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Abstract  
In this study the overview of the methods for sign language recognition was done and the 
existing datasets in this area were analyzed. It was shown how based on the real data to 
develop and test different approaches. The models based on the Vision Transformer (ViViT) 
and 3D Convolutions CNN (3dCNN) using different batch sizes were built and compared. It 
was also shown how to learn models on different data sizes and to search the compromise 
between accuracy, speed and overfitting of the models. Our research provides valuable 
insights into the strengths and limitations of different models of the task, not solved tasks and 
offer a direction and possible improvements of existed methods in this area by using vision 
transformers. 
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1. Introduction 

Sign language is a visual language used by people who are deaf or hard of hearing to communicate 
with each other and with hearing individuals. It involves using a combination of hand gestures, facial 
expressions, and body language to convey meaning. While sign language is an effective mean of 
communication, it can be challenging for non-signers to understand and communicate with sign 
language users. This has led to the development of sign language recognition technology, which uses 
computer algorithms to interpret and translate sign language into spoken or written language. Sign 
language recognition has the potential to improve communication and inclusion for people who are 
deaf or hard of hearing. It also poses unique challenges, such as the necessity for accurate hand shape 
and movement detection, real-time recognition, and dealing with the complexity and variability of 
different sign languages. Advantages and new achievements in machine learning, computer vision, 
and sensor technology give now the possibility to overcome these challenges and make sign language 
recognition more accurate, efficient, and accessible. Machine learning techniques, such as deep 
learning, can then be used to learn a mapping between these visual features and the corresponding 
sign language gestures. While CNNs have limitations in capturing long-term dependencies and global 
context, which are crucial for complex image understanding tasks such as object detection and 
segmentation, special transformers have gained significant popularity in the field of computer vision 
in recent years due to their ability to process sequential data such as images and videos. In this article 
we will compare two approaches for sign language recognition and define for the real practical task 
which of them is more effective and perspective for improvements for next studies. 

2. Sign language recognition problem statement 

Sign language is an essential mode of communication for deaf or hard-of-hearing individuals. Sign 
language recognition (SLR) is a challenging task, as sign languages are highly complex, with a wide 
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range of variations and nuances. SLR involves the hand gestures identification, facial expressions, and 
body movements to interpret the meaning of a sign [1, 2]. The goal of SLR  is to develop systems that 
can recognize and translate sign language into written or spoken language which enable 
communication between hearing and non-hearing individuals. In this research we will discuss the 
problems, limitations, not solved issues, and existing solutions in SLR. 

One of the primary challenges in SLR is the complexity of sign languages. There are over 300 sign 
languages used worldwide, each with its own grammar, vocabulary, and dialects. Furthermore, sign 
languages are highly context-dependent, with the meaning of signs often varying depending on the 
speaker's location, age, gender, and culture. Thus, developing an SLR system that can accurately 
recognize and interpret the nuances of different sign languages is a significant challenge. 

Another challenge in SLR is the variability in signing styles. Signers may use different hand 
shapes, positions, and movements to convey the same message. Moreover, the speed and duration of 
signs can vary, adding further complexity to the task. Thus, SLR systems must be robust to variations 
in signing styles, as well as to variations in lighting conditions and camera angles. To address these 
challenges, researchers have proposed various techniques, such as data augmentation, transfer 
learning, and multi-modal fusion, which combine visual and other modalities such as audio or depth 
information. 

One of the main challenges in sign language recognition is collecting and annotating large datasets 
of sign language gestures, which are required to train and evaluate machine learning models. This can 
be particularly difficult for sign languages that are not widely spoken or documented. A limitation of 
SLR is the lack of large-scale annotated datasets. While there are several datasets available for SLR, 
they are relatively small, limiting the performance of machine learning algorithms. A brief 
comparison of existed datasets for sign recognition task is made in Table 1. Moreover annotating sign 
language data is a time-consuming and challenging task, as it requires the expertise of sign language 
experts. 

 
Table 1 
Sign language recognition datasets comparison 

Id  Name  Country  Classes  Samples  Language 
level 

Availability 

1  DGS Kinect 40  Germany  40  3000  Word  Contact author 
2  RWTH‐PHOENIX‐ 

Weather 
Germany  1200  45760  Sentence  Publicly available 

3  SIGNUM  Germany  450  33210  Sentence  Contact author 
4  GSL 20  Greek  20  ~840  Word  Contact author 
5  Boston ASL LVD  USA  3300+  9800  Word  Publicly available 
6  PSL Kinect 30  Poland  30  300  Word  Publicly available 
7  PSL ToF 84  Poland  84  1680  Word  Publicly available 
8  LSA64  Argentina  64  3200  Word  Publicly available 
9  MSR Gesture 3D  USA  12  336  Word  Publicly available 
10  DEVISIGN‐G  China  36  432  Word  Contact author 
11  DEVISIGN‐D  China  500  6000  Word  Contact author 
12  DEVISIGN‐L  China  2000  24000  Word  Contact author 
13  IIITA‐ROBITA  India  23  unknown  Word  Contact author 
14  Purdue ASL  USA  unknown  unknown  Word/ 

Sentence 
Request DVDs/HD 

15  CUNY ASL  USA  unknown  ~33000  Sentence  Unknown 
16  SignsWorld Atlas  Arabia  multiple 

types 
unknown  Handshape, 

Words, 
Sentences  

Unknown 

17  LSA‐T  Argentina  translation  14880  Sentence  Publicly available 
18  LSFB‐CONT  Belgium  6883  85000+  Word, 

Sentence 
Publicly available 



19  LSFB‐ISOL  Belgium  400  50000+  Word  Publicly available 
20  WLASL  EEUU  2000  21083  Word  Publicly available 

 
Another issue in SLR is the lack of real-time performance. SLR systems often require high 

computational resources, making it challenging to achieve real-time performance on mobile devices 
or in low-resource settings. 

Researchers have proposed various solutions to deal with these challenges and limitations [3‒12]. 
There is an approach that proposes to use different deep learning algorithms, such as convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs), to recognize the signs from video 
sources. These algorithms have shown promising results in SLR, achieving state-of-the-art 
performance on several benchmark datasets. 

Another solution is to use depth sensors, such as Microsoft Kinect, to capture 3D motion data, 
which can be used to recognize signs accurately [8]. Depth sensors are advantageous as they can 
capture the 3D shape and position of the signer's hands, providing more robust and accurate sign 
recognition. 

Furthermore, researchers have proposed the use of transfer learning, where pre-trained models on 
large datasets such as ImageNet are fine-tuned on sign language datasets. This approach has shown to 
improve the performance of SLR models, particularly for low-resource sign language datasets. 

So, the SLR is a challenging task that requires robust and accurate recognition of complex hand 
gestures, facial expressions, and body movements. While several solutions have been proposed to 
address the limitations and challenges of SLR, there are still several unsolved issues, such as real-time 
performance, variability in signing styles, and lack of large-scale annotated datasets. With the 
development of more advanced algorithms and the availability of larger annotated datasets, it is 
hopeful that these challenges can be addressed, enabling better communication between hearing and 
non-hearing individuals. Overall, sign language recognition is still an important problem with 
potential applications in fields such as assistive technologies, education, and communication for deaf 
and hard-of-hearing individuals. 

3. Brief overview of sign language recognition methods 

There are various methods for sign language recognition (SLR) that have been proposed and tested 
over the years. Here are some of the most widespread methods for SLR: 

 
1. Template matching is a simple and intuitive approach where the hand movements of the 

signer are matched against a predefined set of templates to recognize the sign [3, 4]. The 
template matching method involves capturing a series of hand poses and storing them as 
templates. During recognition, the input sequence is compared to each template, and the sign 
is identified based on the closest match. While this method is easy to implement, it is limited 
by the need for manually defining the templates and the inability to handle variations in 
signing styles. 

2. Hidden Markov Models (HMMs) are probabilistic models used in speech recognition as a 
tool that can model the temporal dependencies in sign language by capturing the transitions 
between hand shapes and movements. The method involves training an HMM on a dataset of 
sign language gestures and using it to recognize signs in new sequences [5, 6]. However, 
HMMs can be limited in capturing the complex and context-dependent variations in sign 
language. 

3. Support Vector Machines (SVMs) as a type of machine learning algorithm can classify sign 
language sequences by finding the hyperplane that separates the data points into their 
respective classes [7]. SVMs have been shown to achieve good accuracy in SLR, but they 
require large amounts of training data and may not be robust to variations in signing styles. 

4. 3D Depth Sensors using 3D depth sensors, such as Microsoft Kinect give the possibility to 
capture the 3D shape and position of the signer’s hands. This approach has the advantage of 
being more robust to variations in lighting and camera angles, and it can capture the depth 



information of the hand movements[8, 9]. The depth information can be used to recognize 
signs more accurately. 

5. Deep Learning methods, such as convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), have been used in SLR and have shown significant improvements in 
performance. CNNs can learn the spatial features of sign language sequences, while RNNs 
can capture the temporal dependencies between hand movements [10, 11]. Additionally, 
attention mechanisms can be used to focus on the most relevant parts of the sequence, 
improving the accuracy of recognition. 
 

Several approaches to deep learning could be defined for the relevant tasks and could be quite 
efficient in the real application. 

PoseTCN is a deep learning model that uses temporal convolutional networks (TCNs) to capture 
the temporal dependencies in sign language gestures. PoseTCN takes as input a sequence of 3D hand 
pose data and outputs the recognized sign. The model uses dilated convolutions to increase the 
receptive field of the network and improve the model's ability to capture long-term dependencies [12, 
13]. 

PoseTGCN is a deep learning model that uses a graph convolutional network (GCN) to capture the 
spatial dependencies between the joints in sign language gestures, and a temporal convolutional 
network (TCN) to capture the temporal dependencies. The model takes as input a sequence of 3D 
joint positions and outputs the recognized sign. The GCN operates on a graph structure where the 
joints are nodes and the edges represent the spatial relationships between them [14, 15]. The TCN 
operates on the resulting feature maps and uses dilated convolutions to capture long-term 
dependencies. 

Inflated 3D ConvNet (I3D): I3D is a deep learning model that uses a 3D convolutional neural 
network (CNN) to extract spatio-temporal features from sign language gestures. The model takes as 
input a sequence of RGB or depth frames and as the outputs gives the recognized sign. The 3D CNN 
is pre-trained on large-scale video datasets, such as Kinetics or Sports-1M, and fine-tuned on the sign 
language recognition task [16, 17]. The pre-training allows the model to learn generalizable features 
that can be applied to sign language gestures. 

Sign Language Transformers (SLT) is a transformer-based model that uses self-attention 
mechanisms to learn the spatial and temporal features of sign language gestures. SLT takes as input a 
sequence of RGB or depth frames and as the outputs the recognized sign. The model uses a pre-
trained backbone network, such as ResNet or EfficientNet, to extract visual features from the frames, 
which are then fed into a transformer encoder-decoder architecture [18, 19]. The attention 
mechanisms in the model allow it to focus on the most relevant parts of the sequence and improve 
recognition accuracy. Now this approach is widely used in continuous sign language translation. 

Transformers were originally designed for natural language processing (NLP) tasks where they 
exceed in capturing long-range dependencies and global context. They achieved this by incorporating 
self-attention mechanisms that allow the model to weigh the importance of different parts of the input 
sequence when making predictions. The same mechanism can be applied to images by treating each 
pixel or patch as a token, allowing the model to attend to different parts of the image when making 
predictions. Another advantage of transformers in computer vision is their ability to handle variable 
input sizes without requiring resizing or cropping. This is important for tasks such as object detection 
and segmentation where the size and aspect ratio of the objects can vary significantly. Additionally, 
transformers can leverage pre-training on large data amounts, allowing them to learn useful 
representations that can be fine-tuned on smaller datasets for specific tasks. Overall, the use of 
transformers in computer vision has shown promising results, outperforming traditional CNN-based 
architectures on various benchmarks and achieving state-of-the-art results on challenging tasks such 
as image captioning and visual question answering. 

In summary, there are various deep learning models that can be used for sign language recognition, 
such as PoseTGCN, I3D, PoseTCN, and Sign Language Transformers (SLT). These models differ in 
their architecture and their ability to capture spatial and temporal dependencies in sign language 
gestures. 

In Ukraine the task of sign recognition is really actual and important in context of the war and 
necessity to develop the special governments to support and provide assist and inclusion in society the 



people who were suffered from the war and have problems with hearing. There are several works of 
national scientists who have investigated the problem of sign recognition and proposed special 
techniques and systems for communication and translating into the sign language [20‒21]. 
Nevertheless, there are still unsolved issues and necessity of new approaches and adapting the existed 
methods is quite high.     

 

4. Practical task of video interpretation for sign language 

The goal in this article was to test mentioned above approaches and to build the simple 
transformer-based model for sign language recognition and compare its efficiency with the standard 
approach of using 3D convolutions. The idea was to clarify and define on a very first level (without 
any neural networks tricks or additional approaches) which approach could be more accurate for our 
task. 

4.1.  Dataset 

For our experiments the LSA64 dataset [22] was used. LSA64 is a dataset for Argentinian Sign 
Language (LSA) and it represents a collection of video sequences designed for the task of sign 
language recognition in the Argentinian Sign Language. The dataset was created by researchers at the 
National University of Córdoba in Argentina, and contains 64 different LSA signs performed by 20 
signers (10 male and 10 female). 

The videos were recorded in a controlled environment using a high-definition camera and have a 
resolution of 1280x720 pixels at 25 frames per second. Each sign was performed five times by each 
signer and results were presented in a total of 6400 video sequences.  

The LSA64 dataset also includes ground-truth annotations for each video, indicating the start and 
end frames of each sign. These annotations were performed manually by experts in LSA sign 
language. 

The LSA64 dataset is quite challenging dataset due to variations in signing speed, camera 
viewpoint, and lighting conditions, making it a valuable resource for researchers working on 
developing robust and accurate sign language recognition algorithms (see some examples on Figure 1 
and Figure 2). 

 

 

 



 

Figure 1: Screenshots of some examples of LSA64 dataset for sign language recognition 

 
Figure 2: Example of one video storyboard 
 

For our experiments firstly we made some labels for the dataset and then clustered them into 3 
logical groups. That was done to have more labels in each of the ground-truth classes. The classes are: 
“colors” signs (consists of the next initial classes: “red”, “green”, “yellow”, “light-blue”), “food” 
signs (consists of the next initial classes: “sweet milk”, “water”, “food”) and “verbs” signs (consists 
of the next initial classes: “help”, “thanks”). The labels were randomly splitted into the train-test sets: 
385 labels went to train and 165 labels - to the test set. Note that for experiments the proportion of 
each class was saved in both train and test sets. The general proportion of classes in data are: 
36,3636% of the first class, 36,3636% of the second class, 27,2727% of the third class. 

4.2.  Used approaches 

In this paragraph the transformer-based and 3D convolution-based models that were used in the 
experiments are described more detailed. 

4.2.1. 3D convolutions 

A neural network that uses 3D convolutions for video analysis typically consists of multiple layers 
of 3D convolutional, pooling, and fully connected layers [23]. 

3D convolutions are a type of convolutional layer that considers the spatial and temporal 
dimensions of the input data. In the case of video analysis, the input is a sequence of frames, and the 
3D convolutional layer applies a kernel to each frame and its neighboring frames in the temporal 
dimension to extract features that capture both spatial and temporal information. This allows the 
model to learn patterns and movements over time, which is crucial for tasks such as action recognition 
and gesture recognition (see Figure 3) [24]. 



 

 
Figure 3: Comparison of 2D (a) and 3D (b) convolutions 

 
After the 3D convolutional layers, pooling layers are often used to downsample the feature maps 

and reduce the spatial dimensionality of the data. This helps to reduce the parameters number in the 
model and prevent overfitting. 

Finally, fully connected layers are used to classify the input video sequence into one or more 
classes. These layers take the flattened feature maps from the convolutional layers and apply a set of 
weights to produce a probability distribution over the possible classes. 
 

4.2.2. Vision transformer 

The approach of Video Vision Transformer (ViViT) [25, 26] involves dividing the video into 
small spatiotemporal regions of interest, called tubelets, and processing them using self-attention 
mechanisms similar to those used in the NLP models. 

Here is a brief overview of how the ViViT model with tubelet embeddings works: 
1. Tubelet Extraction: The first step is to extract tubelets from the input video. This can be done 

using a variety of techniques such as object detection, tracking, or motion analysis. Each 
tubelet is represented as a sequence of T frames, where each frame is a H x W x C tensor 
representing the pixel values of the video frame (see Figure 4). 

 

 
Figure 4: Tubelet embedding 
 

2. Flattening and Linear Projection: Each frame in the tubelet is flattened into a sequence of 
patches, and these patches are then linearly projected into a higher-dimensional embedding 



space of size D using a trainable linear layer. This results in a sequence of patch embeddings 
for each frame in the tubelet. 

3. Multi-Head Self-Attention: The projected sequences are then passed through multi-head self-
attention layers. Each layer computes attention weights between all pairs of patch embeddings 
in the sequence, and uses these weights to compute a weighted sum of the patch embeddings. 
This allows the model to attend to different regions of the tubelet depending on the task at 
hand. 

4. Feedforward Network: After each self-attention layer, the output is passed through a 
feedforward network with a ReLU activation function. This network applies a linear 
transformation to the input, followed by a non-linear activation function. This helps the model 
capture more complex relationships between the patch embeddings in the sequence. 

5. Aggregation: Finally, the output of the last self-attention layer is aggregated across all frames 
in the tubelet to obtain a single vector representation for the tubelet. These vectors are then 
passed through a linear layer to predict the class label for the entire tubelet. 

 
By processing tubelets using self-attention mechanisms, ViViT with tubelet embeddings is able to 

better capture the spatiotemporal relationships between different regions of the video, resulting in 
improved performance on video recognition tasks such as action recognition and video classification. 

5. Modelling & Results 

In our experiments we used the vision transformer (ViViT) and 3D convolutions CNN (3dCNN) 
for comparison on our dataset, which was trained on the different batch sizes (3, 32, 128, 385 (the 
length of train dataset)). Each of the selected models was trained on 30 epochs, with learning rate 
equal to 1e-5, with input size of the videos equal to (25, 64, 64, 3). During the training the history of the 
accuracies is stored, so as a result only those model weights are saved and loaded for that approaches that 
had the best test accuracy. That was done to prevent the possible model overfitting. On Table 2 the models 
comparison table is presented, where top-1 (also known as accuracy) and top-2 are the top-K accuracy 
metrics calculated by the formula 1 below: 

 

𝑡𝑡𝑜𝑝 െ 𝐾 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
1

𝑛௦௔௠௣௟௘௦
෍ ෍1൫𝑓ప,ఫ෢ ൌ 𝑦௜൯

௞

௝ୀଵ

௡ೞೌ೘೛೗೐ೞିଵ

௜ୀ଴

      ሺ1ሻ 

 
where 𝑓ప,ఫ෢  is the predicted class for the i-th sample corresponding to the j-th largest predicted score, 𝑦௜ 
is the corresponding true value, k is the number of guesses allowed and 1(x) is the indicator function. 
Top-K accuracy is often used for sign language recognition problems because it is a useful metric for 
evaluating the models performance dealing with a large number of possible signs and variations, as 
well as accounting for the flexibility required in recognizing signs. 
 
Table 2 
Comparison of vision transformer (ViViT) and 3D convolutions CNN (3dCNN) approaches 
 

Approach name  test top‐1  test top‐2  train top‐1  train top‐2 

ViViT/3  69.7%  89.7%  87.01%  89.7% 

ViViT/32  64.85%  90.3%  78.96%  90.3% 

ViViT/128  63.03%  89.09%  63.9%  89.09% 

ViViT/385  60.0%  83.03%  65.97%  83.03% 

3dCNN/32  63.64%  75.76%  58.18%  73.77% 

3dCNN/128  52.12%  72.73%  51.17%  72.73% 
 
In table 2 it is seen that the ViViT models with small batch sizes have higher quality. But having 

in mind the accuracy on training dataset as well we can notice that such models are more easily 



overfitted. That means that ViViT model is faster in training flow to get the high quality (see Figure 
5). On the other hand, for future investigations more approaches for fixing the model overfitting issue 
should be applied (e.g., augmentation), especially by working with small data amounts. Such logic 
could be traced on the plots below (Figures 6-11). Note, that in Figure 6-11 the loss and accuracy are 
normalized to be presented on the same scale, which gives the opportunity to analyze overfitting 
issues there. 

We see that from the 20th epoch the accuracy for 3D convolution network (3dCNN/128) are 
extremely increasing. From the other hand, the accuracy on both training and test datasets for ViViT/3 
and ViViT/32 models (Figure 6-7) as well as test losses are growing up and at the same time the 
losses on training dataset are decreasing. It also confirmed that the model was good learned on 
training dataset but on the test dataset it faced with some troubles. As for 3D convolution networks 
(Figures 10-11) the losses on both training and test datasets are decreasing with similar speed as well 
as accuracy are increasing.  
 

 
Figure 5: Accuracy on a test set for the different models on epochs scale 
 

 
Figure 6: Train and test loss and accuracy comparison of ViViT/3 model on epochs scale 
 

Figure 7: Train and test loss and accuracy comparison of ViViT/32 model on epochs scale 
 



Figure 8: Train and test loss and accuracy comparison of ViViT/128 model on epochs scale 
 

Figure 9: Train and test loss and accuracy comparison of ViViT/385 model on epochs scale 
 

Figure 10: Train and test loss and accuracy comparison of 3dCNN/32 model on epochs scale 
 

 
Figure 11:  Train and test loss and accuracy comparison of 3dCNN/128 model on epochs scale 

6. Conclusion 



In this paper we discussed the most relevant practices and approaches for sign language 
recognition. While significant progress has been made in sign language recognition using modern 
methods, there are still some important issues that remain unsolved: 

1. Large variability in sign language. Sign language can vary widely across different regions, 
cultures, and even individuals. This variability poses a significant challenge for sign language 
recognition systems, which must be robust to these variations. 

2. The availability of large, diverse datasets is crucial for training and evaluating machine 
learning models for sign language recognition. However, there is still a limited availability of such 
datasets, particularly for less widely spoken sign languages. 

3. Real-time sign language recognition is important for many applications, such as assistive 
technology and communication. However, real-time recognition remains a challenge, as it requires 
processing sign language videos in real-time, which can be computationally intensive. 

4. Sign language gestures can be occluded or noisy due to factors such as clothing, lighting, and 
background clutter. Handling these occlusions and noise is still a challenge for sign language 
recognition systems. 

5. Sign language recognition systems are typically trained on a limited set of sign language 
gestures, which can impact their ability to recognize new or rare signs. 

The task of sign recognition in this paper was solved for real dataset. It was shown how to 
implement the existed approaches on different sizes of the existed data and what to do to receive the 
higher accuracy. Our experiments aimed to compare the performance of the Vision Transformer 
(ViViT) and 3D Convolutions CNN (3dCNN) models on sign language recognition. We trained both 
models on different batch sizes and evaluated their accuracy using the Top-K metric. Our analysis 
shows that ViViT models with small batch sizes achieved higher quality, but were more prone to 
overfitting. The best obtained numerical results were 69,7% for ViViT/3 on test-top1 and 89,7% on 
test-top2 and for ViViT/32 were achieved the accuracy 89,7%  on test-top1 and 90,3% for test-top 2. 
To address the issue of overfitting, future investigations should explore approaches such as data 
augmentation to improve the generalization of ViViT models, especially when working with limited 
amounts of data.  

The practical value of this paper is that it was also shown on real dataset how and why it is needed 
to search the compromise between speed, accuracy and overfitting issues as well as between length of 
the dataset and how existed methods needed to improve. 

Overall, our results provide valuable insights into the strengths and limitations of different models 
for sign language recognition, as well as their practical implementation. It was offered in the paper a 
starting point for further research for sign language recognition by using vision transformers and 
additional approaches in conjunction with, for example, pose estimation, hands recognition, etc., with 
vision transformers before classification itself. 
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