
Counterfactuals as Explanations for Monotonic
Classifiers
Sarathi K1,∗,†, Shania Mitra1,†, Deepak P1,2 and Sutanu Chakraborti1

1Indian Institute of Technology Madras, Chennai, 600036, India
2Queen’s University Belfast, University Rd, Belfast BT7 1NN, United Kingdom
†These two authors have contributed equally

Abstract
Recent advances in machine learning and in particular deep learning have led to models becoming
increasingly complex and less interpretable. This has led to a surge in the field of explainable AI (XAI)
which aims to understand and interpret predictions made by such models. One significant direction is
that of generating counterfactuals that can help in providing rich causal explanations. In this work, we
present a novel counterfactual generation algorithm, with an underlying monotonic constraint respecting
classifier. The generated counterfactuals are realistic and the end-user can make changes to only a few
features, allowing them to make amendments easily. We demonstrate the results of our algorithm and
show how this technique can generate counterfactuals closer to the query with improved coverage, while
incorporating domain knowledge in the form of monotonic constraints.

Keywords
XAI, Counterfactuals, Explanation, Case Based Reasoning, Monotonic Constraints

1. Introduction

In recent years, there have been quite a few interesting research papers reporting the applicability
of Case Based Reasoning (CBR) in facilitating better explanations [1, 2]. An important direction
in this regard is that of generating counterfactuals, which can help discover relationships
between the inputs fed to a machine learner and the prediction decision made by it. This is
especially useful for end users trying to understand how their current circumstances can be
improved to receive the desired outcome in the future. For instance, let us say, a user applies
for loan and a classifier rejects the loan (negative class). The simplest explanation that a CBR
system may generate is a “factual” one, in which the system just reports a case or a set of few
cases that were similar to the query, which had a similar outcome. A richer explanation takes
the form of a counterfactual that can reveal more actionable information: If you asked for a
slightly lower amount or your co-applicant income had been marginally higher, you would
have been granted the loan. Generating interesting counterfactuals that are actually useful for

ICCBR XCBR’22: 4th Workshop on XCBR: Case-based Reasoning for the Explanation of Intelligent Systems at ICCBR-2022,
September, 2022, Nancy, France
∗Corresponding author.
Envelope-Open saartyek@gmail.com (S. K); shaniamitra9@gmail.com (S. Mitra); deepaksp@acm.org (D. P);
sutanuc@cse.iitm.ac.in (S. Chakraborti)
GLOBE http://member.acm.org/~deepaksp (D. P); http://www.cse.iitm.ac.in/~sutanuc/ (S. Chakraborti)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:saartyek@gmail.com
mailto:shaniamitra9@gmail.com
mailto:deepaksp@acm.org
mailto:sutanuc@cse.iitm.ac.in
http://member.acm.org/~deepaksp
http://www.cse.iitm.ac.in/~sutanuc/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Sarathi K et al. ICCBR’22 Workshop Proceedings

the end user is a challenging problem, and this work attempts to identify and address certain
limitations of past research, and present fresh insights in this direction.

In this paper, we assume a twin-system context [1] where predictions from amachine learning
(ML) or deep learning (DL) model have to be explained by a Case based Reasoner. In order to
generate counterfactuals, we exploit the fact that certain attributes in the cases are naturally
of the type More is Better (MIB) or Less is Better (LIB). This terminology was first introduced
by McSherry et al.[3]. When buying a camera, a customer would typically prefer a model that
has high optical zoom and low price. Here, optical zoom is an MIB attribute and price is an
LIB attribute. In the context of generating counterfactuals in the loan domain, the chances of
a loan getting accepted are higher if the applicant income is high and the loan amount is low.
Thus, applicant income and loan amount are MIB and LIB attributes, respectively. We argue in
this paper that it is important for the predictive ML system to respect the monotonic nature of
attributes, in order to ensure that meaningful explanations are generated.

The rest of the paper is organized as follows. In Section 2, we introduce notation and present
background information on counterfactual explanations. Section 3 investigates the current
approaches to generate counterfactual explanations and the problems they are plagued by.
Section 4 presents the formal approach and performance measures, and Section 5 elaborates
the data sets and experiment results. Finally, we draw conclusions and discuss future steps in
Section 6.

2. Background

In this section, we introduce notation and provide background on counterfactual explanations.
Notation: We use a case base𝒟 containing 𝑁 cases, each of which is a vector of features 𝑥 ∈ ℝ𝑑
and label 𝑦 ∈ {−1, +1}. We refer to the set of features in the case base 𝒟 as ℱ. Further, 𝑥𝑗 is
used to index attribute 𝑗 in case 𝑥. It is important to note that we assume the positive class to
be the desired outcome (e.g., loan application approved). Additionally, we also assume access
to a classifier 𝑐 that allows the imposition of feature-wise monotonic constraints prior to the
training process.
Counterfactual Explanations: Given a query 𝑞 ∈ ℝ𝑑, belonging to the negative class, coun-
terfactual explanations return a case 𝑝 ∈ ℝ𝑑 that is close to 𝑞, by some pre-defined distance
measure, but is predicted to be positive by the classifier 𝑐.
Nearest Like Neighbour: Given a query 𝑞, a case is called the nearest-like neighbour (NLN) if
it is the case closest to the 𝑞 in the case base, belonging to the same class as 𝑞, i.e., the negative
class.
Monotonic Constraints: Domain knowledge often dictates the way in which a feature should
influence the predictions of a classifier, in order for them to be plausible. These constraints
guided by domain knowledge can be of two types:

1. Increasing Constraint or MIB: Imposing the increasing constraint on a feature 𝑘 ∈ ℱ
implies that increasing the value of 𝑥𝑘 would lead to a greater probability of 𝑥 belonging
to the positive class, i.e., the feature 𝑘 is of type More is Better (MIB). Thus,

𝑃𝑟 (𝑥1, 𝑥2, … , 𝑥𝑘, … , 𝑥𝑑−1, 𝑥𝑑) ≤ 𝑃𝑟 (𝑥1, 𝑥2, … , 𝑥𝑘 + 𝛿,… , 𝑥𝑑−1, 𝑥𝑑)

2

Sarathi K et al. ICCBR’22 Workshop Proceedings

where 𝑃𝑟(𝑥) gives the probability of case 𝑥 belonging to the positive class and 𝛿 ≥ 0.
Thus, to get closest to the boundary of the two classes, we would need to find the lowest
possible value of 𝑥𝑘 for which the predicted class is positive.

2. Decreasing Constraint or LIB: Imposing the decreasing constraint on a feature 𝑘 ∈ ℱ
implies that increasing the value of 𝑥𝑘 would lead to a lower probability of 𝑥 belonging to
the positive class, i.e., the feature 𝑘 is of type Less is Better (LIB). Thus,

𝑃𝑟 (𝑥1, 𝑥2, … , 𝑥𝑘, … , 𝑥𝑑−1, 𝑥𝑑) ≥ 𝑃𝑟 (𝑥1, 𝑥2, … , 𝑥𝑘 + 𝛿,… , 𝑥𝑑−1, 𝑥𝑑)

where 𝛿 ≥ 0 and 𝑃𝑟(𝑥) is as defined above. To get closest to the boundary of the two
classes, we would need to find the greatest possible value of 𝑥𝑘 for which the predicted
class is positive.

Distance Function: To find the distance between 𝑥 and 𝑥′ with respect to a single, real-valued
or order-enumerated attribute 𝑘, we define feature distance 𝑓 𝑑 as the absolute difference
between the two attribute values 𝑥𝑘 and 𝑥′𝑘 normalized by the difference between the maximum
and minimum values of the attribute in the case base.

𝑓 𝑑 (𝑥𝑘, 𝑥′𝑘) =
|𝑥𝑘 − 𝑥′𝑘|

max𝑘 −min𝑘

where, 𝑓 𝑑 (𝑥𝑘, 𝑥′𝑘) refers to the feature distance between 𝑥 and 𝑥′ for attribute 𝑘, max𝑘 =

max (𝑥𝑘∀𝑥 ∈ 𝒟) and min𝑘 = min (𝑥𝑘 ∀𝑥 ∈ 𝒟). Nominal attributes are handled in the usual
way [4]. The search space for counterfactual explanations in ℝ𝑑 is restricted in each of the 𝑑
dimensions by the minimum and maximum values of the corresponding attribute in the case
base. Since the goal of counterfactual explanations is to be as close as possible to the query,
looking beyond this region would prove to be wasteful. Due to this restriction on the dimensions,
the value of feature distance for every attribute is upper-bounded by 1 and lower-bounded
by 0, i.e., 0 ≤ 𝑓 𝑑 (𝑥𝑘, 𝑥′𝑘) ≤ 1 ∀𝑘 ∈ ℱ. On extending this measure to all features, we obtain a
combined feature distance which is equivalent to the Manhattan distance measure normalized
using min-max scaling.

𝑓 𝑑 (𝑥, 𝑥′) = ∑
𝑘∈ℱ

|𝑥𝑘 − 𝑥′𝑘|

max𝑘 −min𝑘

where, 𝑓 𝑑 (𝑥, 𝑥′) is the combined feature distance between 𝑥, 𝑥′ ∈ ℝ𝑑 and ℱ is the set of features
in the case base such that |ℱ | = 𝑑. The closer the feature distance is to 0, the better the
counterfactual. Using the combined feature distance, we can define the similarity between two
instances 𝑥, 𝑥′ ∈ ℝ𝑑 as,

𝑠𝑖𝑚 (𝑥, 𝑥′) = 1 −
𝑓 𝑑 (𝑥, 𝑥′)

𝑑
where 𝑑 is the number of features in the case base. The similarity measure is also upper-bounded
by 1 and lower-bounded by 0. The closer the similarity is to 1, the better the counterfactual.
While accounting for varied ranges across features, the combined feature distance (and similarity)

3

Sarathi K et al. ICCBR’22 Workshop Proceedings

produces sparse solutions and accurately depicts the absolute change that would have to be
made to the features of 𝑥 to reach 𝑥′ [5].
Actionable Features: In order to maintain feasibility in the proposed counterfactual expla-
nations, often changes can be made only to a subset of features among the entire set ℱ. The
largest possible subset of MIB/LIB features 𝒜 ⊆ ℱ, such that changes to any feature in 𝒜 do not
affect feasibility of the solution, is called the set of actionable features. For instance, features
such as gender or nationality of a user cannot be modified in order to get a loan approved and
hence, these cannot be included in the set of actionable features.
Difference and Match Features: The set of difference features ℒ [1] between two cases
𝑥, 𝑥′ ∈ ℝ𝑑 comprises the features whose feature distances are greater than or equal to some
arbitrary threshold 𝑡. The threshold can be set according to the needs of the application. This is
explained further in Section 4.1. The number of difference features (|ℒ |) is given by 𝑑𝑓 and the
maximum number of allowed difference features is given by 𝑣 such that, 𝑑𝑓 ≤ 𝑣.
Likewise, the set of match features ℒ consists of the features whose feature distances are

lower than the threshold 𝑡. The number of match features (|ℒ|) is given by 𝑑𝑚.

ℒ = {𝑘 ∶ 𝑓 𝑑 (𝑥, 𝑥′) ≥ 𝑡}, ℒ = ℱ −ℒ ⟹ 𝑑 = 𝑑𝑚 + 𝑑𝑓

Given a query 𝑞 and its corresponding counterfactual explanation 𝑝, the features that have to
be changed to go from 𝑞 to 𝑝 are given by ℒ.

3. Related Work

Counterfactual generation algorithms involve exploration of the space around the query 𝑞
to discover points that are close to 𝑞 but have a different class label. For this, a variety of
approaches have been proposed. These may be classified based on the search strategy, access
to training data and access to the machine learning model [6]. The most commonly adopted
approaches make use of convex optimization methodologies or custom heuristic rules. Convex
optimization procedures need a differentiable scoring function because they incorporate the
computation of gradients [7]. However, these algorithms often need to solve the optimization
problem once for every generated counterfactual for each query, making it very expensive to
generate a set of diverse counterfactuals for every query. There are only a few approaches that
are able to generate a sizeable number of diverse counterfactuals, by some measure of diversity,
for each input query [8, 9, 10].

Perturbation-based approaches attempt to meaningfully disturb the input until a point of the
opposite class is obtained [9, 11]. One challenge in such approaches is to contain the number
of counterfactuals that may be generated thereby – small increments in a numeric feature,
for example, can result in numerous counterfactuals, only a handful of which may truly be
worth considering. This problem of over-generation of potentially superfluous counterfactuals
is referred to as the problem of prolixity, and may be addressed, for instance, by restricting
attention to a case that is closest to the query case but has the opposite class label (the nearest
unlike neighbour). A second problem is that of sparsity, which relates to the requirement that the
generated counterfactual must make changes to the fewest possible features. A counterfactual
that makes changes to four or more features in the query may not be usable and is unlikely

4

Sarathi K et al. ICCBR’22 Workshop Proceedings

to have substantial actionable information content. The third problem is that of ensuring
plausibility of the generated counterfactuals; in other words, the counterfactuals should not
suggest changes to feature values that are unrealistic, or those that violate underlying domain
constraints. Suggesting that doubling one’s salary or changing one’s gender would fetch her a
loan, for instance, is an example of an implausible counterfactual [1]. A final challenge is that
of ensuring diversity – in other words, we need to generate multiple counterfactuals that are
sufficiently diverse with respect to each other. This enhances the flexibility of the system in
terms of its ability to cater to a diverse set of users.
In this work, we focus on enhancing the method proposed by Keane et al. [1], henceforth

referred to as GCF (Good CounterFactual), which generates counterfactuals using a classical
CBR approach by reusing and revising the explanation cases close to the query.

Additionally, we experiment with imposing monotonic-constraints on features such that the
MIB/LIB nature of the attribute is respected by the algorithm. Failure to take into account such
constraints frequently leads to implausible or counter-intuitive answers. The proposed approach
(henceforth referred to as MBC − Monotonic constrained Bound Corner counterfactuals)
generates a variety of counterfactuals by finding corners in the decision surface created by a
machine learning model across a subset of actionable attributes. The present work aims to
maintain sparsity, by strictly restricting the number of dimensions along which changes can be
made, while simultaneously improving upon diversity, by providing multiple different options
to the end user, and plausibility, by introducing domain-informed monotonic constraints at the
classifier-level.

Working of the GCF Algorithm: In the GCF algorithm [1], the cases 𝑥 and 𝑥′ closest to the
query 𝑞 and belonging to opposite classes are identified, where 𝑥 and 𝑞 belong to the negative
class while 𝑥′ belongs to the positive class. The values of difference features of 𝑥 and 𝑥′ are
copied to 𝑝 from 𝑥′, i.e., ℒ𝑥,𝑥′ = ℒ𝑝,𝑥′ . The values of the remaining features, i.e., the match
features, are copied from 𝑞 onto counterfactual 𝑝, i.e., 𝑝𝑘 = 𝑞𝑘 ∀𝑘 ∈ ℒ. Upon predicting the class
of 𝑝 using the underlying ML model, if we obtain the desired positive class, counterfactual 𝑝,
which is a combination of 𝑞 and 𝑥′, is output as the final result. If not, an additional adaptation
step is performed where the values of the difference features in 𝑝 obtained from 𝑞 are perturbed
until the desired class is obtained.

4. Proposed Methodology

The MBC algorithm uses corners in the decision surface of a monotonicity-respecting classifier
to identify the changes to be made to the query 𝑞 in order to flip its class. In this section, we
formalize the approach used in this work.

4.1. Approach

The goal of counterfactual explanations is to return a case 𝑝 ∈ ℝ𝑑 close to the query 𝑞 ∈ ℝ𝑑 such
that the changes to be made to the features of 𝑞 to flip its class label are minimal. In order to do
so, we take each of the possible pairs of cases in the case base (i.e., each of the (𝑁2) pairs) and
evaluate the feature distance 𝑓 𝑑(𝑥 𝑗, 𝑥′𝑗)∀𝑗 ∈ 𝐹 ∧ ∀𝑥, 𝑥′ ∈ 𝒟. If the feature distances of a pair,

5

Sarathi K et al. ICCBR’22 Workshop Proceedings

for all except a maximum of three features, (depending on the number of allowed difference
features 𝑣) are below a threshold known as tolerance level, the pair is added to a separate case
base known as the Explanation Case Base 𝑋𝐶 [1] and is referred to as an explanation case. If
the tolerance level is set to a low value, the number of explanation cases obtained is low, since
it is difficult to find cases that have the same or very close values for all except a maximum of
three features in the case base. If the tolerance level is set to a high value, however, the result
becomes unreliable since it is based on the argument that all else equal, only the difference
features contribute to the flip in class. However, if the match features vary widely, they may
contribute significantly to the decision made by the classifier. In this work, the tolerance is
chosen to be 2%. This value can be changed depending upon the requirement.
However, even after allowing some tolerance while computing match features, the number

of explanation cases often turns out to be low due to cases in the case base being spread out in
space. In case the number of case pairs in 𝑋𝐶 is less than 1% of the total number of possible pairs,
we eliminate features in order of increasing feature importance, such that the most important
features remain. The feature importance values are obtained from the underlying classifier 𝑐.
This procedure is repeated until we obtain at least 1% of the (𝑁2) possible pairs. The value of 1%
has been chosen arbitrarily and can be changed according to the requirement of the user. The
features in the set of eliminated features ℰ are no longer considered during the computation of
feature distance or similarity. Since the number of features under consideration reduces, the
number of features required to be matched, until the criteria for an explanation case is satisfied,
also reduces, i.e., ℒ +ℒ = ℱ − ℰ. This allows the number of explanation cases detected to
increase. When a query 𝑞 is input, the explanation cases from 𝑋𝐶 containing the nearest-like
neighbour are retrieved. Let the pairs be of the form (𝑋𝐶𝐴, 𝑋𝐶𝐵) such that 𝑋𝐶𝐴 belongs to
the negative class, and is the nearest like neighbour to 𝑞, while 𝑋𝐶𝐵 belongs to the positive
class. The difference features of 𝑋𝐶𝐴 and 𝑋𝐶𝐵 are chosen to be the difference features of the
query 𝑞 and the counterfactual 𝑝. This is done because the presence of the explanation case pair
(𝑋𝐶𝐴, 𝑋𝐶𝐵) close to 𝑞 tells us that by keeping the match features (approximately) constant and
varying only the difference features, we are able to flip the prediction of the classifier, implying
that the chosen difference features are able to influence the decision of the classifier, in turn,
indicating the existence of a counterfactual. Similar to the 𝐺𝐶𝐹 algorithm, the values of the
match features are directly copied into the counterfactual vector 𝑝 from the query 𝑞. However,
instead of copying the values of the difference-features from 𝑋𝐶𝐵 to 𝑝, like in the 𝐺𝐶𝐹 algorithm,
the 𝑀𝐵𝐶 algorithm replaces the values with those of the corners in 𝑑𝑓-dimensional decision
surface of the classifier 𝑐. This decision surface could be visualized as one obtained when the
𝑑𝑓 difference feature dimensions are systematically varied and the output of the classifier 𝑐 is
plotted at each point in this 𝑑𝑓-dimensional space.
Ignoring the 𝑑𝑚 match-feature dimensions, which are held constant throughout this explo-

ration, the 𝑑𝑓 dimensional decision surface of the classifier 𝑐 is monotonic in nature due to the
explicit MIB/LIB constraints the classifier 𝑐 is met with. Although the present work is applicable
to different types of classifiers, it is of special significance in case of tree-based classifiers (such
as XGBoost [12], used in this work), due to the axis-aligned nature of the decision surface [13]
produced which leads to the formations of corners (either 2D or 3D, depending on the value
of 𝑣) on the decision boundary. Among these corners, the skyline corners [14] are identified
as potential counterfactual candidates. Corners are chosen over other points in the decision

6

Sarathi K et al. ICCBR’22 Workshop Proceedings

boundary as they are optimal in terms of the MIB/LIB constraints. For example, consider the
point 𝐴 in Fig. 1. It is on the decision boundary, however, it is not at a corner. It can naturally
be seen that on moving along the Applicant Income direction until 𝐶𝐹2 is reached, increasingly
better counterfactuals are obtained, since, Applicant Income, which is an MIB dimension, along
with distance to query reduce progressively. The same argument would apply to internal
corners, such as 𝐵 due to which only skyline corners are seen as counterfactual candidates.

To locate skyline corners at the boundary of the decision surface in ℝ𝑑𝑓 , a 2 × 2 grid in case of
𝑑𝑓 = 2 and a 2 × 2 × 2 grid in case of 𝑑𝑓 = 3 is systematically slid across the 𝑑𝑓 dimensions of the
search space. A skyline corner is said to be obtained when a single positive-class instance is
captured in one of the corners of the grid. The end-points of each dimension of the search space
are given by the maximum and minimum values of the corresponding attribute in the case base.
In addition to these corner counterfactuals having 𝑑𝑓 ∈ {2, 3}, we also return counterfactuals in
every difference-feature dimension having 𝑑𝑓 = 1. For this, in each of the 𝑑𝑓 dimensions, the
point in the boundary, lying on the axis, where the class flips is located using binary search
and output as a counterfactual. The top-5 counterfactuals, located using the aforementioned
procedure, closest to the query in terms of the normalized Manhattan distance (i.e., feature
distance) are returned as the output counterfactuals. This allows the user to choose convenient
dimensions to make changes or to trade-off between changes in multiple dimensions as per their
choice. This solves the diversity problem. As an example of the working of the method, in Fig.
1, 𝐶𝐹1 is an example of a counterfactual located using binary search along the Applicant Income
dimension. Along the Co-applicant Income dimension, both end points of the search space have
a negative class label, hence, the search is abandoned, and no counterfactual is returned along
that dimension. Further, 𝐶𝐹2, 𝐶𝐹3 and 𝐶𝐹4 are the returned corner counterfactuals.

Figure 1: An Example of the Counterfactual Explanations Returned by the MBC Algorithm

4.2. Variants of the MBC and GCF Algorithms

To demonstrate the performance of the MBC algorithm, it is compared to the GCF algorithm
using a variety of measures listed in Section 4.3. To test each algorithm, we consider 2 cases −
𝑣 = 2 and 𝑣 = 3. In case of 𝑣 = 2 counterfactuals with 𝑑𝑓 ∈ {1, 2} are returned while in case of

7

Sarathi K et al. ICCBR’22 Workshop Proceedings

𝑣 = 3 counterfactuals with 𝑑𝑓 ∈ {1, 3} are returned. Some counterfactuals with 𝑑𝑓 = 2 may also
be returned in case of 𝑣 = 3, depending on the number of difference features in the explanation
case closest to the query. We do not go beyond 3 difference features due to the human memory
constraints [1]. The algorithm, however, could easily be extended to higher dimensions. Each
of the two algorithms are subject to these two cases and are labelled as 𝑀𝐵𝐶2𝑑, 𝑀𝐵𝐶3𝑑, 𝐺𝐶𝐹2𝑑
and 𝐺𝐶𝐹3𝑑 respectively.
Further, to demonstrate the importance of monotonic constraints experimentally, both the

algorithms, each having two variants, are evaluated with and without these constraints on the
underlying classifier 𝑐. It is important to note that the variant without the monotonic constraints
uses the same classifier as the one with constraints. The only difference is that, in one case, the
MIB/LIB constraints are not fed to the classifier prior to the training procedure, and thus, it can
learn any arbitrary decision surface. This, however, leads to counter-intuitive results, as we
will see in Section 4.3.

Thus, all experiments are carried out on 4 variants of each of the two algorithms, namely,
𝑋2𝑑, 𝑋3𝑑, 𝑋𝑚𝑜𝑛𝑜−2𝑑 and 𝑋𝑚𝑜𝑛𝑜−3𝑑, where X = 𝑀𝐵𝐶, 𝐺𝐶𝐹 and the subscript 𝑚𝑜𝑛𝑜 refers to the use
of monotonic constraints on 𝑐.

4.3. Importance of Monotonicity-respecting Classifier

Most modern day classifiers, unless explicitly pre-programmed to do so, are unable to learn
monotonicity patterns in the attributes of the data. For example, if we consider the case of a
loan approval system, attributes such as applicant income are commonly known to be MIB,
while attributes such as loan amount are LIB, i.e., decreasing the loan amount increases the
chances of loan approval. In such a case the decision boundary of the classifier, unless fed with
monotonic constraints, often turns out to be counter-intuitive. For example, in Fig. 2 we observe
the decision boundary for a query for which applicant income and co-applicant income are
being varied. In both Fig. 2 (a) and (b) we observe that, for the same loan amount, as applicant
income increases from 𝑁1 to 𝑁2, the loan which was rejected at 𝑁2 is approved at 𝑁2 since
𝑁2 > 𝑁1. However, in the non-monotonic case (Fig. 2(a)) we can see that, all other features
being the same, for the same co-applicant income, a loan with applicant income 𝑁3 is rejected
but 𝑁2 is approved even though 𝑁3 > 𝑁2 and all other features are held constant. This does
not match our expectation. Since the quality of counterfactuals produced greatly depends on
the classifier, it is very important that the classifier learns the general rules for loan application
acceptance rather than overfit itself to a small case base.

4.4. Performance Measures

In this section, we highlight the performance measures used to compare the variants of the
algorithms listed in Section 4.2. It must be noted that the 𝑀𝐵𝐶 algorithm returns multiple
counterfactuals (up to 5) while the 𝐺𝐶𝐹 algorithm returns only 1. To make the comparison fair,
all evaluation measures for the variants of 𝑀𝐵𝐶 are calculated using the output counterfactual
𝑝 closest to the query 𝑞. The evaluation measures include similarity to query (𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦) which
measures the similarity of the output counterfactual to the query and similarity to data (𝑆𝑖𝑚𝑑𝑎𝑡𝑎)
measures the similarity of the output counterfactual to the nearest case. It is representative of

8

Sarathi K et al. ICCBR’22 Workshop Proceedings

Figure 2: An Example Motivating the Need for Monotonicity-Respecting Classifiers (a) Non-Montonic
Classifier (b) Monotonic Classifer

how close to real data the returned counterfactual is. Additionally, we also measure coverage,
which measures the proportion of queries for which the algorithm in question is able to provide
counterfactuals. A higher value of coverage is desired since it indicates that the algorithm is
able to provide counterfactuals to a larger number of queries. It is given by,

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =

∑𝑞∈𝑞𝑢𝑒𝑟 𝑖𝑒𝑠 {
1, if 𝑞 ℎ𝑎𝑠 𝑎 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓 𝑎𝑐𝑡𝑢𝑎𝑙
0 otherwise

𝑇 𝑜𝑡𝑎𝑙 𝑁 𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑢𝑒𝑟 𝑖𝑒𝑠

5. Results

5.1. Loan Approval Data Set

The Loan approval data set, consisting of 614 instances and 12 attributes, computes loan
eligibility based on customer details such as gender, marital status, education, loan amount,
credit history, applicant income, co-applicant income, etc. Among these, features such as gender,
marital status and education are excluded from the set of actionable features (even though
education could be an MIB feature) since the customer cannot alter these in order to get their
loan approved. Increasing constraints (MIB) are placed on features such applicant income and
co-applicant income, while features such as loan amount are subjected to decreasing constraints
(LIB). A counterfactual, in this case, would tell the loan applicant what measures to take to
get her loan approved. From Table 1, it can be seen that all variants of 𝑀𝐵𝐶 outperform the
corresponding variants of 𝐺𝐶𝐹 with respect to 𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 and 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒. The top-performing𝑀𝐵𝐶
variant - 𝑚𝑜𝑛𝑜 − 2𝑑, with respect to 𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦), outperforms the top-performing 𝐺𝐶𝐹 variant -
𝑚𝑜𝑛𝑜 − 2𝑑 by 5.7%. As expected, 𝐺𝐶𝐹 variants have a higher similarity to data (𝑆𝑖𝑚𝑑𝑎𝑡𝑎) due
to their usage of actual feature values from the case base. However, the top-performing 𝑀𝐵𝐶
variant is only marginally. behind the top 𝐺𝐶𝐹 variant in terms of 𝑆𝑖𝑚𝑑𝑎𝑡𝑎. The coverage of most
𝐺𝐶𝐹-variants is seen to be very low, while the 𝑀𝐵𝐶 variants fair better. The top 𝑀𝐵𝐶 variant
has double the coverage as that of the top 𝐺𝐶𝐹 variant. Additionally, we observe that each of
the variants with monotonic constraints, for both𝑀𝐵𝐶 and 𝐺𝐶𝐹 outperform those without with
respect to each of the three measures, demonstrating the importance of these constraints in
the context of the given data set. Lastly, we observe that between the cases of 𝑣 = 2 and 𝑣 = 3,

9

https://www.kaggle.com/burak3ergun/loan-data-set

Sarathi K et al. ICCBR’22 Workshop Proceedings

𝑀𝐵𝐶2𝑑 𝑀𝐵𝐶3𝑑 𝐺𝐶𝐹2𝑑 𝐺𝐶𝐹3𝑑 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−2𝑑 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−3𝑑 𝐺𝐶𝐹𝑚𝑜𝑛𝑜−2𝑑 𝐺𝐶𝐹𝑚𝑜𝑛𝑜−3𝑑
𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 0.975 0.954 0.911 0.888 0.981 0.979 0.928 0.891
𝑆𝑖𝑚𝑑𝑎𝑡𝑎 0.975 0.978 0.980 0.989 0.981 0.992 0.982 0.995
Coverage 0.215 0.344 0.086 0.118 0.252 0.417 0.117 0.204

Table 1
Evaluation Measure Values for the Loan Approval Data set

𝑀𝐵𝐶2𝑑 𝑀𝐵𝐶3𝑑 𝐺𝐶𝐹2𝑑 𝐺𝐶𝐹3𝑑 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−2𝑑 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−3𝑑 𝐺𝐶𝐹𝑚𝑜𝑛𝑜−2𝑑 𝐺𝐶𝐹𝑚𝑜𝑛𝑜−3𝑑
𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 0.943 0.950 0.751 0.653 0.922 0.961 0.757 0.646
𝑆𝑖𝑚𝑑𝑎𝑡𝑎 0.930 0.949 0.908 0.965 0.923 0.954 0.935 0.965
Coverage 0.718 0.894 0.076 0.329 0.718 0.824 0.059 0.294

Table 2
Evaluation Measure Values for the Wine Data set

coverage and 𝑆𝑖𝑚𝑑𝑎𝑡𝑎 increase as 𝑣 increases, while 𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 is seen to decrease with increase in
𝑣 across all variants of both the algorithms.

5.2. Wine Data Set

The Wine data set consists of the chemical analysis of wines. It has 178 instances and 12
attributes such as content of Malic acid, ash, Flavonoids, colour intensity, hue, etc. There are
three class labels corresponding to the alcohol content. Since the 𝑀𝐵𝐶 and 𝐺𝐶𝐹 algorithms
deal with binary classification settings, the data set is converted to a binary classification case
base using the one-vs-all technique. A counterfactual, in this case, would tell the wine distillery
what changes to make to improve the alcohol content in the wine. Attributes such as Flavonoid
content, colour intensity and Malic acid content are assumed to have a decreasing constraint
(LIB) while hue is assumed to have an increasing constraint (MIB). Similar to the Loan data set
case in Section 5.1, we observe, from Table 2, that𝑀𝐵𝐶 outperforms 𝐺𝐶𝐹 in terms of 𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 and
coverage while 𝐺𝐶𝐹 marginally outperforms 𝑀𝐵𝐶 in terms of 𝑆𝑖𝑚𝑑𝑎𝑡𝑎. In this data set, however,
monotonic constraints do not add as much value as the previous one. For example, in 𝑀𝐵𝐶3𝑑,
similarity to data and query are seen to increase with the introduction of monotonic constraints,
while coverage decreases. In the case of 𝑀𝐵𝐶2𝑑 however, the addition of monotonic constraints
is seen to decrease similarity to data and query, while coverage remains constant. This can be
attributed to the lack of domain knowledge in the field, due to which some constraints may
have been formulated incorrectly.

5.3. Employee Attrition Data Set

The Employee Attrition data set consists of 1470 employee records with 34 attributes such
as gender, percentage of salary hike, job satisfaction, distance from home, monthly income,
overtime hours etc. These attributes are used to predict employee attrition - whether the
employee will leave the company or not. A counterfactual, in this case, would tell the company
what measures to take to prevent an employee from leaving. Features such as gender and
distance from home are excluded from the list of actionable attributes, since it is not possible for

10

https://archive.ics.uci.edu/ml/datasets/Wine
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset

Sarathi K et al. ICCBR’22 Workshop Proceedings

𝑀𝐵𝐶2𝑑 𝑀𝐵𝐶3𝑑 𝐺𝐶𝐹2𝑑 𝐺𝐶𝐹3𝑑 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−2𝑑 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−3𝑑 𝐺𝐶𝐹𝑚𝑜𝑛𝑜−2𝑑 𝐺𝐶𝐹𝑚𝑜𝑛𝑜−3𝑑
𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 0.951 0.950 0.876 0.782 0.963 0.931 0.895 0.819
𝑆𝑖𝑚𝑑𝑎𝑡𝑎 0.982 0.985 0.989 0.995 0.984 0.990 0.993 0.998
Coverage 0.581 0.880 0.171 0.051 0.385 0.602 0.106 0.031

Table 3
Evaluation Measure Values for the Employee Attrition Data set

the company to change the gender of an employee. An increasing constraint (MIB) is placed on
features such as percentage of salary hike, job satisfaction, monthly income (for e.g. increasing
the salary of an employee would reduce the chances of him/her leaving) while, features such as
overtime hours are met with a decreasing constraint (LIB)(i.e., the lesser number of overtime
hours an employee is subject to the more likely he/she is to stay in the company). In Table
3, we observe trends similar to the previous two case studies. The 𝑀𝐵𝐶 variants outperform
their corresponding 𝐺𝐶𝐹 variants in terms of 𝑆𝑖𝑚𝑞𝑢𝑒𝑟𝑦 and coverage, while 𝐺𝐶𝐹 marginally
outperforms 𝑀𝐵𝐶 in terms of 𝑆𝑖𝑚𝑑𝑎𝑡𝑎. Monotonic constraints are seen to improve similarity to
data in all cases except 𝑀𝐵𝐶𝑚𝑜𝑛𝑜−3𝑑, while they improve similarity to query for all the variants.
Coverage is seen to be substantially higher among the 𝑀𝐵𝐶 variants as compared to the 𝐺𝐶𝐹
variants. The 𝑀𝐵𝐶 variants without constraints are seen to have a higher coverage than those
with the constraints.

6. Discussion

In this work, we address the issues of prolixity, sparsity and plausibility raised by Keane et al.
[1] as follows:
Prolixity: Keane et al. [1] suggests the use of methods that find the minimal changes to

the features of the test case that flip the prediction (i.e., the nearest unlike neighbour) to tackle
the problem of prolixity. However, in this study it is shown that to produce minimal changes
that flip the prediction, we do not need to rely on the nearest unlike neighbour. The present
algorithm produces points that are closer to the decision boundary, thus requiring lesser change.

Diversity: In contrast to the 𝐺𝐶𝐹 algorithm which returns only 1 counterfactual per query,
the 𝑀𝐶𝐵 algorithm returns multiple counterfactuals per query, which make trade-offs among
the different dimensions to reach the desired outcome. This presents the user with a diverse
choice of counterfactuals to choose from.

Sparsity: Even though many algorithms claim to make changes to only a few features, many
of these counterfactuals may still involve relatively high numbers of feature-differences (e.g.
> 4) [1]. Since the present algorithm chooses and changes only between 1 and 3 features at a
time, it is possible to successfully deliver sparse counterfactuals.
Plausibility: Finally, we address the problem of plausibility, which states that the counter-

factuals generated may not be valid cases in the domain, or they may suggest feature-changes
that are difficult-to-impossible. However, this concern stands invalidated in cases where the
attributes are known to be MIB or LIB. For an LIB or MIB attribute, every point between the
extremes is valid by definition, since the attributes are of monotonic nature. Further, to eradicate
the possibility of impossible values being returned, since we cap the values of each feature by

11

Sarathi K et al. ICCBR’22 Workshop Proceedings

the corresponding minimum and maximum of the cases in the case base.

7. Conclusion

Majority of the present day counterfactual generation algorithms face the challenges of prolixity,
sparsity, plausibility and diversity among others. In this work, we explore skyline corners in
the decision boundary of a tree-based classifier, as counterfactuals. We also incorporate domain
knowledge by compelling the underlying classifier to respect monotonic constraints such
that the generated counterfactuals more plausible. Better counterfactuals are achieved with
this technique, in terms of similarity to query and coverage, while closely maintaining their
similarity to the existing cases. Although this is a unique way to find diverse counterfactuals,
monotonicity tends to be a subjective characteristic of each data set, and concrete domain
knowledge is required to represent such constraints. There is scope to find more efficient
processes to obtain counterfactuals in the monotonic feature space that could be explored in
the future.

References
[1] M. T. Keane, B. Smyth, Good counterfactuals and where to find them: A case-based technique for generating

counterfactuals for explainable ai (xai), Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 12311 LNAI (2020) 163–178.

[2] N. Wiratunga, A. Wijekoon, I. Nkisi-Orji, K. Martin, C. Palihawadana, D. Corsar, Discern:discovering counter-
factual explanations using relevance features from neighbourhoods (2021).

[3] D. Mcsherry, Similarity and compromise, in: In Proceedings of the Fifth International Conference on Case-Based
Reasoning, Springer, 2003, pp. 291–305.

[4] R. Bergmann, Experience Management: Foundations, Development Methodology, and Internet-Based Applica-
tions, Springer-Verlag, Berlin, Heidelberg, 2002.

[5] D. Slack, S. Hilgard, H. Lakkaraju, S. Singh, Counterfactual explanations can be manipulated (2021).
[6] R. M. B. de Oliveira, D. Martens, A framework and benchmarking study for counterfactual generating methods

on tabular data, Applied Sciences 11 (2021).
[7] I. Afonichkin, Explaining machine learning models by generating counterfactuals, 2019.
[8] S. Dandl, C. Molnar, M. Binder, B. Bischl, Multi-objective counterfactual explanations, Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12269 LNCS (2020) 448–469.

[9] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, F. Turini, Factual and counterfactual explana-
tions for black box decision making, IEEE Intelligent Systems 34 (2019) 14–23.

[10] A.-H. Karimi, G. Barthe, B. Balle, I. Valera, Model-agnostic counterfactual explanations for consequential
decisions (2019).

[11] B. Mittelstadt, C. Russell, S. Wachter, Explaining explanations in ai, FAT* 2019 - Proceedings of the 2019
Conference on Fairness, Accountability, and Transparency (2018) 279–288.

[12] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, Association for Computing
Machinery, New York, NY, USA, 2016, p. 785–794.

[13] A. Criminisi, J. Shotton, E. Konukoglu, Decision forests: A unified framework for classification, regression,
density estimation, manifold learning and semi-supervised learning, Found. Trends. Comput. Graph. Vis. 7
(2012) 81–227.

[14] S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in: Proceedings of the 17th International
Conference on Data Engineering, IEEE Computer Society, USA, 2001, p. 421–430.

12

	1 Introduction
	2 Background
	3 Related Work
	4 Proposed Methodology
	4.1 Approach
	4.2 Variants of the MBC and GCF Algorithms
	4.3 Importance of Monotonicity-respecting Classifier
	4.4 Performance Measures

	5 Results
	5.1 Loan Approval Data Set
	5.2 Wine Data Set
	5.3 Employee Attrition Data Set

	6 Discussion
	7 Conclusion

