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Abstract  
The focus of this paper is to analyze the effectiveness of modern machine learning algorithms 
in making hiring decisions for a team. By evaluating different criteria for each candidate, 
decision-makers can use these methods to make informed and objective hiring decisions. This 
study identifies various algorithms that can be used to solve this problem. Experiments are 
conducted to determine the most appropriate model for making hiring decisions using different 
machine learning algorithms. The experiments are conducted on a collected dataset that has 
been divided into training and test dataset. Conducting these experiments allows us to gain a 
deeper understanding of the data and draw more valid conclusions about the results of the 
study. The effectiveness of each algorithm is evaluated using several metrics, including 
processing time, accuracy, precision, recall, and F1 score. By analyzing and comparing these 
metrics, it is determined which of the algorithms is the most effective. The study culminates in 
a comparative analysis of metrics from the experiments, which provides valuable insight into 
the effectiveness of the different algorithms. Ultimately, this study helps decision-makers make 
better hiring decisions and lays the foundation for future research in this area. 
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1. Introduction 

The hiring process is the set of steps that organizations go through to recruit, evaluate, and select 
new employees. It typically involves job posting and recruitment, resume screening and initial 
interview, testing and background checks, final interview, job offer, and acceptance. The process may 
vary depending on the organization's size, culture, and the type of position being filled, but the goal is 
to find the best candidate for the job and ensure a smooth transition into the company. 

Machine learning (ML) is being increasingly used in the hiring process to help organizations make 
data-driven, objective hiring decisions. The use of this approach in hiring is growing in popularity due 
to its potential to improve accuracy, reduce bias, increase efficiency, save costs, and provide increased 
consistency in the hiring process. By analyzing large amounts of data, machine learning algorithms can 
identify patterns and relationships that may be difficult for human decision-makers to see. This can lead 
to more accurate predictions about candidate success and improve the overall quality of hires. 
Automating parts of the hiring process can reduce the need for manual labor and improve efficiency, 
while also reducing the opportunity for human biases and prejudices to influence the hiring process. 

The goal of this article is to experiment with decision tree algorithms to predict which candidates 
should be hired or rejected. The effectiveness of each algorithm should be evaluated based on evaluation 
metrics. The algorithm with the highest efficiency should be chosen as the most effective for making 
hiring or rejection decisions. 
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2. Related works 

As technology continues to advance, machine learning has become an increasingly popular tool 
across various industries. One area where machine learning has particularly excelled is in classification 
problems, due to its ability to learn from large amounts of data and make accurate predictions on new 
data. The articles [1, 2] provide a comprehensive overview of machine learning techniques and an 
introduction to the mathematical and statistical foundations of machine learning. They [1, 2] have 
played an important role in popularizing the use of machine learning for classification problems and 
have helped to establish machine learning as a fundamental tool in the field of data science. The paper 
[3] covers a wide range of issues regarding the analysis and classification of exchange segments of EEG 
that correspond to certain useful signals and artifacts. As well as solving the problems of the human 
identification, detection of victims of man-made disasters [4], the creation of modern search services 
[5], and e-learning systems [6, 7]. 

 In recent years, the use of machine learning has gained popularity in the hiring process [2, 8] because 
companies are looking for ways to improve the efficiency and effectiveness of the hiring process. These 
works [2, 8] provide models for extracting personal data from external sources for joint analysis with 
data in resumes. For example, many big companies like IBM, Hilton, etc. have implemented machine 
learning algorithms in their hiring process to automate tasks and improve efficiency [9-11]. Including 
the protection of personal data, as described in [11]. On the other hand, the study [12] found that job 
applicants generally had low levels of trust and confidence in algorithmic decision-making in 
recruitment and selection processes. However, the study [12] also found that the applicants' perceptions 
varied according to their demographic and personal characteristics, with factors such as age, education, 
and prior experience influencing their attitudes toward algorithmic decision-making. 

Machine learning algorithms can analyze large amounts of data [13], identify patterns and make 
predictions, potentially reducing time and costs. Including analysis photos [14, 15]. 

One study [16] conducted by the National Bureau of Economic Research found that machine 
learning algorithms can improve the quality of hires by up to 25%. The study used a dataset of over 
300,000 job applicants and compared the performance of machine learning algorithms to traditional 
hiring methods. The results showed that the machine learning algorithms were able to identify top-
performing candidates with greater accuracy, leading to improved quality of hires. 

A company called Pymetrics has also developed a machine learning-based hiring platform that uses 
cognitive and emotional assessments to evaluate job candidates. The platform uses machine learning 
algorithms to analyze a candidate's responses to various tasks and games, which are designed to measure 
their cognitive and emotional traits. The platform has been used by several companies, including 
Unilever, to help identify candidates who possess the skills and traits needed for a particular role. 

In the last few years, one of the most popular machine learning algorithms for solving both 
classification and regression problems is decision tree algorithms. The study [17] compares the 
performance resulting from the classification process of text documents using different machine 
learning algorithms. The decision tree shows a better measure of accuracy metrics. These algorithms 
have gained popularity due to their high accuracy, scalability, and ability to process large and complex 
datasets, create highly accurate models, and provide easily interpreted and understandable results. The 
articles [18-20] demonstrate the use of decision tree algorithms in various domains and show their 
potential for improving the accuracy, scalability, and interpretability of machine learning models. 

Decision tree algorithms have shown promise in solving a variety of problems, including in the field 
of human resources. In the context of hiring, tree-based algorithms have been used to identify the most 
relevant features for predicting job performance and to build predictive models that can assist in the 
recruitment process. In the paper [21], three supervised classification algorithms are deployed to predict 
graduation rates from real data about undergraduate engineering students. The study [22] focuses on 
ways to support universities in admissions decision-making using data mining techniques to predict 
applicants' academic performance at the university. The paper [23] aims to present an effective method 
for predicting student employability based on the context and using Gradient Boosting classifiers. 
Predicting student employment is based on identifying the most predictive features affecting the hiring 
opportunity of graduates. 



A company called HireVue has developed a predictive modeling tool [24] that uses a random forest 
algorithm to identify the most relevant features for predicting job performance and to build a predictive 
model that can assist in the recruitment process. The tool uses a combination of video interviews and 
psychometric assessments to predict job performance. 

A study [25] by the University of Oklahoma used gradient boosting to predict the job performance 
of over 500 sales representatives in a financial services company with 81.5% accuracy. The algorithm 
outperformed traditional selection methods and identified important features such as work experience, 
communication skills, and personality traits, providing insights into successful characteristics. 

One of the advantages of using tree-based algorithms in the hiring process is that they can handle 
both categorical and continuous data. This allows for a wide range of data types to be included in the 
predictive model, which can improve the accuracy of the predictions. Tree-based algorithms are also 
able to handle missing data, which can be a common issue in large datasets. 

However, there are also some limitations to the use of tree-based algorithms in hiring. One limitation 
is that they are prone to overfitting, which can occur when the algorithm is too complex and fits the 
training data too closely. This can lead to poor generalization and reduced accuracy of new data. The 
article [26] presents suggested pruning strategies. 

Despite these limitations, the use of tree-based algorithms in hiring offers the hope of improving 
predictive accuracy and reducing bias in the hiring process. As the technology continues to advance, it 
will be important for companies to explore the potential benefits of using these algorithms while also 
ensuring that they are used ethically and responsibly. 

3. Methods and materials 

The effectiveness of modern machine learning algorithms in hiring decisions depends on several 
factors, including the quality of the data used to train the algorithm, the choice of algorithm, and how 
the algorithm is integrated into the hiring process. 

Consider the details of the dataset that will be used for the methods and experiments, the techniques 
proposed to solve the problem, and the metrics that will be used to evaluate the methods and select the 
most appropriate model. 

3.1. Dataset description 

The preparation of a dataset is a critical step in the process of predicting candidate suitability in the 
hiring process. It helps to ensure accurate predictions, avoid bias, and make more informed hiring 
decisions, leading to better outcomes for both the company and the candidates. 

To solve a classification problem in hiring using machine learning algorithms, relevant data on job 
candidates needs to be collected and labeled appropriately. Here are some examples of data that can be 
used to solve this problem: 

• Basic personal information about job candidates, such as their name, age, gender, and contact 
details; 

• Data about educational backgrounds, such as their degree, major, and the institution where they 
studied; 

• Data about previous work experience, such as the companies they worked for, their job titles, and 
their job responsibilities; 

• Data about skills, such as programming languages, tools, and certifications; 
• Data about candidates' performance in job interviews, such as their answers to specific questions 

or their overall impression; 
• Data from standardized assessments that evaluate specific skills or traits relevant to the job. 
• References that can include feedbacks and recommendations from previous employers or 

colleagues, which can provide insight into the candidate's work ethic, communication skills, and 
other important factors. 

Once this data is collected, pre-processed, and cleaned up, it can be used to build a predictive model 
that will help identify candidates most likely to be a good fit for a particular position. 



The found dataset [27] includes various attributes of 614 candidates. Attributes such as gender, 
work experience, education, internship, score, salary, offer history, location, and recruitment status. 
Possible values and detailed descriptions of all these attributes are given in Table 1. 

 
Table 1 
Description of attributes with possible values from the example dataset 

Attribute Description Possible value Usages 
Serial_no Person's identification number 1 – 614 – 
Gender Identity Male/Female/Others + 

Python_exp Experience in the Python 
programming language 

Yes/No/Undefined + 

Experience_Years Work experience 0 – 3 + 
Education Educational background Graduated/Not Graduated + 
Internship Internship experience Yes/No/Undefined + 

Score Score 0 – 700 – 
Salary*10E4 Salary 150 – 81k – 

Offer_History Availability of offers Yes/No/Undefined + 
Location Location L1/L2/Others – 

Recruitment_Status Hiring decision Y/N + 
 
From Table 1, we can see that not all attributes are useful for the experiment and therefore can be 

excluded. Attributes such as serial no, score, salary, and location do not affect the prediction.  
The result attribute is recruitment status. It's important to ensure that the data used to train the 

algorithm is not biased. If the data used to train the algorithm has biases, the algorithm may perpetuate 
and amplify these biases in its predictions. For instance, if the training data has a skewed representation 
of one specific group, the algorithm may be more likely to recommend candidates from that group, even 
if they are not the most qualified for the role. This can result in unfair and discriminatory hiring 
decisions that adversely affect qualified candidates from underrepresented groups. Therefore, it's 
crucial to identify and address any potential biases in the data used for training machine learning 
algorithms to ensure fair and equitable hiring practices. The quantitative characteristics of the example 
dataset by the resulting attribute (recruitment status) are shown in Table 2. 
 
Table 2 
Quantitative characteristics of the example dataset 

Label Value 
Number of examples 614 

Number of positive examples 422 (69%) 
Number of negative examples 192 (31%) 

 
From Table 2, we can that the number of positive examples is greater than the number of negative 

values. The dataset used in this study can be accessed via the following link [27]. 

3.2. Techniques 

One of the many solutions in solving hiring problems is to use decision tree algorithms [28] because 
they are well suited for classification problems, which is a typical use case in the hiring process. 
Decision tree algorithms allow decision-makers to evaluate different criteria for each candidate. Each 
decision tree may have different criteria, such as skills, experience, availability, and communication 
style, which are ranked and compared to determine the best candidate.  

There are the following most common decision tree algorithms [28] for building classification 
models: 

• Decision tree; 



• Random forest; 
• Gradient boosted trees. 
Consider the algorithms for solving the classification problems mentioned above. 

3.2.1. Decision tree algorithm 

A decision tree [29] is a popular machine learning technique for solving classification problems. It 
works by constructing a tree-based model of decisions and their possible consequences. Each node in 
the tree represents a feature or attribute, and each branch represents a possible value or outcome. The 
algorithm learns from the data and creates the best tree structure to classify new data points based on 
the previously seen data. 

The process of creating a decision tree starts with the root node, which represents the most significant 
feature. The algorithm selects the feature that results in the greatest information gain or Gini index, a 
measure of impurity in the data, and splits the data into subsets based on the values of that feature. This 
process is repeated recursively for each subset until a stopping criterion is met, such as reaching a 
predefined depth or the data becoming too small. 

When using decision tree algorithms to solve classification problems in hiring employees, the 
algorithm would be trained to learn from a set of labeled data representing previous successful and 
unsuccessful hires. The algorithm would then use this data to create a decision tree that can predict the 
likelihood of success for new job candidates based on a set of features. 

One of the benefits of decision tree algorithms is their interpretability. Each node in the tree can be 
easily interpreted as a decision based on a specific feature, making it possible to understand how the 
algorithm arrived at its classification. Additionally, a decision tree can handle both categorical and 
continuous data and can even handle missing values. 

However, a decision tree can also be prone to overfitting, which can reduce its accuracy on new 
data. To avoid overfitting, techniques such as pruning or merging multiple decision trees can be used. 

In general, a decision tree is a powerful and interpretable algorithm for solving classification issues. 

3.2.2. Random forest algorithm 

Random forest algorithms [30] are a popular extension of the decision tree algorithm for solving 
classification problems. A random forest is an ensemble of decision trees, where each tree is trained on 
a different subset of the data and a different subset of the features. The final classification decision is 
made by combining the outputs of all the individual trees. 

The random forest algorithm has several advantages over a single decision tree. First, it reduces the 
likelihood of overfitting by training multiple trees on different subsets of the data. This means that the 
algorithm can capture a wider range of patterns in the data, leading to better generalization performance 
on new data. 

Second, random forests can handle large, high-dimensional datasets and noisy data. By randomly 
selecting subsets of features for each tree, the algorithm can effectively reduce the number of features 
considered, leading to faster training and improved accuracy. 

Finally, random forests can be easily parallelized, allowing for efficient processing on large datasets. 
The process of creating a random forest involves training multiple decision trees, each with a 

randomly selected subset of the training data and features. During training, each tree is grown 
independently, with no pruning or early stopping applied. The final classification decision is then made 
by combining the outputs of all the individual trees, typically by taking a majority vote. 

One of the challenges of random forests is finding the optimal number of trees to use in the ensemble. 
Adding more trees to the forest can increase accuracy, but also increases the computational cost and 
can lead to overfitting. Cross-validation and other methods can be used to find the optimal number of 
trees for a given problem. 

In summary, random forest algorithms are a powerful extension of the decision tree algorithm for 
solving classification problems. They offer several advantages over single decision trees, including 
reduced overfitting, improved accuracy on high-dimensional data, and efficient parallel processing. 



3.2.3. Gradient boosted trees algorithm 

Gradient boosting [31] is a machine learning technique used to build an ensemble of decision trees 
for solving classification problems. Gradient boosted trees (GBTs) are particularly effective when 
dealing with complex datasets that contain non-linear relationships between features and outcomes.  

The goal of gradient boosting is to create a model that minimizes the overall error by combining the 
predictions of multiple weak learners (i.e., decision trees) sequentially. The algorithm starts by training 
a single decision tree on the entire dataset. The error between the predicted and actual outcomes is then 
calculated, and a second decision tree is trained on the residual error. The process is repeated for a pre-
specified number of iterations, with each new tree trained on the residual error of the previous tree. 

In GBTs, the contribution of each tree to the final prediction is weighted according to its accuracy, 
with more accurate trees given higher weights. This ensures that the final model gives more weight to 
the most accurate trees, improving its overall performance. 

One of the key advantages of GBTs is that they can automatically process missing data and 
categorical features without the need for data preprocessing. This makes them particularly useful for 
dealing with complex real-world datasets, where preprocessing can be time-consuming and error-prone. 

However, GBTs can be prone to overfitting, particularly when the number of trees in the ensemble 
is large. Regularization techniques, such as early stopping and shrinkage, can be used to prevent 
overfitting and improve the generalization performance of the model. 

In summary, gradient boosted trees are a powerful and widely used technique for solving 
classification problems. They offer several advantages over other machine learning algorithms, 
including their ability to handle missing data and categorical features, and their high accuracy on 
complex datasets. However, it's important to ensure that the model is regularized to prevent overfitting 
and to ensure its generalization performance on new data. 

3.3. Model evaluation metrics 

To determine the quality of the decision tree partitioning, it is necessary to calculate the Gini 
impurity, entropy, or information gain for each feature in the dataset and select the feature that results 
in the highest gain as the splitting criterion for the current node. This process is repeated recursively for 
each child node until a stopping criterion is met, such as when all instances in a node belong to the same 
class, or when a maximum tree depth or a minimum number of instances per leaf is reached. 

Gini impurity is a measure of how often a randomly chosen element from the dataset would be 
incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset. 
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where 𝑝! 	– the probability of n element; n – the total number of classes. 
Entropy is a measure of the amount of uncertainty in the dataset. 
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where 𝑝! – the probability of n element; n – the total number of classes. 
Calculating entropy requires the use of logarithms, which can be more computationally complex 

than calculating the Gini Index. As a result, calculating the Gini Index may be faster than calculating 
entropy. 

Evaluating the effectiveness of a model involves measuring the model's performance on a set of 
evaluation metrics [32]. Several evaluation metrics can be used to evaluate the performance of a model, 
including accuracy, precision, recall, and F1 score. 

The accuracy, recall, and precision metrics are calculated directly from the confusion matrix result 
and are percentage metrics based on the absolute number seen in the confusion matrix.  

A confusion matrix is an n*n table used to describe the performance of a classification model. Each 
row of the confusion matrix represents the actual class, while each column represents the predicted 
class. There are only two categories of results in our classification – yes or no (1 or 0). A confusion 



matrix is a combination of our prediction (1 or 0) and the actual value (1 or 0). The confusion matrix 
diagram of our classification model is described in Figure 1. 

 

 
Figure 1: Confusion matrix for binary classification 

 
A confusion matrix diagram is a useful tool for visualizing the performance of a binary classification 

model. A tool such as draw.io [33] was used to create this diagram. The diagram (Figure 1) can be 
found at the following link [34]. 

The recall is defined as the ratio of the number of true positives to the total number of actual 
positives. 

𝑅𝑒𝑐𝑎𝑙𝑙	(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (3) 

where TP – the number of positive examples correctly classified by the model; FN – the number of 
positive examples that were incorrectly classified as negative by the model. 

A high recall score indicates that the model is effective at identifying positive examples, while a low 
recall score means that the model may be missing some positive examples. 

The recall is particularly important in cases where missing a positive example can have serious 
consequences. However, a high recall score may come at the cost of lower precision, as the model may 
also identify some negative examples as positive. 

Precision is defined as the ratio of the number of true positive results to the total number of true 
positive results. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (4) 

where TP – the number of positive examples correctly classified by the model; FP – or the number of 
negative examples that were incorrectly classified as positive by the model. 

A high precision score indicates that the model is effective at identifying only the positive examples 
that are positive, while a low precision score means that the model is making many false positive 
predictions. 

Precision is particularly important in cases where falsely identifying a negative example as positive 
can have serious consequences, such as in fraud detection or spam filtering. However, a high precision 
score may come at the cost of a lower recall, as the model may miss some actual positive examples. 
Therefore, the optimal balance between precision and recall will depend on the specific needs. 

Accuracy is defined as the ratio of the number of correct predictions to the total number of 
predictions and represents the proportion of instances that the model correctly classified. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝐴) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (5) 

where TP – true positives; TN – true negatives; FP – false positives; FN – false negatives. 
A high accuracy score indicates that the model effectively predicts both positive and negative cases, 

while a low accuracy score means that the model makes many incorrect predictions. 



Accuracy is a useful metric when the classes in the dataset are balanced, meaning that the number 
of positive and negative examples is roughly equal. However, when the classes are imbalanced, 
accuracy can be misleading and other metrics like precision and recall may be more appropriate. 

F1 score is the harmonic mean of precision and recall and is used to evaluate the overall performance 
of the model in correctly identifying positive instances while minimizing the number of false positives 
and false negatives. 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2
𝑅 ∗ 𝑃
𝑅 + 𝑃

, (6) 

where R – recall value (1); P – precision value (2). 
A high F1 score indicates that the model is effective at identifying positive instances while 

minimizing false positives and false negatives. 
The F1 score is particularly useful when the classes in the dataset are imbalanced, meaning that one 

class has significantly more instances than the other. In this case, a high accuracy score can be 
misleading since the model may simply predict the majority class. F1 score, on the other hand, takes 
both precision and recall and provides a more balanced evaluation of the model's performance. 

Also, it is often necessary to estimate the training time of a model. Estimating the training time is 
important for several reasons: 

• Resource allocation; 
• Performance optimization; 
• Cost optimization. 
After training the machine learning model on the training dataset, metrics (3) – (6) are computed on 

the test dataset. The sum of these metrics is used to assess the quality of the model. By analyzing these 
metrics, we can compare the performance of different algorithms and determine which ones are the 
most efficient. 

In summary, evaluating the effectiveness of a built model involves a combination of quantitative 
and qualitative techniques. It is important to use multiple metrics and techniques to get a complete 
understanding of the model's performance and to identify areas for improvement. 

4. Experiment 

The main goal of the experiment is to train models on a selected dataset [27] using different decision 
tree algorithms, to analyze the effectiveness of using machine learning algorithms to determine whether 
a candidate should be hired or not. And to determine which of the decision tree algorithms is most 
effective in making hiring or rejection decisions. To control overtraining, the experiment is conducted 
on both the training and test datasets. The experiment includes preparation for the experiment, training, 
analysis, and comparison of models. 

4.1. Experiment preparation 

Apache Spark computing platform [35] was used for the experiment. It is a tool for efficiently 
processing large amounts of data in a parallel and distributed manner. Spark can be used to process data 
stored on many different computers in a network, allowing it to scale horizontally and handle extremely 
large datasets. It provides several built-in libraries for tasks such as machine learning, graph processing, 
and streaming, making it a versatile tool for a wide range of data processing tasks. Spark has a user-
friendly API in several programming languages, including Scala, Python, and Java [36], allowing 
developers to easily use and integrate it into their existing data processing pipelines. It also integrates 
well with other big data tools, providing a comprehensive and integrated big data platform. 

The Java programming language was used in the experiment. The Java programming language was 
chosen as the programming language because of its reliability, platform independence, and strong 
support for distributed computing, which makes it suitable for large-scale data processing with Spark. 

The process of training a classification model using decision tree algorithms involved a combination 
of data preparation, data processing, algorithm selection, model training, evaluation, tuning, and 
deployment. Figure 2 summarizes the experimental workflow for the training phase, providing an 



overview of the process. Each step is described in more detail below, providing a complete overview 
of the methodology. 
 

 
Figure 2: The experimental workflow 

 
The diagram (Figure 2) was drawn using draw.io [33] and can be accessed via the link [37].  
The first step is to prepare the data for the model by cleaning and processing it. Then, the necessary 

Spark libraries are imported and the data is loaded into a Spark DataFrame. Next, the data is pre-
processed using the Spark machine learning API to scale, normalize, and encode categorical variables.  

It is highly recommended to normalize the data before applying decision tree algorithms to ensure 
accurate and consistent results. Normalization of data is the process of bringing all attribute values into 
some desired range to ensure that each feature contributes equally to the analysis. Decision tree 
algorithms are sensitive to differences in the scales and distributions of data characteristics, which can 
lead to incorrect behavior of the algorithm and unreliable results. By normalizing the data, we can 
mitigate these problems and improve the accuracy and effectiveness of the decision tree algorithms. 

Table 3 presents the non-normalized attributes of our dataset, including their initial values and 
corresponding normalized values. 
 
Table 3 
Non-normalized attributes with initial and normalized values 

Attribute Initial value Normalized value 
Gender Male/Female/Others 1/0/2 

Python_exp Yes/No/Undefined 1/0/2 
Education Graduated/Not Graduated 1/0 
Internship Yes/No/Undefined 1/0/2 

Recruitment_Status Y/N 1/0 
 

Before selecting the decision tree algorithm and training a model, it is important to divide the data 
into two sets – a training dataset and a test dataset. The training dataset is used to build the classification 
model, while the testing dataset is used to evaluate its performance. For the experiment, the dataset was 
divided into training and test datasets in the proportion of 80-20. The quantitative characteristics of the 
datasets are described in detail in Table 4. 



Table 4 
Quantitative characteristics of the training and test datasets 

Label Training data Test data Total 
Example percentages (%) 80 20 100 

Number of examples 498 116 614 
Number of positive examples 343 79 422 
Number of negative examples 155 37 192 

 
After dividing the data into training and test datasets, the model can be trained on the training dataset. 

The model uses the data from the training dataset to learn how to make predictions. The recruitment 
status, which is defined by two groups – yes or no, was chosen as the result attribute of the dataset. 

Once the data have been prepared, decision tree algorithms such as decision trees, random forests, 
or gradient boosted trees are selected. The selected classification model is then trained on the pre-
processed data using Spark's MLlib library, specifying the model parameters and the training algorithm. 

After the model has been trained, it can be used to make predictions on the test dataset. Predictions 
can be compared to the actual values on the test dataset to evaluate the effectiveness of the model. The 
effectiveness of the model is evaluated using metrics such as accuracy, precision, recall, and F1 score.  

After analyzing the evaluation metrics, the model can be fine-tuned to improve its performance. This 
process may involve adjusting model parameters, selecting or removing features, and exploring 
different algorithms to find the most efficient ones. 

The following describes several input parameters that were used to train the classification model 
using decision tree algorithms: 

• MaxDepth controls the maximum depth of the tree (is used in all decision tree algorithms, the 
default value is 5); 

• MaxBins controls the maximum number of bins used for discretizing continuous features (is used 
in all decision tree algorithms, the default value is 32); 

• Impurity specifies the impurity measure used for tree building (the default value is "Gini" for 
decision trees and random forests); 

• NumTrees is specific to random forests and controls the number of trees in the forest (the default 
value is 20); 

• MaxIter is specific to gradient boosted trees and controls the maximum number of iterations in 
the model (the default value is 20); 

• StepSize is specific to gradient boosted trees and controls the step size for each iteration of the 
model (the default value is 0.1). 

It's important to note that the effectiveness of each algorithm is highly dependent on specific 
variables. Therefore, it is important to adjust these parameters to optimize model performance. 

The steps of the experiment that concern the training of the model are described in more detail below. 

4.2. Model training 

Based on the proposed decision tree algorithms, software was developed to train the model using 
the selected algorithm and obtain the results of the experiment. Three different decision tree algorithms 
were chosen to train the models: decision tree, random forest, and gradient boosted trees. The current 
version (3.3.1) of Spark's MLlib library provides two types of impurity measures for the decision tree 
and random forest classifiers – Gini index and entropy. Therefore, based on these conditions, the 
following 5 models with appropriate parameters were trained for the experiment: 

1. Decision tree model (impurity: Gini index, max depth: 5, max bins: 32, min instances per node: 
1, min weight fraction per node: 0, min info gain: 0, max memory in MB: 256); 

2. Decision tree model (impurity: entropy, max depth: 5, max bins: 32, min instances per node: 1, 
min weight fraction per node: 0, min info gain: 0, max memory in MB: 256); 

3. Random forest model (impurity: Gini index, max depth: 5, max bins: 32, number of trees: 20, 
min instances per node: 1, min weight fraction per node: 0, min info gain: 0); 



4. Random forest model (impurity: entropy, max depth: 5, max bins: 32, number of trees: 20, min 
instances per node: 1, min weight fraction per node: 0, min info gain: 0); 

5. Gradient boosted trees model (max depth: 5, max bins: 32, min instances per node: 1, min weight 
fraction per node: 0, min info gain: 0, max memory in MB: 256, max iteration: 20, loss type: 
logistic, step size: 0.1, subsampling rate: 1). 

An important step in training is the measurement of model training time. Training time is an 
important factor to consider when choosing an algorithm for data analysis because it can significantly 
affect the efficiency and speed of analysis. By understanding the training time of each algorithm, the 
most efficient and effective method of analysis can be selected, leading to reliable and timely decision-
making. Table 5 shows the training time results for models trained using decision tree algorithms. 
 
Table 5 
Results of model training time 

Model Training time, ms 
Decision tree (Gini index) 1846 
Decision tree (entropy) 803 

Random forest (Gini index) 964 
Random forest (entropy) 789 
Gradient boosted trees 1728 

 
As shown in Table 5, the training time required for each algorithm differs significantly, with the 

random forest being the fastest, and the decision tree and gradient boosted trees taking longer. 
After training the models, a series of experiments were conducted by randomly generating several 

training and test datasets, and the average values of the metrics were calculated. Several metrics, 
including training time, accuracy, precision, recall, and F1 score, were used to evaluate the performance 
of the classification model. The results of the experiments are given below. 

5. Results 

Consider the results of the experiment. The overall training time and average accuracy, precision, 
recall, and F1 score are presented below. 

5.1. Results of the experiments with the decision tree model 

The results of the experiments that were obtained by testing the decision tree model on the test 
dataset are presented in Tables 6 and 7. Table 6 shows the accuracy, precision, recall, and F1 score of 
the decision tree model trained using the Gini index criterion. 

 
Table 6 
The results of the decision tree model experiment using the Gini index 

Metric Value 
Training time, ms 1846 

Accuracy, % 0.7379 
Precision, % 0.89 

Recall, % 0.2352 
F1 score, % 0.6817 

 
As shown in Table 6, the training time for the decision tree model is 1.846 seconds. The model 

achieved an overall accuracy of 73.8%, which means that it was able to correctly predict the class labels 
for 73.8% of the samples in the test dataset. Moreover, the model achieved a precision of 89% and recall 
of 23.5%, which means that it was able to correctly identify 89% of the positive samples and avoid false 



positives. Also, our model achieved an F1 score of 68.2%, which indicates that it is reasonably good at 
both precision and recall. 

Overall, the decision tree model achieved a reasonable accuracy and F1 score, with a high precision 
but a relatively low recall. This suggests that the model is good at correctly identifying positive cases 
but may have missed a significant number of positive cases in the dataset. 

Table 7 shows the results of the evaluated metrics for the decision tree model trained using the 
entropy criterion. 

 
Table 7 
The results of the decision tree model experiment using entropy 

Metric Value 
Training time, ms 803 

Accuracy, % 0.7475 
Precision, % 1 

Recall, % 0.2353 
F1 score, % 0.6895 

 
As shown in Table 7, the training time for the model is 0.803 seconds. The model achieved an overall 

accuracy of 74.75%, with precision and recall scores of 100% and 23.5%, respectively, and an F1 score 
of 68.95%. 

Overall, the results suggest that the model is relatively accurate but struggles with identifying 
positive cases. The high precision score indicates that the model is good at identifying true positives, 
but the low recall score suggests that it may be missing a significant number of actual positive cases.  

The results of the efficiency evaluation of our decision tree model using both the Gini index and the 
entropy criterion show very similar results, with slightly better results obtained using the entropy 
criterion. 

Overall, the experiment using the decision tree algorithm was successful in producing a model. 

5.2. Results of the experiments with the random forest model 

The results of the experiments that were obtained by testing the random forest model on the test 
dataset are presented in Tables 8 and 9. Table 8 shows the results of the evaluated metrics for the random 
forest model trained using the Gini index criterion. 

 
Table 8 
The results of the random forest model experiment using the Gini index 

Metric Value 
Training time, ms 789 

Accuracy, % 0.7766 
Precision, % 1 

Recall, % 0.3235 
F1 score, % 0.7355 

 
As shown in Table 8, the training time for the model is 0.789 seconds. The model achieved an overall 

accuracy of 77.7%, with precision and recall scores of 100% and 32.4%, respectively, and an F1 score 
of 73.6%. 

The provided results indicate that the model is performing reasonably well, but it is having difficulty 
identifying positive cases accurately. Although the precision score is high, which means that the model 
is good at predicting true positives, the low recall score suggests that the model is missing a significant 
number of actual positive cases.  

Table 9 shows the results of the evaluated metrics for the random forest model trained using the 
entropy criterion. 



Table 9 
The results of the random forest model experiment using entropy 

Metric Value 
Training time, ms 964 

Accuracy, % 0.7864 
Precision, % 1 

Recall, % 0.3529 
F1 score, % 0.75 

 
As shown in Table 9, the training time for the model is 0.964 seconds. The model achieved an overall 

accuracy of 78.6%, with precision and recall scores of 100% and 35.3%, respectively, and an F1 score 
of 75%. 

Overall, the results suggest that the random forest model is relatively accurate but still struggles with 
identifying positive cases. The high precision score indicates that the model is good at identifying true 
positives, but the relatively low recall score suggests that it may still be missing a significant number 
of actual positive cases. 

The results of the efficiency evaluation of our random forest model using both the Gini index and 
the entropy criterion also show very similar results, with slightly better results obtained using the 
entropy criterion. 

Overall, the experiment using the random forest algorithm was successful in producing a model. 

5.3. Results of the experiment with the gradient boosted trees model 

Table 10 shows the results of the evaluated metrics for the trained gradient boosted trees model. 
 

Table 10 
The results of the gradient boosted trees model experiment 

Metric Value 
Training time, ms 1728 

Accuracy, % 0.7087 
Precision, % 0.75 

Recall, % 0.1764 
F1 score, % 0.6417 

 
As shown in Table 10, the training time for the model is 1.728 seconds. The model achieved an 

overall accuracy of 70.9%, with precision and recall scores of 75% and 17.6%, respectively, and an F1 
score of 64.2%. 

In summary, the model achieved a moderate level of accuracy, but it is having difficulty identifying 
positive instances, as seen in the low recall score. The precision score is better, indicating that the model 
is good at identifying true positives. 

Overall, the experiment using the gradient boosted trees algorithm was successful in producing a 
model. 

6. Discussions 

Tables 6-10 provide a detailed analysis of the experimental results obtained from the study, and it 
shows that the use of decision tree algorithms has demonstrated promising levels of efficiency in terms 
of accuracy, precision, and recall. The accuracy of the algorithms was high, indicating that the models 
were able to correctly classify a large proportion of the job candidates. 

Before analyzing the efficiency of different decision tree algorithms, we evaluated the impact of 
impurity measures on our classification problem. The Gini index and entropy criterion are two common 
measures used to evaluate impurity in decision trees. A comparison of the two measures showed that 



they had a minor impact on the efficiency of our tree models, with the entropy criterion slightly 
outperforming the Gini index. These findings suggest that either of these measures can be used 
effectively for our classification problem. 

Based on the comparison of the classification models, the random forest algorithm is the most 
effective in terms of achieving higher overall accuracy, precision, recall, and F1 score, outperforming 
both decision tree and gradient boosted tree models in all these metrics. With an overall accuracy of 
78.6%, the random forest model achieved the highest accuracy score among the three models. The 
precision and recall scores for the random forest model were also higher than those of the other two 
algorithms, with a precision score of 100% and a recall score of 35.3%. In comparison, the decision 
tree algorithm achieved a precision score of 100% and a recall score of 23.5%, while gradient boosted 
trees achieved a precision score of 75% and a recall score of 17.6%. 

However, the training time required for each algorithm varies significantly, with the decision tree 
being the fastest and random forest and gradient boosted trees taking longer. While the decision tree 
algorithm is the fastest and took only 0.803 seconds to train the model, the random forest and gradient 
boosted trees algorithms took 0.964 seconds and 1.728 seconds, respectively. 

Therefore, the choice of which algorithm to use depends on the specific needs. If training time is a 
critical factor and high effectiveness is not as important, the decision tree algorithm could be a suitable 
option. However, if the highest level of accuracy and performance is required, the random forest 
algorithm should be the preferred choice. 

It is important to note that the gradient boosted trees algorithm can also be a good alternative to the 
random forest algorithm. For example, if the training time is not as critical but there is a need to 
prioritize precision over recall, then gradient boosted trees could be a better choice than random forests. 

Although the results of these experiments show that the random forest algorithm is the most efficient 
among the three algorithms in the hiring process, it is also worth noting that the size and quality of the 
dataset used in the experiments may have affected the efficiency of the algorithms' results. The 
difference in the comparison of the results obtained in the three experiments can be considered 
negligible, so the use of any of the considered algorithms was successful in creating the model. 

The result of this research provided valuable insight into how effective decision tree algorithms can 
be in helping to recruit and select the right candidates for a job. The best use of the models depends on 
the trade-off between training time, accuracy, precision, and recall, as well as the specific requirements. 
The decision tree algorithm can be a suitable option for applications where training time is critical, 
while the random forest algorithm should be preferred for applications where the highest level of 
accuracy and performance is required. The gradient boosted trees algorithm can be a good alternative 
to the random forest algorithm in some situations, depending on the specific needs. 

Furthermore, this research provides a foundation for future research in this area. As decision tree 
algorithms continue to evolve and become more sophisticated, there is a need for further research to 
explore their effectiveness in different contexts and under different conditions. This could include 
investigating the impact of decision tree algorithms on diversity and inclusion in the hiring process, as 
well as their effectiveness in predicting long-term job performance. 

Ultimately, the result of these experiments has practical implications for decision-makers involved 
in the recruitment and selection of job candidates. By providing evidence of the effectiveness of 
decision tree algorithms in this context, this research can help decision-makers make better hiring 
decisions and improve the overall quality of their workforce. Additionally, the study highlights the 
potential for further research in this area, which can continue to inform and improve the way 
organizations approach the hiring process. 

7. Conclusions 

This study identified various methods and algorithms that can be used when making decisions when 
hiring candidates for a team. Several experiments were conducted using different machine learning 
algorithms such as decision trees, random forests, and gradient boosted trees. The experiments were 
conducted on a dataset that was divided into a training (80%) and a test (20%) dataset. The training 
dataset was used to train the model, and the test dataset was used to evaluate and compare the models 



that were trained by the above algorithms with each other. The effectiveness of the models was 
evaluated using several metrics such as processing time, accuracy, precision, recall, and F1 score.  

The results of the experiments showed that the Gini index and entropy criterion had a minor impact 
on the efficiency of our tree models, with entropy slightly outperforming Gini. This suggests that either 
measure can be used effectively for our classification problem. The comparison of the classification 
models revealed that the random forest algorithm achieved the highest overall accuracy, precision, 
recall, and F1 score among the three algorithms tested. However, the training time required for each 
algorithm varies significantly, with the decision tree being the fastest, and random forest and gradient 
boosted trees taking longer. 

In conclusion, it's also important to note that machine learning algorithms should not be used to 
make the final hiring decision on their own, but rather as one tool among many in the hiring process. 
Human judgment and expertise should always be a part of the decision-making process, as algorithms 
can only provide predictions based on the data they were trained on and may not be able to fully consider 
factors such as cultural fit or soft skills. 
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