   (4) 

 - real vector of output signals 
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 - error 

   *

1 2( ) ( ) ( ) ( ) (k) , ( ) ( )( ) , ( ) ( ) ( );T se k y k y k k F x w k W k k F x w k k k           (6) 

1,..., 1.i S            

Where *(k) ( ) ( )s sW k W k   is the learning error matrix PxL; 

   *( ) , ( ) , ( )s sF k F x w k F x w k  is the error vector of activation functions; 

1 ( )k ,
2 ( )k are the error vector of the output signal and the neural network approximation, 

respectively. 
With these notations in mind, the gradient procedures for learning the weight matrices of the 

output and i-th hidden layer of the MP, linearizing the quadratic functional and representing the error 

backpropagation procedure, can be written as follows: 
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those is a matrix version of the Kaczmarz (Widrow-Hoff) procedure. 

Here ( )sW
k And ( )iW

k , 1,..., 1i S  – learning coefficients. 

To increase the computational stability of (7), (8), they can be modified by introducing 
regularization parameters into them, i.e. 

 

 
2

, ( 1) ( )
( ) ( 1) ( ) ;

( ) , ( 1)
s

s

s T

s s

W
s

W

F x w k e k
W k W k k

k F x w k





  

 

 
(9) 

 

 
2

( ), ( 1) ( ) ( )
( ) ( 1) ( ) , ,

( ) , ( 1) ( )
i

i

i T

i i

W
i

W

f x k w k e k x k
W k W k k i S

k f x W k x k




 
   

  
 

(10) 

where ( )sW
k , ( ), 1,..., 1iW

k i S   are the regularization parameters. 

However, it should be noted that if the statistical properties of the noise 1 ( )k And 2 ( )k are not 

known, but it is known that they are limited in amplitude, then procedures (7)-(10) should be modified 

by using dead zones in them, as was done for the case of linear Adalina, for example, as follows: 
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Since when calculating the estimates of the matrixW the derivative of the activation function is 

used, then the dead zone parameter must contain the coefficient , defining the slope of the sigmoid 
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where  min 1 2min ( ), ( ),..., ( ) 0.Lf f k f k f k       

Setting the dead zones for procedures (11) and (13) can be done as follows: 
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6. Experiments. 

All experiments were performed with using rotating machine emulator [24] for generating needed 

data. The practical application of maintenance solutions for complex systems is associated with the 
presence of a complex infrastructure for remote monitoring of the state of a given system. The quality 

of forecasting directly depends on the availability of significant amounts of telemetry and service 

records to failure, on the basis of which it is possible to build models of system degradation. In this 
case, failure prediction can be made both on the basis of historical and newly collected data. 

Obtaining real data sets for solving the problem of building a system degradation model is a very 

difficult task. This is due to the reluctance of commercial organizations to post telemetry data from 

their facilities for public use. It should be noted that there are some synthetic datasets, but none of 
them fully correspond to the approach in which irregular real-time data streams from sensors are used 

for condition prediction or anomaly detection [25]. 

In this paper, we use the data generation method presented in [24]. It is a model of a production 
environment with versatile rotating equipment (pumps, turbines, compressors and various motors). 

This model can be used to generate arbitrarily large synthetic data for training a neural network 

model. 

The generated data set is a combination of system maintenance records and telemetry. In this case, 
the data read from the sensor, together with the parameters describing the current state of the machine, 

are transferred from the emulated system to some cloud service that predicts the state of this system. 

The messages sent to the cloud service also contain information about system failures, indicating 
the exact times and types of failures. The purpose of preventive maintenance is to prevent such events 

by giving preventive alarms to maintenance personnel so that appropriate preventive actions can be 



taken. Each such message contains fields with timestamps, information related to danger level, event 

code and machine ID. 
The rotating machine emulator used in this paper generates a telemetry stream that include 

vibration level, temperature, pressure, and other relevant signals like timestamp and machine ID. 

It should be noted that for more efficient modeling of a real system, it is necessary to take into 

account the change in the parameters of a real system over time. To do this, the model uses the 
generalized equation of equipment wear at the macro level over time 

( )B tw Ae . (17) 

Equation (17) can be rewritten as 

0( ) 1 ,th t h e
     

where 0h
 
– initial wear; and  are the coefficients that determine the rate of degradation of the 

system. 

In the investigated emulator of rotating machines are also simulated weather conditions, location 

and some characteristics of the operator. Operating conditions undoubtedly affect the performance 
and life of the equipment, so they must be taken into account in predictive maintenance. 

In most cases, the approaching breakdown of rotating equipment is manifested in a gradual 

decrease in useful work and a change in the level of side characteristics. If the simulated machine has 

pressure as a "useful signal", then a machine running at the same speed will generate less and less 
pressure and yet generate more heat and/or vibration. 

The general idea behind preventive maintenance is that different types of impending breakdowns 

show up differently over time, and that such patterns can be explored with enough data collected. 
Various failure modes due to unknown physical damage are modeled by overlaying independent 

time-varying health characteristics ( )ih t with some randomly chosen failure occurrence parameters ( i  

and i ). The work of each N simulated devices starts with random non-zero initial wear 0h to account 

for changes due to age, manufacturing defects and other unknown factors. 
Each device is modeled on a random sequence of time-varying operating parameters, generating 

telemetry signals containing all observed performance and measurements that are affected by the 

current values of health indicators. If any of the health indicators falls below the threshold (a value 
dependent on the failure mode), a corresponding entry is added to the unit's maintenance log. Non-

Gaussian noise is added to all generated telemetry data to simulate random processes that affect a real 

system. 

At any given time, the rotary machine has a certain desired speed, measured in revolutions per 
minute (RPM). This speed can vary (i.e. the engine can start, stop, gradually accelerate or decelerate) 

or be relatively constant. Smooth changes of states in time are modeled using cubic or linear 

interpolation. 

Instantaneous temperature and pressure can be modeled using some function ( )F t  

( ) ( , ( 1), ( ), ( ))F t f F t h t a t    , 

where – current settings, ( )h t  – current wear indicator; ( )a t  – environmental conditions. 

The analysis of vibration and acoustic signals is a necessary tool for monitoring the condition of 

rotating equipment. Vibration monitoring uses non-invasively installed sensors that collect a one-
dimensional analog signal representing vibration at a specific location and periodically transmit it to a 

cloud service for predictive maintenance. In this case, the frequencies of the harmonic components of 

the vibration signal are modeled as multiples of the main frequency of the machine speed. A 

continuous vibration or audio signal can be modeled using spectral simulation synthesis. 
An example of generated data is given at Fig. 4. At this picture there are 3 channels of data: 

temperature, pressure and rotation speed. As it is seen from the picture length of timeframe between 

critical failures varies according to (17). 



 
 
Figure 4: Generated data 
 

The difference in encoding different system states with GAF method considering temperature data 

channel is presented at Fig .5. 

 

   
Figure 5: Example figure 
  

For the purpose of testing the considered method about 10k of rotating machine cycles were 
emulated. For encoding data from emulated sensors into GAF images a “sliding window” 

method was used. The size of each window was 5 minutes and delta was 1 minute. It means that each 

minute of the simulated time last 5 minutes of data in each data channel was encoded into 64x64x3 

images. Resulting images were collected into 3 dataset: training (about 30k images), validation (about 
10k images) and testing (5k images). For each data channel a separate CNN model was trained (Fig.  

1). The overall system health can be estimated as an average of each model prediction.  Experiments 

show that in 93% cases the considered method was able to predict properly approaching system 
failure within 30 min time period.  

Accuracy of the proposed method was compared with other time-series predictive solutions based 

on machine-learning methods like random forest, support vector machine, and neural-network 
methods based on a multilayer perceptron (MLP), long short-term memory (LSTM) and 1-d CNN 

neural networks. Results of the comparison are presented at Table 1. 

 

Table 1 
Comparison Results 

Neural Network Type  Input data 
dimension 

RMSE Forecast accuracy, % 

5 min 30 min 1h 

SVM 1-d 3.489 83 80 75 
Random Forest  1-d 2.934 85 81 79 

MLP 1-d 2.631 86 81 74 
CNN 1-d 1.661 91 87 82 
LSTM  

GAF + CNN  
1-d 
2-d 

1.489 
1.233 

94 
97 

89 
93 

85 
91 



 

 
 

7. Conclusions 

In conclusion, encoding signals by Gramian Angular Fields and further recognition by 

Convolutional Neural Networks is a powerful technique for enhancing predictive maintenance. By 
using GAF to encode time-series data into image-like representations and processing it with CNNs, 

we can detect complex patterns and structures in the data, enabling us to predict equipment failure 

with greater accuracy and efficiency. As a result, predictive maintenance can help companies reduce 

costs, increase productivity, and improve equipment performance, leading to better business 
outcomes. Simulation results on rotating machine emulator showed that in 93% cases proposed 

method generates correct predictions of the incoming in 30 min system failure. In real life it means 

significant saving of resources and decreasing of overall system downtime. 
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