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Abstract
Adaptive workflow management is an important topic in recent years, as increasing dynamics due to
growing customer demands and faster changing market conditions require more flexibility in workflows.
This is especially the case for rigid and rather standardized production processes that cannot be easily
modified, if, for example, a breakdown occurs in one of the production lines. The goal of the Fourth
Industrial Revolution (Industry 4.0), is to provide, among others, more flexible and cost-effective processes
in companies by using Artificial Intelligence (AI) methods. In this paper, we present 1) a framework for
adaptive workflow management for IoT-enhanced manufacturing processes and 2) an idea for a new
adaptation method that combines Case-Based Reasoning (CBR) and automated planning. In this context,
we discuss the benefits of such a synergistic combination and introduce the framework and the individual
phases according to the 4R (Retrieve, Reuse, Revise, Retain) CBR cycle. In addition, we present our
physical smart factory model that can be used to evaluate the suitability of developed research artifacts.
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1. Introduction

The industry is in a major transformation towards more autonomous and intelligent production
systems, a process known as the Fourth Industrial Revolution (Industry 4.0) [1]. In this context,
the use of Artificial Intelligence (AI) methods is required [2] but still in early stages. In addition,
current production systems are rather closed systems that work in isolation with predefined
interfaces and only with low interoperability [2, 3]. To enable a more intelligent production in
context of Industry 4.0, a closer connection between low-level devices and higher level systems
(e. g., Enterprise Resource Planning, ERP; Manufacturing Execution Systems, MES; or Workflow
Management Systems, WfMSs) is required for real-time decision-making and to control the
rigid and rather standardized production processes in a more flexible way [3, 4, 1, 5]. However,
state-of-the-art WfMSs are rather limited w. r. t. flexibility and often only provide means to
handle simple, mostly expected exceptions that must be fully specified in the workflow model
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[6, 7]. Unanticipated exceptions that occur during workflow execution, usually require more
sophisticated (structural) workflow adaptations taking into account the environmental context
of execution (cf. [8, 9]) to enable adaptive workflow management [6].

To date, advanced workflow adaptation methods rely either on a knowledge-intensive ap-
proach (e. g., [10, 7]), such as by using expert knowledge in Case-Based Reasoning (CBR), or on
a search-intensive approach by using a generative problem solver (e. g., [11, 12]) such as AI
planning [13, 14]. Knowledge-intensive approaches such as CBR require experience knowledge
from experts and search-intensive techniques need a comprehensive, formal domain description
for the use of AI planning. In addition, solving a planning problem is an NP-complete problem
[14]. Connecting both ends of the problem-solving reasoning continuum [13] as in Case-Based
Planning (CBP) [15, 16, 14] combines the advantages of both approaches and could lead to time
savings and better results during problem-solving as well as to reduced knowledge acquisition
and modeling efforts.

Several approaches have been presented in the area of CBP (e. g., [17, 12, 13, 18, 11]). However,
there is no approach in the context of Industry 4.0 and Cyber-Physical Production Systems
(CPPSs) [2] by using Business Process Management (BPM) solutions and semantic technologies.
In addition, only a few evaluate their developed research artifacts in physical environments
with real problem situations instead of using synthetically generated data or simplified sample
domains. The contribution of this paper is twofold: 1) we present a generic architectural
framework for adaptive workflow management in smart environments, and 2) we propose an
idea for a new adaptation method that combines CBR and automated planning by enabling
runtime adaptations of manufacturing workflows. In this context, we discuss how experience-
based adaptation methods can be combined with generative problem-solving and how this
approach differs from existing related work. In order to validate developed research artifacts for
workflow adaptation under real-world conditions, we use a physical Fischertechnik (FT) smart
factory model [3, 19, 5] that emulates two independent production lines and is controlled by a
WfMS in a process-oriented manner. The advantages of using such physical models are that
it is possible to imitate real production in a protected environment at rather low costs but to
maintain the runtime characteristics for evaluation and the transferability to real environments
[3, 5].

In the following, Sect. 2 describes the used physical smart factory and related work for
adaptive workflow management in context of BPM and the Internet of Things (IoT) as well as
approaches that use CBR for adaptive workflow management. The architectural framework for
adaptive workflow management and the idea for a new adaptation method are presented in
Sect. 3. Finally, Sect. 4 summarizes the workshop paper and gives an outlook for future work.

2. Foundations and Related Work

To conduct research with real production lines is often difficult due to safety concerns and
industry secrets. For this reason, physical models that emulate real production environments
find their way into research (e. g., [5, 20, 3, 21]). They enable the development and evaluation of
research artifacts in a closed, protected environment but at much lower prices before transferring
to real-world production [3]. In Sect. 2.1, we introduce our Fischertechnik physical smart factory
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for emulating production environments. In addition, we present how this physical factory can
be controlled in a process-oriented way and how semantic annotations are used for process
execution and for planning purposes. In Sect. 2.2, we present how experiential knowledge can
be used for problem-solving in context of Case-Based Reasoning (CBR). Finally, we discuss in
Sect. 2.3 relevant related work.

2.1. Physical Smart Factory Model for Industry 4.0 Research

For conducting practice-oriented research in the field of Industry 4.0, physical smart factories can
be used for the evaluation and demonstration of novel research artifacts, before implementing
them in a complex real-world manufacturing environment [3, 5]. In our research [3, 19, 21, 5, 20],

Figure 1: Workflow-based Control of the Fischertechnik Factory Model. (Based on: [5])

we use a Fischertechnik (FT)1 smart factory model that consists of two similar shop floors
connected for the exchange of workpieces, as shown in Fig. 1. There are four workstations on
each shop floor with six identical machines: a sorting machine with color detection, a multi-
processing workstation with an oven, a milling machine and a workstation transport connecting
the two, a high-bay warehouse, and a vacuum gripping robot. In addition, there are individual
machines on each shop floor, i. e., a punching machine and a human workstation on the first shop
floor and a drilling machine on the second one. Several light barriers, switches, and capacitive
sensors are installed for control purposes on each shop floor. The workpieces used for simulating
the production are small cylindrical blocks (height = ∼1.4 cm, diameter = ∼2.6 cm) in white,
red, or blue color. Each workpiece is equipped with an NFC tag that contains information about
the individual workpiece such as an identifier, the current production state (i. e., color, position),
and the production history with time stamps. There are RFID readers/writers integrated on both

1 Fischertechnik is a company that produces modules for emulating factories on a small scale. More general
information can be found at https://www.fischertechnik.de/en/simulating/industry-4-0.
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shop floors, creating 28 communication points. This enables tracking of each workpiece and
retrieving the required manufacturing operations and parameters, which can be modified during
production if necessary. A video of the smart factory executing a manufacturing workflow and
tracking workpieces by an object-detection framework [21] can be found at https://iot.uni-trier.
de.

In order to control actuators such as manufacturing resources and to process real-time IoT
sensor data from the smart factory, the functionalities of actuators and sensors must be available
in a coarse-grained manner at a higher level [3, 19, 5]. As a result, it is possible to react to
events that occurred in the smart factory at higher level systems, e. g., in Workflow Management
Systems (WfMSs). In our previous work [3, 19, 5], we present a service-oriented architecture
that enables us to control the smart factory in a process-oriented way. In Fig. 1, an exemplary
sheet metal manufacturing workflow is shown as an overlay above the individual stations in the
factory. In this workflow, an unprocessed steel slab is unloaded from the High-Bay Warehouse
(HBW) and transported by the Vacuum Gripper Robot (VGR) to the oven in which the steel slab
is burned and formed into a sheet metal. Afterwards, it is transported back to the HBW and
stored. We use the Camunda BPM Platform2 as WfMS to execute workflows in the factory.
The workflows are modeled with Business Process Model and Notation (BPMN)3 2.0 compliant
Service Tasks that invoke RESTful web services (see [19, 5] for more details). The web server
in turn executes the corresponding method of the individual manufacturing resource in the
factory. For example, if the service Burn is invoked by the WfMS, the corresponding method
Burn is executed at the controller of the oven (see [5] for more details about the granularity
of services). In addition, we semantically enrich each web service with semantic annotations
[19] and connect them to the developed domain ontology FTOnto [20]. As a result, it is possible
to check during workflow execution whether the preconditions are satisfied and whether the
corresponding effects after execution have occurred. To enable the use of automated planning
techniques, we convert the semantic web services into a formal planning domain description
with the equivalent number of classical planning operators and one domain description with
durative actions for temporal planning. By converting the semantic services automatically into
a formal planning domain description, it is possible to remedy the time-consuming knowledge
modeling effort that is typically needed to construct comprehensive planning domains.

2.2. Using Experience Knowledge for Adaptive Workflow Management

Process-Oriented Case-Based Reasoning (POCBR) [22] is a special kind of CBR that deals with
the integration of CBR in Process-Aware Information Systems (PAISs) [6], e. g., WfMSs. A case
in POCBR expresses procedural experiential knowledge, in our case represented as semantic
workflow graphs, also called NEST graphs [22]. A NEST graph is a semantically annotated
graph that consists of Nodes, Edges, Semantic Descriptions for each node and edge, and Types
of different nodes and edges. Figure 2 depicts the modeled BPMN process from Fig. 1 as a
NEST graph enriched with semantic descriptions and with explicitly modeled data nodes. By
using POCBR, it is possible to reuse experiential knowledge in the form of semantic workflow
graphs in similar problem situations. However, instead of getting a case that satisfies the current

2 https://camunda.com/
3 https://www.omg.org/spec/BPMN/2.0.2/
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Figure 2: Semantic Workflow Graph representing a Sheet Metal Manufacturing Process.

problem completely, it is sometimes only possible to retrieve similar solutions that cannot
be used without any modifications to solve the current problem [10]. This is especially the
situation in dynamic environments such as smart factories, where storing all possible cases in a
case base is practically intractable and leads to unacceptable retrieval times [14]. There exist
two main types of adaptation techniques in CBR that can be used to adapt the retrieved case to
better suite the requirements of the current problem situation: transformational and generative
adaptation [10]. Transformational adaptation modifies the retrieved case directly in order to be
used for the current problem. Generative adaptation applies a knowledge-based problem solver,
e. g., an AI planner, that can solve the problem, i. e., it can build a solution from scratch.

2.3. Related Work

In this section, we divided related work into two groups based on their main contribution: The
first group consists of Business Process Management (BPM) approaches that are used in smart
environments such as smart home [9] or smart health and emergency management [8] but all
considering exceptions and deviations during workflow execution and thus provide a form of
adaptive workflow management. The second group contains works that apply CBR to increase
workflow adaptability (e. g., [7, 10, 23]) or that apply CBR to planning (e. g., [17, 12, 13, 18, 11]).

Adaptive Workflow Management in BPM and IoT: The PROtEUS system by Seiger et
al. [9] enables the execution and adaptation of cyber-physical workflows in smart homes. A
resource-based adaptation is applied to search for similar replacement resources in case of
exceptions. The SmartPM system by Marrella et al. [8] uses automated planning techniques
to adapt emergency management processes in which unanticipated exceptions occurred. The
adaptation of the process resolves the exception by a sequence of actions, i. e., a plan.

Case-Based Reasoning Methodology for Adaptive Workflow Management: POCBR
can be applied to reuse procedural experiential knowledge (see Sect. 2.2). Such experiential
knowledge from a case base filled with best-practice workflows can be used to increase work-
flow adaptability and thus builds the basis for adaptive workflow management [23]. Müller
[10] presents three non-generative experience-based adaptation methods in which adaptation
knowledge is inductively learned from the case base and afterwards applied to a workflow. Thus,
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it is possible to adapt workflows to resolve current exceptional situations. Müller demonstrates
the approach in the context of cooking recipes in order to adapt the workflow to the user’s taste.
The used cooking recipes are driven by their defined control-flow, i. e., their execution order. In
contrast to control-flow workflows, Zeyen et al. [24] modify these adaptation methods to be
applicable for data-driven data mining workflows. It is important to note that the NEST graph
in Fig. 2 is also a kind of data-driven workflow, since data nodes are explicitly modeled for state
changes of products even if no data is processed directly. Similarly to these approaches, Weber et
al. [7] present the CBRFlow system for adaptive workflow management by using conversational
CBR. If changes to a workflow become necessary due to exceptions or environmental changes
and the deviation is not defined in the workflow model, the user adds a case to the case base by
answering corresponding questions. The case from the case base can be retrieved in future and
describes how the situation can be handled, e. g., by skipping a task, if this or a similar situation
occurs again.

Another major branch of work that applies CBR in combination with automated planning
is Case-Based Planning (CBP) [14, 15, 16]. In CBP, a case specifies a plan and sometimes
additional information, e. g., a reasoning trace, that can be reused in similar problem-solving
situations instead of planning from scratch. A plan as a sequence of actions is very similar
to a workflow that is composed of activities that should be executed by a WfMS. Thus, also
CBP approaches that adapt retrieved plans are similar to the previously described workflow
adaptation techniques. Veloso [13] present the PRODIGY/Analogy system that uses derivational
analogy for plan adaptation. In the approach, reasoning traces of plan generations are stored in
the case base besides the plans themselves in order to be able to guide the search of the planner
in a new problem-solving situation. Ros et al. [18] present a case-based approach to select
actions during robot soccer. In their approach, they do not adapt the sequence of actions for the
robot team as a solution of the retrieved case, but adapt the current problem, e. g., the positions
of the involved robots, so that the real-world problem match the problem in the retrieved case.
Muñoz-Avila et al. [12] present the SiN system that uses a conversational CBR component if
it is not possible to decompose tasks by hierarchical planning due to an incomplete planning
domain description. The PARIS system proposed by Bergmann [17] is a case-based planner that
reuses cases at different levels of abstraction. If a new problem situation occurs, the system
retrieves the best-matching case at the lowest possible level of abstraction. A generative planner
replaces remaining abstract operators with specific actions that can be executed in the real
world. OAKPlan introduced by Serina [11] applies kernel functions during plan retrieval to
rapidly find similar and well-suited plans as a basis for reuse. A generative planner is used for
modifying the plan to better reflect the current problem situation.

3. Adaptive Workflow Management by Case-Based Reasoning
and Automated Planning

In this section, we present an architectural framework for adaptive workflow management
in smart environments and, in this context, an idea for an adaptation method that combines
CBR and automated planning. Figure 3 depicts the architecture that is described in more
detail in the following. At the top of the framework, a state-of-the-art WfMS is used. The

6



Lukas Malburg et al. ICCBR’22 Workshop Proceedings

Workflow Management System

ExecutesWorkflow Execution
Service

Case Base of
Semantic Workflows

Inductive
Learning

Process-Oriented Case-
Based Reasoning System

StoresModels Workflow Modeling
& Definition Service

Deploys

Transformation and
Semantic Enrichment

Workflow
Repository

Build Time Run Time

IoT

Retrieve

Reuse

Revise

Retain

Ontology

Adaptation
Knowledge

Selects
Adaptation

User Interaction

Raw
IoT Data

Database

Stream Processing

Automated
Planning

Complex
Events

Transformation 

Figure 3: Architecture for Adaptive Workflow Management by CBR and Automated Planning. (Based
on: [25])

expert can model manufacturing workflows by using a corresponding service, i. e., the Workflow
Modeling & Definition Service. Afterwards, the workflow is stored in a workflow repository. If
a production order is received, the corresponding workflow from the workflow repository is
retrieved, deployed, and executed in the smart factory (cf. Sect. 2.1) by the Workflow Execution
Service. During execution, the smart factory generates raw IoT sensor data that is passed
to a database and processed immediately by a Stream Processing engine. By using a stream
processing engine, it is possible to develop queries that send higher level events to other systems
if certain patterns are detected in the sensor data [3, 5]. In our case, the WfMS receives events
for workflow execution and the POCBR system ProCAKE4 [26] is informed about the current
state of the currently executed workflows in the smart factory. In order to check the execution of
the modeled workflows in the smart factory, the BPMN 2.0 workflows are semantically enriched
and transformed into their corresponding NEST graph representation (cf. Sect. 2.2). To enable
the use of experience-based adaptation methods [10], inductive learning methods are applied to
the workflows in the case base to automatically learn Adaptation Knowledge. During execution
of a workflow in the smart factory, ProCAKE is notified by the stream processing engine when
activities of workflows have been completed successfully or when this is not the case and
unexpected exceptions have occurred. This enables a more comprehensive monitoring of the
workflow execution besides the monitoring in the WfMS. In case of an exception, e. g., due to
a machine breakdown, ProCAKE receives a notification of the stream processing engine and
starts the 4R (Retrieve, Reuse, Revise, Retain) cycle in the POCBR system.

Retrieve: The notification from the stream processing engine is analyzed and a query that
captures the current problem in the smart factory is automatically generated. The query contains

4 https://procake.uni-trier.de
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the state of the currently executed workflow and the remaining activities of the workflow as well
as further metadata, e. g., which machines are currently available in the smart factory or defect.
Afterwards, a retrieval is performed to determine if a similar problem situation has already
occurred in the past. During the retrieval, a graph matching based on a semantic similarity
measure [22] is performed to find the best-matching case in the case base that corresponds to
the currently executed workflow and its metadata.

Reuse: It is rather unlikely to retrieve a case that completely solves the current problem,
i. e., to resolve the exceptional situation and, thus, to continue workflow execution to achieve
the workflow goal. Therefore, adaptation methods are required that modify the retrieved case
to better suite the current problem (cf. Sect. 2.2). For this purpose, the adaptation methods
proposed by Müller [10] can be transferred and applied to the manufacturing domain similar to
the transformation performed by Zeyen et al. [24]. Since it is difficult to physically change the
real world in production, i. e., the state of the workflows and the positions of the workpieces
or the current state of machines, an approach as presented by Ros et al. [18] cannot be used.
In contrast, a solution adaptation in which the retrieved workflow is adapted to resolve the
exception should be used and, thus, allow the workflow to be continued. For example, if
the oven on the first shop floor is broken, the manufacturing workflow as depicted in Fig. 2
cannot be continued as planned. To further execute the workflow and to achieve the overall
workflow outcome, i. e., the final product, an alternative resource that can perform the Burn
activity should be searched and used. The adaptation in the Reuse phase applies the learned
adaptation knowledge and attempts to resolve the exception. Afterwards, a validator checks
and determines for safety reasons whether the adapted workflow is executable in the smart
factory. This may not always be the case, as a sufficient number of cases is required to learn
appropriate adaptation knowledge automatically by using the stored cases in the case base [10].
Even if a sufficient number of cases is available, not all situations in dynamic environments
can be captured by experienced cases. For this reason, a generative planner to support the
adaptation in scenarios where the experience-based adaptation does not provide a full and
appropriate solution should be used. In addition, this synergistic method is appropriate, since
problem-solving from scratch is sometimes difficult w. r. t. the computation time and the effort
required to model a comprehensive planning domain. By using the combined method, the
whole adaptation problem can be divided into smaller sub-problems (divide and conquer) that
are only partly solved by AI planning to fix the remaining gaps in the adapted workflow. For
example, in the case of a breakdown of the oven on the first shop floor, the POCBR system
might provide a case that is similar to the current problem but instead of being executed on the
first production line, it is executed on the second one. In this case, using the oven on the second
shop floor solves the problem but the transport routes to the oven are not yet included in the
adapted workflow. If the learned adaptation knowledge contains these transport routes, they
can be added by the POCBR system during adaptation. Otherwise, the validator determines
that there are misalignments w. r. t. the shop floor positions in the adapted workflow and AI
planning is started with the corresponding initial state and the desired goal state to resolve
these misalignments (cf. Transformation in Fig. 3). In the complete adaptation process, the
modeled knowledge in the domain ontology FTOnto [20] about the production environment
is essential for the POCBR system but also for using AI planning. The advantage of the used
transformational adaptation compared to a derivational adaptation as in [13] is that state-of-the-
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art AI planners can be used without major modifications to obtain their reasoning traces. This
also permits to swap the planners flexibly or to use several planners or planning configurations,
e. g., by changing the used heuristics, in a planning ensemble. In the whole adaptation procedure,
it is also possible to include users in the loop and to let them participate by selecting adaptations
by using an interactive approach (cf. [25, 7, 12]).

Revise: In this phase, the adapted workflow is checked for applicability in the smart factory.
As a first step, the validator is used to check the syntactic and semantic correctness of the
adapted workflow. In addition, the adapted workflow can be presented to a domain expert, who
must confirm the performed adaptations before the workflow is further executed. Afterwards,
the modified workflow is continued in the smart factory. In case exceptions occur again in the
continued workflow, the CBR cycle is again triggered to resolve them.

Retain: In the final Retain phase, it is checked whether the adapted workflow should be
stored as a learned problem situation in the case base. This is especially useful if, for example,
the exception could only be solved with the help of the generative planner or by a human. In
this case, the competence of the POCBR system can be increased for future problem situations.
Consequently, the POCBR system can learn for future problem situations by incorporating
knowledge from AI planning. In contrast, the planner’s domain description can be extended by
case-specific expert knowledge to complement incomplete planning domains (cf. [12]).

4. Summary and Outlook

We present a first step towards adaptive workflow management for IoT-enhanced cyber-physical
manufacturing workflows by using CBR and automated planning in a synergistic approach.
We show how such an approach can be realized in the 4R CBR cycle. Relevant related work
in the area of IoT and business process management and several approaches using case-based
reasoning or case-based planning is presented. However, most of the approaches are not applied
in the context of Industry 4.0 or evaluated in physical real-world environments. In this context,
the combination of problem-solving and (workflow/plan) execution is an interesting research
topic. For our research, we use a physical Fischertechnik smart factory that allows to conduct
such experiments in protected but close-to-reality environment.

In future work, we want to further implement and validate the proposed adaptive workflow
management framework. For this purpose, we currently implement the experience-based
adaptation methods by Müller [10] for the manufacturing domain. In addition, we plan to
conduct extensive experimental evaluations with the physical smart factory model.
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