
Threat Class Predictor: An explainable framework for
predicting vulnerability threat using topic and trend
modeling
François Labrèche1, Serge-Olivier Paquette1

1Secureworks

Abstract
Every day, an increasing number of new software is found to be vulnerable to exploitation. Such
vulnerabilities are disclosed through publicly available databases, such as the National Vulnerability
Database (NVD). However, the rate of disclosures now far outpaces the ability of any single research
team or remediation team to handle them all. In this paper, we present a framework that not only predicts
the vulnerabilities that will be exploited by malicious actors or malware, but also which vulnerabilities
can go under the radar, escaping the trending discussions of online cybersecurity communities. This is
achieved by leveraging topic modeling in a novel way, combining a threat score and a trend score. The
interpretable nature of such topic models enables security teams to dig deeper into the predictions of our
model, making it a valuable tool for their remediation and investigative work.

Keywords
Attack prediction, Exploit prediction, Vulnerability prioritization

1. Introduction

We present an explainable machine learning framework to predict threats associated with
disclosed vulnerabilities and better inform security professionals on potentially overlooked
critical vulnerabilities. We first apply topic modeling to vulnerability descriptions to build a
semantic representation of vulnerabilities. Using this representation, we train a multi-label
threat prediction classifier for recently disclosed vulnerabilities. The model provides two
independent threat predictions; a probability of either having a proof-of-concept/weaponized
exploit code published, and/or of being included in malware. We combine these to obtain a
threat score for each vulnerability. This score can be used to prioritize the remediation or
investigation of vulnerabilities.

We also use the same topic model to create a novel trend score from online infosec discussions.
This trend score, used in conjunction with the threat score, can inform security researchers
on where to focus their attention, i.e., on the most interesting and potentially overlooked
vulnerabilities. We do this by joining the two independent scores, the threat score and the
trend score, visually, in a two-dimensional plane. Given the interpretable nature of topic models

CAMLIS’22: Conference on Applied Machine Learning in Information Security (CAMLIS), October 20–21, 2022,
Arlington, VA
$ flabreche@secureworks.com (F. Labrèche); spaquette@secureworks.com (S. Paquette)
� 0000-0001-6027-3017 (F. Labrèche)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:flabreche@secureworks.com
mailto:spaquette@secureworks.com
https://orcid.org/0000-0001-6027-3017
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and our novel visual representation, we believe that our framework brings new value to the
cybersecurity community by offering a method of prioritizing investigative work.

Our contributions are the following:

• We build a semantic representation of vulnerabilities based on the underlying concepts of
all descriptions, which represents them in a more holistic way than what was previously
done.

• Using this new representation, we compute an explainable threat score and trend score.
• We provide a threat dashboard which helps visualizing vulnerability trends in relation to

the likelihood of an attack leveraging them.

The rest of the paper is as follows:

1. Section 2 presents prior work done in predicting threats and exploit publication using
machine learning.

2. Section 3 describes the methodology used for this approach. The corresponding results
are presented as the methodology is discussed. We first present the topic model, used
both by the threat model and the trend model, before presenting each model respectively.
This section closes with the combination of the two scores in a visual dashboard.

3. Section 4 explores the trained models, their features and their explainable nature.

2. Related Works

A number of previous studies have built exploit prediction models using vulnerability features [1,
2, 3], such as the CVSS score and its sub-components, the Common Weakness Enumeration
(CWE), the references, the description and the vulnerable products. While feature encodings vary,
they all use supervised machine learning trained on NVD data to predict vulnerabilities labeled
with exploits. Suciu et al. [4] employ a similar approach, but with the goal to predict over time
the likelihood that a functional exploit will be developed. Other approaches [5, 6] explore using
social network data and dark web discussions as additional features to predict the likelihood of
an exploit targeting a vulnerability. Huang et al. [7] use Latent Dirichlet Allocation (LDA) to
identify important words through six topics built on vulnerability descriptions, combined with
a classifier that labels tweets as cybersecurity-related or not. Xiao et al. [8] employ community
detection over botnet IP activity to identify if a vulnerability is being exploited. Additionally,
however, Bullough et al. [9] identify key methodological errors in some of these previous
works, most notably incorrect metrics used for evaluating an imbalanced dataset. Finally, others
model the vulnerability description to predict the publication of an exploit or an attack, such as
using tf-idf [10], neural networks [11], deep learning with CNNs [12] or a BERT pre-trained
model [13, 14]. In this work, we build a vulnerability representation using topic modeling, which
we then use to predict multiple threat classes and identify trending vulnerabilities. Contrary to
previous approaches employing deep learning on vulnerability descriptions, our use of topic
modeling provides an explainable framework which can provide insights into how different
types of threats are linked to vulnerabilities.

3. Methodology and Results

3.1. Topic Model

Vulnerability
descriptions

Topic Model

Topics

Figure 1: We extract topics from vulnerability descriptions using a topic model.

We obtain a topic model by training LDA [15] on the textual descriptions of 152,585 published
vulnerabilities from the 1st of January 2008 to the 1st of August 2022. We prepare the corpus by
removing all stop words, common words, and URLs. We lemmatize and tokenize the documents
to obtain a bag-of-words representation to feed to the model. The number of topics is selected
using a coherence score [16], a measure to compute the strength of the similarity of words
inside a topic. A coherence score provides a robust way to evaluate topic models, in regards to
interpretability by humans [17]. We obtain an optimal model with 30 topics, 50 iterations and
10 passes.

With this trained topic model, we now have a list of 30 topic probabilities 𝑉 𝑖 = (𝑣𝑖1, ..., 𝑣
𝑖
30)

with real numbers 𝑣𝑖𝑗 ∈ [0, 1] and
∑︀30

𝑗=1 𝑣
𝑖
𝑗 = 1 representing each topic probability 𝑗 for every

vulnerability 𝑉 𝑖 in our dataset. Examples of six extracted topics, visualized as word clouds with
weighted words, are presented in Figure 2. Each topic corresponds to a set of words, where
larger (higher probability) words are more salient inside the topic.

Figure 2: Six topics extracted from the topic model trained on vulnerability descriptions.

3.2. Threat Class Prediction Model

Vulnerability
Features

Vulnerability
descriptions

Topic Model

Topics

Threat Score

Figure 3: Predicting threats using topics and vulnerability features.

3.2.1. Feature Selection

We build a threat class predictive model1, using the topics from the descriptions above, and
details from vulnerability disclosures on the National Vulnerability Database (NVD)2 as features.
Categorical features are encoded as dummy variables.

The list of additional features used is the following and follows previous works[1, 5, 2, 3, 4, 7]:

• The length of the description,
• The number of references available for the vulnerability at the time of publication,
• The number of software configurations affected by this vulnerability,
• The CVSSv2 score,3

• The CVSSv2 metrics.

3.2.2. Dataset

As previously mentioned, the dataset used to build our features is the NVD. The two threat
classes that we predict are exploit publication and malware inclusion. These two classes have
been chosen because they represent key cybersecurity threats and labels for them can be found
openly. Although they do overlap, they do not do so completely. Each threat class uses its own
datasets for labels. Exploit publications are labeled from exploitDB, Packetstorm and a Github
repository listing POCs4, all of which are publicly available. ClamAV [18] signatures are used

1Patent pending
2https://nvd.nist.gov/
3There is a larger body of vulnerabilities published with a CVSSv2 score, however, the CVSSv3 score can also be

used
4https://github.com/nomi-sec/PoC-in-GitHub/blob/master/README.md

for malware labels, which are also publicly available. We join these signatures to a database of
malware threat intelligence reports from the Counter Threat Unit™ (CTU)5.

The datasets are summarized in Table 1. There are 835 vulnerabilities that overlap between the
exploits and malware labels. The classes are highly imbalanced and are not mutually exclusive,
hence we train two independent classifiers, which both output a probability between 0 and 1.
To obtain a single threat score, we add their outputs to obtain a value between 0 and 2.

Table 1
Datasets summary

Dataset N samples
CVE Database 152585
ExploitDB 22441
Packetstorm 5471
Github POCs 3219
ClamAV 2956
CTU 184

3.2.3. Model Selection

We train a classifier for each of the two threat classes. We tested a Logistic Regression model, a
Support Vector Machines and a Random Forest classifier, using 10-fold cross-validation. Table 2
shows the results for each of the three classifiers.

Table 2
Averaged results per model

Algorithm Accuracy Precision Recall F1-Score F2-Score
Random Forest 98.68 54.78 82.31 65.41 74.45
SVM 83.65 23.92 81.96 36.16 53.34
Logistic Regression 83.52 23.74 81.81 35.95 53.12

By far, the random forest model exhibits the best performances. To compensate for the class
imbalance, we used class-weight optimization and threshold-moving based on the F2-score, a
performance metric that optimizes for recall on the minority class, which is suitable for our
need. Threshold-moving lets us choose the threshold on which to assign the model output class
using the class probability. A high recall measures the ability of the model to predict the positive
class and to avoid false negatives, but at the price of potentially having more false positives,
which is an acceptable cost for identifying true attacks.

An important note is that our label datasets, while sufficient for training models that can
correctly identify a majority of our samples, do not include all exploits and malware samples in

5Although we obtained better results using the CTU™ database, one can get similar but slightly lower results
with the ClamAV database alone, or potentially with other public sources.

the wild, hence the true precision of the model is likely higher given that many false positives
are in fact true positives.

Using grid search over the model parameters and 10-fold cross validation, we obtained a final
model for which the performance and parameters are presented in Table 3.

Table 3
Threat Prediction Evaluation Results

Exploit Publication Malware Inclusion
Metric Value Metric Value
Accuracy 88.81% (+/- 0.16%) Accuracy 98.01% (+/- 0.13%)
Recall 79.92% (+/- 0.99%) Recall 87.96% (+/- 2.08%)
Precision 36.92% (+/- 0.49%) Precision 47.77% (+/- 1.76%)
F1-Score 50.51% (+/- 0.60%) F1-Score 61.90% (+/- 1.71%)
F2-Score 64.82% (+/- 0.75%) F2-Score 75.27% (+/- 1.71%)
Threshold 0.34 Threshold 0.46
Parameter Value Parameter Value
max-depth 30 max-depth 50
min-samples-leaf 8 min-samples-leaf 6
min-samples-split 22 min-samples-split 16
n-trees 300 n-trees 200

3.2.4. Features Must be Chosen Carefully

Our initial prediction model, which was discarded, included a number of time-sensitive features
inspired by the literature :

• The published date of the vulnerability,
• The date of its last modification,
• The number of online discussions related to the vulnerability.

Although this version of the model performed better in our training phase, with a higher
accuracy and recall than our current model, it performed poorly in a real implementation by
not predicting any instances of the positive classes. After investigation, three of the top five
most impactful features were time-sensitive features, which skewed our model to better predict
older vulnerabilities (i.e., newly published vulnerabilities rarely have a modification date and
the publication date is always recent). In the end, including time-sensitive features was found
irrelevant to our task of predicting threats for new vulnerabilities, and were discarded, even
though the model performed better when evaluated on historical data.

3.3. Trend Model

We then compute a trend score 𝑇 (𝑉 𝑖, 𝐷𝑗) ∈ [0, 1] for each published vulnerability 𝑉 𝑖 on day
𝐷𝑗 based on how closely its computed description topics match those in online discussions
from that day. This numerical value is obtained by generating trending topics using the same
LDA model previously trained for the threat class predictor.

Online discussions

Trends

Topic Model

Figure 4: A trend pre-
dictor using
the pre-trained
topic model.

Each day, we apply the topic model to a set of relevant online
discussions, social media posts and dark web forum posts related to
hacking and cybersecurity, in order to obtain an average for each
topic value over all posts in a 30 day time window.

3.3.1. Dataset

We obtain these discussions through the Twitter API, Reddit API
and Flare6 API, a data provider who specializes in crawling dark
web forums7. In the first 6 months of 2022, we searched for the
following keywords on Twitter, Reddit and 90 dark web forums:
CVE-2013 to CVE-2022, #infosec #vulnerability, #infosec #exploit. We
searched the hashtag keywords only on Twitter, and in pairs, in
order to avoid noise and unrelated comments. Out of this, we
obtained 512,347 tweets, 13,114 dark web forum posts and 36,598
Reddit posts mentioning CVE ids or hashtag pairs.

3.3.2. Obtaining a Stable Trend Score

Every day, we apply the LDA model to each sample, obtaining a
topic weight vector 𝑆𝑘 = (𝑠𝑘1, ..., 𝑠

𝑘
30). To obtain a raw trend value

for a day 𝐷𝑗ˆ we average over all 𝑛 topic vectors for that day 𝑗.

�̂�
𝑗
=

1

𝑛

𝑛∑︁
𝑗=1

𝑆𝑘 =
1

𝑛
(
∑︀𝑛

𝑗=1 𝑠
𝑗
1, ...,

∑︀𝑛
𝑗=1 𝑠

𝑗
30) (1)

This process gives a trend vector of dimension 30 for each day, indicating the relevance of
each topic to infosec discussions for that day. In order to dampen the variability between each
day and to encode the momentum of evolving trends, we instead use a 30-day rolling average
of the trend vector for each day.

𝐷𝑗 =
1

30

𝑗∑︁
𝑘=𝑗−30

𝐷𝑘ˆ = (𝑑𝑗𝑖 , ..., 𝑑
𝑗
30) (2)

The daily trend score of a single vulnerability 𝑡(𝑉 𝑖, 𝐷𝑗) ∈ [0, 1] is obtained by computing
the dot product of the 30-day averaged trend vector 𝐷𝑗 = (𝑑𝑗𝑖 , ..., 𝑑

𝑗
30) with the vulnerability

topic weight vector 𝑉 𝑖 = (𝑣𝑖1, ..., 𝑣
𝑖
30), which is a real number between 0 (not matching online

discussions) and 1 (perfectly matching online discussions).

𝑇 (𝐷𝑗 , 𝑉 𝑖) =
1

30

30∑︁
𝑘=𝑖

𝑑𝑗𝑘 * 𝑣
𝑖
𝑘 (3)

6https://flare.systems/
7The most important ones are the exploit.in forum, xss.is, pediy, nulled.to and RaidForums.

A simplified version of this process is graphically presented in Figure 5.

Topic 1
Weight :

0.1

Vulnerability Topic Weights

Trending Topics Weights

Topic i
Weight :

0.7

Topic 30
Weight :

0.2

Trend 1
Weight :

0.2

Trend i
Weight :

0.15

Trend 30
Weight :

0.5

0.1 x 0.2 0.7 x 0.15 0.2 x 0.5 0.225

Vulnerability
Trend Score

Post 1

Topic Model

0.2,
...,

0.7

Average

Topic 1 :

Daily
Trends

Post 2 Post 3

0.1,
...,

0.7

0.3,
...,
0.7

...
Topic 30 :

0.2,
...,

0.7

0.2, ..., 0.7Day 1

...

Day 30 0.1, ..., 0.8

...

Average

0.15, ..., 0.75
Rolling

Averaged
Trends

Dot Product

Figure 5: A simplified graphical representation of the trend computation.

3.3.3. Combining the Trend Scores and Threat Scores

Online discussions

Trends

Vulnerability
descriptions

Topic Model

Topics

Vulnerability
Features

Threat Score

Vulnerability
Dashboard

Figure 6: Combining the threat score and
the trend score.

We also show the three most important topics ac-
cording to their trend score at the time of writing,
as well as their evolution through 2022 in Figure 7.
A deeper analysis of the causes of the evolution of
those trends is outside of the scope of this paper,
and will be presented in a future study.

Finally, we wish to combine these two predicted
values together to inform further research on the
vulnerability disclosure. We obtain a visual repre-
sentation by plotting, for each vulnerability, the
two scores against each other in a two-dimensional
plane, where the X-axis is the threat score and the
Y-axis is the trend score, normalized from 0 to 1.
An example of a subset of published vulnerabilities
in the month of July 2022 is presented in Figure 8.
Vulnerabilities on the right side are those predicted
likely to have an exploit published and/or to be
included in malware, while vulnerabilities in the

lower half of the graph are those who do not match the trending online discussions. We believe
those are the most interesting vulnerabilities for a researcher.

Figure 7: The evolution of three trends over
time with the associated words.

Figure 8: Threat score of vulnerabilities pub-
lished in July 2022.

The following vulnerabilities have been correctly identified as having exploits published:
CVE-2022-342658, CVE-2022-349189, CVE-2022-3179510. These vulnerabilities had exploits
available outside of our datasets, and were identified by our prediction model. Additionally, the
following vulnerability was identified in malware after its prediction: CVE-2022-2204711. An
example of a vulnerability closely matching currently trending topics of remote code execution
vulnerabilities is also shown: CVE-2022-35872. While some of the vulnerabilities identified are
false positives, the total number of vulnerabilities to investigate has been considerably lowered
and true attacks were successfully identified.

4. Discussion

4.1. An Explainable Framework

In this section, we show how a human can understand the decisions made by the models
described in this approach. Our threat class predictor uses our generated topics as input features
when predicting specific types of threats. For this reason, we can explore which concepts drive
the fitted model, through the topics that come out as top features. More importantly, these
topics vary per fitted model: they change depending on the type of threat we wish to predict.
Below are shown, in Figure 9 and Figure 10, the top features for each model.

8https://github.com/aeyesec/CVE-2022-34265
9https://www.openwall.com/lists/oss-security/2022/07/05/1

10https://research.nccgroup.com/2022/05/27/technical-advisory-fujitsu-centricstor-control-center-v8-1-
unauthenticated-command-injection/

11https://www.forbes.com/sites/daveywinder/2022/07/15/new-0day-hack-attack-alert-issued-for-all-windows-
users

Figure 9: Top features when predicting ex-
ploit publications

Figure 10: Top features when predicting mal-
ware inclusion

As can be observed, when predicting exploit publications, the number of references, the
number of vulnerable configurations and the length of the description impact the model. The
six most impactful topics, along with their most salient words, are:

1. Topic 22 - Parameter, Plugins and SQL injections (plugin, wordpress, injection, php,
parameter, sql, admin)

2. Topic 29 - Google and OAuth Vulnerabilitiess (prior, google, extension, convince, vector,
agent, unknown, storage)

3. Topic 26 - Cross-Site Scripting (XSS) vulnerabilities (page, cross, html, site, script, xss,
store, javascript)

4. Topic 23 - Denial of Service (DOS) vulnerabilities (service, cause, denial, null, pointer,
dereference, crash, craft)

5. Topic 17 - Web vulnerabilities (request, http, web, perform, forgery, unauthenticated, csrf,
craft)

6. Topic 8 - Vulnerabilities centered around network attacks (series, interface, network,
device, management, dos)

The top topic, understandably, refers to command injections, which is a common way of
exploiting a vulnerability. We see as other topics more common techniques used in public
exploits.

The top features used to predict malware are different, with Topic 21 about Windows handles
appearing as most impactful. The following topics are the most influential in the prediction of
vulnerabilities included in malware:

1. Topic 21 - Vulnerabilities including the use of Windows handles (object, window, engine,
exists, handle, git, dll)

2. Topic 6 - PDF vulnerabilities (module, update, upgrade, pdf, reader, zone)
3. Topic 4 - Heap and buffer overflow vulnerabilities (heap, corruption, function, overflow,

buffer, stack)

Vulnerabilities centered around the exploitation of processes are more impactful when
predicting malware, which contrasts with the prediction of exploits where specific types of
attacks influence the prediction model.

The explainability of the framework goes even further, as one can obtain the trend score
of a given vulnerability for each topic. A security researcher can thus explore the topics of a
vulnerability or set of vulnerabilities and identify if it appears overlooked in online infosec
discussions. A vulnerability can also be identified as part of a hype wave with respect to certain
semantic characteristics.

5. Conclusion

In this research, we presented a coherent and explainable framework to predict the threat
associated with a vulnerability, both from an exploitability perspective and from a semantic
tendency perspective. Our results showcase vulnerabilities with a high likelihood of being
included in real attacks that may appear overlooked by the cybersecurity community. The
results of this paper show that we can easily achieve this using mainly open source data, with
well-known and interpretable techniques.

References

[1] M. Bozorgi, L. K. Saul, S. Savage, G. M. Voelker, Beyond heuristics: learning to classify
vulnerabilities and predict exploits, in: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 105–114.

[2] M. Edkrantz, A. Said, Predicting cyber vulnerability exploits with machine learning., in:
SCAI, 2015, pp. 48–57.

[3] J. Jacobs, S. Romanosky, I. Adjerid, W. Baker, Improving vulnerability remediation through
better exploit prediction, Journal of Cybersecurity 6 (2020) tyaa015.

[4] O. Suciu, C. Nelson, Z. Lyu, T. Bao, T. Dumitras, Expected exploitability: Predicting the
development of functional vulnerability exploits, arXiv preprint arXiv:2102.07869 (2021).

[5] C. Sabottke, O. Suciu, T. Dumitras, , Vulnerability disclosure in the age of social media: Ex-
ploiting twitter for predicting {Real-World} exploits, in: 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 1041–1056.

[6] N. Tavabi, P. Goyal, M. Almukaynizi, P. Shakarian, K. Lerman, Darkembed: Exploit
prediction with neural language models, in: Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[7] S.-Y. Huang, T. Ban, Monitoring social media for vulnerability-threat prediction and topic
analysis, in: 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), IEEE, 2020, pp. 1771–1776.

[8] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, T. Dumitras, From patching delays to infection
symptoms: Using risk profiles for an early discovery of vulnerabilities exploited in the
wild, in: 27th USENIX Security Symposium (USENIX Security 18), 2018, pp. 903–918.

[9] B. L. Bullough, A. K. Yanchenko, C. L. Smith, J. R. Zipkin, Predicting exploitation of
disclosed software vulnerabilities using open-source data, in: Proceedings of the 3rd ACM
on International Workshop on Security and Privacy Analytics, 2017, pp. 45–53.

[10] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian, P. Shakarian,

Proactive identification of exploits in the wild through vulnerability mentions online, in:
2017 International Conference on Cyber Conflict (CyCon US), IEEE, 2017, pp. 82–88.

[11] Y. Fang, Y. Liu, C. Huang, L. Liu, Fastembed: Predicting vulnerability exploitation possibility
based on ensemble machine learning algorithm, Plos one 15 (2020) e0228439.

[12] A. Okutan, M. Mirakhorli, Predicting the severity and exploitability of vulnerability
reports using convolutional neural nets, in: 2022 IEEE/ACM 3rd International Workshop
on Engineering and Cybersecurity of Critical Systems (EnCyCriS), IEEE, 2022, pp. 1–8.

[13] J. Yin, M. Tang, J. Cao, H. Wang, Apply transfer learning to cybersecurity: Predicting
exploitability of vulnerabilities by description, Knowledge-Based Systems 210 (2020)
106529.

[14] J. Yin, M. Tang, J. Cao, H. Wang, M. You, Y. Lin, Vulnerability exploitation time prediction:
an integrated framework for dynamic imbalanced learning, World Wide Web 25 (2022)
401–423.

[15] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of machine Learning
research 3 (2003) 993–1022.

[16] M. Röder, A. Both, A. Hinneburg, Exploring the space of topic coherence measures, in:
Proceedings of the eighth ACM international conference on Web search and data mining,
2015, pp. 399–408.

[17] J. Chang, S. Gerrish, C. Wang, J. Boyd-Graber, D. Blei, Reading tea leaves: How humans
interpret topic models, Advances in neural information processing systems 22 (2009).

[18] T. Kojm, Clamav, 2004.

	1 Introduction
	2 Related Works
	3 Methodology and Results
	3.1 Topic Model
	3.2 Threat Class Prediction Model
	3.2.1 Feature Selection
	3.2.2 Dataset
	3.2.3 Model Selection
	3.2.4 Features Must be Chosen Carefully

	3.3 Trend Model
	3.3.1 Dataset
	3.3.2 Obtaining a Stable Trend Score
	3.3.3 Combining the Trend Scores and Threat Scores

	4 Discussion
	4.1 An Explainable Framework

	5 Conclusion

