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Abstract  
The article is devoted to the development of a mathematical model for autoregressive and 
autocoherent analysis of discrete wavelet spectra with approbation on known experimental 
data. The model is used to detect anomalies or emergency states of the object after wavelet 
filtering of noise and zero crossing. The proposed method for processing noisy signals, 
combining noise filtering and Mahalanobis proximity analysis, shows better machine 
learning results than neural networks and other methods for detecting classification and 
recognition anomalies. The wavelet spectra were processed using autoregressive and 
autocoherent analyses. The possibility of using these functions as classification features for 
identifying possible anomalous states of devices is shown. Before forming the wavelet 
spectra, the procedure of direct with filtering and inverse transformation of the already 
filtered signal is carried out. As a result, it seems possible to identify the characteristic 
features of the signal - anomalies or emergency conditions. The main factor in the 
classification of device status signals is the moment when changes in the signal spectrum 
begin to develop, therefore, all analysis, both in the time and frequency domain, is tied either 
to the number of samples by the time the signal was received, and in some cases even to the 
extended date format - month number. 
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1. Introduction 

Computer simulation, processing, identification, and analysis of signals are among the most urgent 
tasks facing intelligent systems today. The task of analyzing the state signals of complex objects 
attracts the attention of specialists, since there is no single approach and method for identifying 
signals in computerized control and monitoring systems. This problem has not been solved for 
broadband signals, for which the frequency band used for signal transmission is much wider than the 
minimum required for information transmission. 

The most common approach to signal analysis is the search and comparison with a signal database 
containing signal samples with which the obtained data are compared [1]. Comparison of signal 
records with a reference base can be carried out in different ways: cross-correlation; distance 
comparisons; cluster analysis; application of the likelihood ratio; hybrid expert methods [2]. These 
methods are widely covered in the literature. 

A well-known approach to solving this problem of analyzing and classifying signals is to find the 
optimal feature space in which objects (signals) can most easily be separated using classical 
classification algorithms [3, 4]. If the diagnostic analysis is carried out for a long period of operation 
and is characterized by the appearance and development of increasing non-informative noise, the 
known methods of signal analysis cannot be applied, since the comparison of signals will be incorrect 
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[5]. The problem can be solved by analyzing the state signals of devices and identifying the 
characteristic features of the signal that cause anomalous or emergency states of objects. 

The implementation of this approach makes it possible to obtain correct data for the formation of a 
comparative base of signals for known methods of signal identification, and to become an 
independent analysis tool. Since in real conditions of monitoring and control it is not uncommon to 
work with signals about which there are no a priori data [2], the use of classification of status signals 
significantly expands the scope of diagnostic analysis of signals. 

2. Analysis of the literature data and a formulation of the problem 

The analysis shows that the most common types of signal errors are: stop of data transmission 
from the measuring device, atypical data outliers, failures of measuring equipment, accumulation of 
errors due to interference, data breaks, etc. [6]. In addition, the need for data processing in comparison 
with the specified threshold signal values also precludes a qualitative analysis of information [6]. 

The use of filtering the data of the diagnostic analysis of the control object makes it possible to 
eliminate noise, however, in the future, it is not possible to isolate from the data the signs of loss of 
device operability. Numerous publications on this problem are devoted to the search for an algorithm 
or a combination of data processing methods for selective filtering of information. 

Under conditions of growth of non-informative noise, diagnostic signals of complex objects are 
non-stationary complex signals, which are characterized by the presence of complex time 
dependences of amplitude, frequency, and phase. Therefore, it seems logical to apply filtering using 
the wavelet transform. In the general case, the wavelet transform is the decomposition of a signal into 
a wavelet spectrum (signal decomposition) with subsequent processing (detailing) and reconstruction 
[7-10]. The height of the signal peak and its location in the frequency spectrum are ideal 
characteristics for classifiers (random forest, gradient boosting, logistic regression, etc.) used in 
machine learning [11]. However, studies in [8-12] confirm that filtering using only the continuous 
wavelet transform does not solve the problem of filtering high-frequency and low-frequency noise. 

Signal classification using discrete wavelet transform (DWT) is as follows: DWT is used to 
separate the signal into different frequency subbands [13]. If there are different frequency 
characteristics in the signals, the characteristic features appear in one of the frequency subranges. 
Thus, when generating features from each subrange and using a set of features as input data for a 
classifier in machine learning (random forest, gradient boosting, logistic regression, etc.), the task of 
identifying state signals for various types of signals is realized [14]. Therefore, classifier machine 
learning using signal processing methods has wide application prospects. 

The literature widely describes the application of various criteria that are used in the application of 
classical classification algorithms. The work [15] considers the implementation of the block of 
mathematical signal processing, which is implemented by deconstructing the signal into its frequency 
subbands, from each subbands areas are generated that can be used as input data for the comparative 
proximity of the series. Authors [16. 17] use the autocoherence function to determine the local in time 
non-stationarity of a random process [18-20]. The above model of autocoherence is used both in the 
spectral and in the correlation representation. This makes it possible to determine signal anomalies in 
local frequency and time intervals. 

Analysis of publications shows that a large amount of experimental data arrays makes it 
impossible to use a single function for all arrays. For real-time data processing, other approaches 
should be used, for example, the initial filtering of incoming data by filtering out obviously incorrect 
measurements [6].Thus, research related to the development and improvement of signal analysis 
methods for the subsequent application of machine learning methods is an urgent scientific task. The 
purpose of this work is to develop a mathematical model for autoregressive and autocoherent analysis 
of discrete wavelet spectra for the classification of noisy signals by machine learning. 

3. Mathematical model of discrete wavelet spectra 

This paper uses empirical data collected during experimental studies of reliability characteristics 
using four bearings (B1-B4) on a loaded shaft (6000 pounds) rotating at a constant speed of 2000 rpm 



[21]. The 2nd_test set containing one accelerometer was used for the analysis. The dataset is 
formatted in separate files, each containing a 1-second snapshot of the vibration waveform recorded at 
specific time intervals. Each file consists of 20480 points with a sampling frequency of 20 kHz [21]. 
The file name indicates the date of the data capture which occurred every 10 minutes. The known data 
were taken in order to compare the obtained results on the processing of vibration monitoring data 
performed by other authors [21]. 

3.1 Autocoherence for Stationarity Analysis of Discrete Spectra 

If there is noise in the signal, then the series can become non-stationary and it is impossible to 
extract the necessary information from it, which is usually contained in the low-frequency part of the 
spectrum. Such a characteristic for the series of wavelet coefficients is autocoherence, which can be 
determined from the well-known relation for the continuous wavelet spectrum: 
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where   𝜑𝜑 �𝑡𝑡−𝑏𝑏
𝑎𝑎
�– wavelet function; WX– the scale-time spectrum of the signal I(t); a – the scale factor, 

b – the signal shift along the time axis.  
To determine autocoherence, one should use the relation for wavelet coherence: 
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where   s – smoothing operator [10]. Coherence is interpreted as the square of the correlation 
coefficient, and its values range from 0 to 1. 

Autocoherence is determined by a simple substitution in (2) of relations (1) and (3): 
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It should be noted that the relation for autocoherence is used to estimate the stationarity of a 
number of discrete wavelet coefficients. 

3.2 Proximity of time series for the analysis of autoregression and 
autocoherence  

Let us designate the next two time series of the wavelet coefficients of the spectra as: 
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, 𝑗𝑗 = 1 … 𝐽𝐽, (4) 

where Xi – series of wavelet coefficients at time ti; Yi – series of wavelet coefficients at time 
ti+dt; dt – determined by the time for which a change in the spectrum will not lead to 
equipment failure. 

The correlation closeness of series (4) is determined from the relationship: 
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When the spectra series are close and completely identical proximity=0 when there is no 
difference -proximity=1. On practice 0 proximity 1≤ ≤  . 

3.3. Decomposition of the Time Series 

The wavelet coefficients in the decomposition of the measuring signal f(t) are generally 
determined from the following system of equations [22]: 
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where R – the interval for determining the function f(t) of the signal; aj,k, dj,k  – the coefficients of 
approximation and detailing of the discrete wavelet decomposition of the signal, respectively; φj,k , ψj,k 
– father and mother wavelets, respectively; j, k – he current level of the wavelet decomposition and 
the ordinal number of the wavelet coefficient in the wavelet decomposition of the signal, respectively.  

In calculations, instead of integrating (6), Mull's pyramidal algorithm is used to eliminate 
methodological errors associated with quadrature formulas [23]. The approximating coefficients are 
set at the conditionally zero level jo, j0,k, k=1,…N, where N=2m, m>1. Accuracy was assessed using 
the predictive regression metrics method and an uncertainty matrix. 

Next, approximating aj0+1,k  and detailing dj0+1,k  coefficients are calculated, and from aj0+1,k 
вычисляют aj0+1,2 k , dj0+1,2 k and so on. In the presence of noise with zero mathematical expectation 
and standard deviation, the set of coefficients enclosed in arrays array ({}) for the maximum 
decomposition level J will take the form of the formula: 

�a�j,k�, �d�2,k�, … , �d�j,k�… �d�j,k�, k = 1,2, …
N
2j

, j = 1 … J, (7) 

The set of nested arrays (7) is transformed into a 1D list using the special flatten function [24]: 

�a�j,k, d�2,k, … d�j,k … d�j,k�, k = 1,2, …
N
2j

, j = 1 … J, (8) 

3.4  Noise Reduction by Limiting Detail Factors 

The filtered signal is determined from the relation [25]: 

f̂(x) = � a�j+j,0,kφj+j0,k(t) + ���F(λi)d�j+j0,kψj+j0,k(t)�
k

,
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where F(λj) – threshold function from the list garotte, garrote, greater, hard, less, soft, for example, 
hard(λj), λj – threshold at the j decomposition level; φj+j0,k

(t),ψj+j0,k(t) – the “father” and “mother” 
wavelets, respectively [25]. The universal threshold λj is determined from the relation [25]: 
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0,6742
,
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where λj
univ – universal threshold; Nj – he number of detail coefficients d1,k at the j decomposition 

level; median(│d1,k│)– median from the array of detail coefficients. 
A common threshold can be used as the average of λj

univ or both series (4): 

λX = λY =
1
n
�λi,

N

i=1

 
(11) 

The universal threshold λjuniv = σ�2lnNj of limiting the wavelet coefficients of the spectrum 
depends on the dispersion and the number of wavelet coefficients of detail, therefore, when analyzing 
discrete spectra, it is an essential characteristic of high-frequency noise. 

Depending on the nature of the signal, additional mathematical processing can be applied to 
discrete wavelet coefficients [25]. 

4. Regression Analysis of Real Data Based 

Applying the proposed model of the method of regression analysis of discrete spectra, it is possible 



to clearly identify the date 2004-02-19 06:12:39 of a possible defect for the B3 device (Figure 1). 
Identification occurs both by the number of accumulated maxima - 10 exceeding the threshold of 0.5 
correlation proximity, and by the maximum value. 

 

Figure 1: Autoregression of discrete wavelet spectra obtained from relations (4), (5) with filtering by 
a common threshold (11) 

5. Coherent analysis of real data based on the developed mathematical 
model 

The analysis shows that the proximity of the autocoherence of the spectra is the highest - unity for 
the B3 device and a minimum of autocoherence. Thus, the loss of stationarity is achieved on 2004-02-
19 06:12:39 (Figure 2). Not despite the fact that the number of peaks -91 is less than that of the device 
B2. 

 
Figure 2: Autocoherence of discrete wavelet spectra obtained by relations (1), (2), (3), (4), (5) with 
common threshold filtering (11) 



6. Using the Mahalanobis algorithm to analyze discrete wavelet spectra  

To detect signal anomalies, we use zero-crossing analysis, which has practically not been used in 
relation to discrete wavelet spectra. This approach is designed to detect chirp and non-linear chirp 
crossover signals. These include the average value of the derivative, the zero crossing frequency, and 
the average transition rate of a given signal amplitude [25]. Combined with noise filtering and 
Mahalanobis proximity analysis, zero-crossing analysis shows better machine learning results than 
neural networks and other classification and recognition anomaly detection methods. 

Features of the Mahalanobis algorithm consist in the use of a covariance matrix according to the 
relation [26]: 

DM(x�) = �(x� − μ�x)TS−1�y� − μ�y�, 
(12) 

where x�, y� – multidimensional series of wavelet coefficients; μ𝑋𝑋����,μ𝑌𝑌��� – mathematical expectations; S– 
he covariance matrix. 

The covariance matrix S and its inverse matrix are symmetric and positive definite. Therefore, the 
transformation of the spectral series of wavelet coefficients from multidimensional to one-
dimensional is not required. At the same time, wavelet decomposition into levels during filtering and 
zero-crossing dramatically increase the number of identification features. The increase in the number 
of features only due to zero-crossing and filtering can be seen by comparing the graphs of the training 
sets (Figure 3). 

 
Figure 3: Graph of the training set signals in the trouble-free period of operation without the use of 
wavelet noise filtering and zero-crossing 

 
From the graph (Figure 4) it follows that the method of regression analysis of discrete spectra 

clearly identifies the date 2004-02-19 06:12:39 of a possible defect for device B3 both by the number 
of accumulated maxima– 10 exceeding the threshold of 0.5 correlation closeness, and by the 
maximum value. 

 
Figure 4: Graph of the training set signals in the trouble-free period of operation using wavelet 
noise filtering and zero-crossing 



The graphs of test set signals also have a significant difference (Figure 5, Figure 6). 

 
Figure 5: Graph of test set signals during detection of anomalies or emergency conditions without 
wavelet noise filtering and zero crossing 

 
Figure 6: Graph of test set signals in the period of detection of anomalies or emergency conditions 
after wavelet filtering of noise and zero crossing 

 
When determining anomalies using the described approach, a clear identification of signs of 

anomalies and emergency conditions of the object is observed, as evidenced by a strong oscillation of 
the Mahalanobis distance in the threshold zone (Figure 7, Figure 8). 

 

 
Figure 7: Changing the Mahalanobis distance in the threshold zone without signal processing 



 

Figure 8: Changing the Mahalanobis distance in the threshold zone using Filtering Wavelet and Zero 
Crossing 

7. The Results of the Classifier Using the Machine Learning Method  

To test the proposed method for classifying state signals using the obtained features, the classifiers 
described by the following algorithms were studied: gradient method, linear (SVM), logistic 
regression, nearest neighbors, decision tree (Table 1) on the resulting computer model. 

The previously obtained wavelet data analysis model was used for machine learning with the 
gradient method signal classifier (as the most commonly used). Time series of wavelet coefficients 
db38 of cosine proximity (autocoherent proximity) were taken as features. The results of machine 
learning of the model confirm the effectiveness of the proposed algorithm (Table 1). 

To confirm the effectiveness of the developed method for classifying noisy signals using the 
machine learning method, we will process the same signal without using the established signs of state 
classification (Figure 9, a) and using the developed classifier (Figure 9, b). 
 
Table 1  
Efficiency of application of algorithms for machine learning of classifiers 
№ Algorithm 

name 
Accuracy on the training 

sample at the level of 
detail 

Accuracy on the test 
sample at the level of 

detail 

Studying time 
with varying degrees of 

detail 
0 0,3 0,4 0 0,3 0,4 0 0,3 0,4 

1 logistic 
regression 

 
0,949 

 
0,934 

 
0,916 

 
0,912 

 
0,907 

 
0,920 

 
0,148 

 
0,016 

 
0,023 

2 linear 
(SVM) 

 
1,000 

 
1,000 

 
0,996 

 
0,910 

 
0,904 

 
0,926 

 
0,083 

 
0,057 

 
0,041 

3 nearest 
neighbors 

 
0,931 

 
0,938 

 
0,916 

 
0,899 

 
0,900 

 
0,916 

 
0,045 

 
0,003 

 
0,006 

4 gradient 
method 

 
1.000 

 
1,000 

 
1,000 

 
0,891 

 
0,959 

 
0,905 

 
1,907 

 
1,091 

 
1,964 

5 decision 
tree 

 
1,000 

 
1,000 

 
1,000 

 
0,838 

 
0,950 

 
0,855 

 
0,039 

 
0,024 

 
0,019 

 



 
 

a b 
Figure 9: Comparative analysis of the results of signal processing without (a) and with (b) the use of 
the developed method for classifying state signals 
 

The use of noise filtering with its own time-dependent universal threshold makes it possible to 
increase the accuracy of predicting the occurrence of object defects. 

8. Conclusions 

1. A new method for classifying noisy signals using machine learning has been developed. 
Proposed method for processing noisy signals that combines noise filtering and Mahalanobis 
proximity analysis. The essence of the method lies in the following: the data obtained after 
mathematical processing for all frequency subranges of the signal and a given moment of time 
constitute time series, filtering each series from noise with its own, time-dependent, universal 
threshold. The time series filtered in this way are used as input signals to the machine learning 
classifier and characterize the change in the state of the control object over time. The use of this 
classifier implements pre-processing of the signal in order to eliminate noise and allows you to 
highlight the signs of inoperable states of devices in dynamics. 

2. The list of used functions for processing wavelet spectra has been extended with two more ones: 
by cosine proximity of the autocoherence spectra of discrete wavelet spectra and by the cosine 
proximity function of wavelet spectra of signals following one after another in time. The possibility of 
using these functions as classification features for identifying possible anomalous states of devices 
has been confirmed. 

3. A new criterion for classifying the loss of uptime is based on the presence of local minima 
depending on the sum of squares of the wavelet detailing coefficients at the level of the wavelet 
decomposition. 

4. The developed classification method was tested using a computational experiment on a known 
data set obtained using an accelerometer, all stages of the classification of an object's inoperable state 
signal are shown. The obtained results of machine learning using the signal classifier gradient method 
confirm the effectiveness of the application of new signs of signal classification in wavelet analysis 
(the accuracy on the test set was 0.96). 

9. References 

[1] M. Bayer, J. Fábio Alice, An iterative wavelet threshold for signal denoising, Signal Processing 
162 (2019) 10–20. URL:https://www.sciencedirect.com/science/article/abs/pii/S0165168-
419301240. 

https://www.sciencedirect.com/science/article/abs/pii/


[2] G. J. Mendis, J. Wei-Kocsis, A. Madanayake, "Deep learning based radio-signal identification 
with hardware design." IEEE Transactions on Aerospace and Electronic Systems 55.5 (2019): 
2516–2531. doi:10.1109/TAES.2019.2891155. 

[3] O. Oliynyk, Y. Taranenko, D. Losikhin, A. Shvachka, Investigation of the Kalman filter in the 
noise field with an excellent Gaussian distribution, Eastern-European journal of enterprise 
technologies 94 (2018) 36–42. doi:10.15587/1729-4061.2018.140649. 

[4] W. Deng, "A novel fault diagnosis method based on integrating empirical wavelet transform and 
fuzzy entropy for motor bearing" IEEE Access 6 (2018): 35042–35056. 
doi:10.1109/ACCESS.2018.2834540. 

[5] D. Yoon, Deep learning-based electrocardiogram signal noise detection and screening model, 
Healthcare informatics research 25 (2019) 201–211. doi:10.4258/hir.2019.25.3.201. 

[6] D. V. Efanov, V. N. Myachin, G. V. Osadchiy, M. V. Zueva, Choice of method for filtering 
diagnostic data in systems of continuous monitoring of transport infrastructure facilities, 
Transport of the Russian Federation 2 (2020) 35–40. 

[7] L. Wu, B. Yao, Z. Peng, Y. Gua, Fault Diagnosis of Roller Bearings Based on a Wavelet Neural 
Network and Manifold Learning, Applied Sciences 7 (2017) 158. doi:10.3390/app7020158. 
URL:www.mdpi.com/journal/applsci. 

[8] Y. Xi, Z. Li, X. Zeng, X. Tang, X. Zhang, H. Xiao, Fault location based on travelling wave 
identification using an adaptive extended Kalman filter, IET Generation, Transmission & 
Distribution 12.6 (2018) 1314–1322. 

[9] S. Zolfaghari, Broken rotor bar fault detection and classification using wavelet packet signature 
analysis based on fourier transform and multi-layer perceptron neural network, Applied Sciences 
8 (2018) 25. URL:https://doi.org/10.3390/app8010025. 

[10] H. Choi, J. Jeong, Speckle noise reduction technique for SAR images using statistical 
characteristics of speckle noise and discrete wavelet transform, Remote Sensing 11 (2019) 1184. 
URL: https://ieeexplore.ieee.org/abstract/document/8262663. 

[11] E. Darnila, M. Ula, K. Tarigan, T. Limbong, M. Sinambela, "Waveform analysis of broadband 
seismic station using machine learning Python based on Morlet wavelet", IOP Conference Series: 
Materials Science and Engineering, IOP Publishing (2018): 012048. doi:10.1088/1757-
899X/420/1/012048. 

[12]  K.G. Polovenko, Large-scale analysis of electroencephalograms based on wavelet transforms 
with Daubechies basis function, Prikl. Radioelektron 10(1) (2011) 15–21. 
URL:https://openarchive.nure.ua/server/api/core/bitstreams/faa076b7-4360-4189-a421-71aef2 
49e438/content. 

 [13] Yu. K. Taranenko, Efficiency of using wavelet transforms when filtering noise in the signals of 
measuring transducers, Measuring technology 2 (2021) 16–21. 
URL:https://link.springer.com/article/10.1007/s11018-021-01902-8. 

[14]  W. Chen, J. Li, Q. Wang, K. Han, Fault feature extraction and diagnosis of rolling bearings 
based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM,  
Measurement, 172 (2021) 108901. URL:https://www.sciencedirect.com/science/article/ 
abs/pii/S0263224120313865. 

[15] O. Yu. Oliynik, Yu. K. Taranenko, Analysis of the coherence of signals by the wavelet-reversal 
method,  Metrology and Appliances 6 (2020) 48–52.  

[16] P. F. Shchapov, R. P. Migushchenko, O. Yu. Kropachek, I. M. Korzhov, Further correlation 
models of spectral nonstationarity of dip signals , Metrology and Appliances 5 (2018) 11–14. 

[17] I. M. Korzhov, R. P. Mygushchenko, P. V. Shchapov, O. Y. Kropachek, Studying the influence 
of training sample volume on the average risk of technical diagnostics, International Journal of 
Engineering Research and Applications (IJERA) 9 (2019) URL:https://www.ijera.com/ papers/ 
vol9no2/S1/L0902016466.pdf. 

[18] I. Korzhov, Analysis of models of the coherence function of the spectral non-stationarity of dip 
signals, Bulletin of the National Technical University, Series: "Hydraulic machines and hydraulic 
units 46 (2018) 30–34. 

[19] D. Matteo, A. Longo, M. Rizzi, Noisy ECG signal analysis for automatic peak detection, 
Information 10.2 (2019) 35. URL:https://www.mdpi.com/2078-2489/10/2/35. 

https://openarchive.nure.ua/
https://www.sciencedirect.com/science/article/
https://www.ijera.com/


[20] M. J. Hinich, A statistical theory of signal coherence, IEEE J, Oceanic Engineering 25 (2000) 
256–261. doi: http://dx.doi.org/10.1109/48.838988. 

[21] Prognostics Center of Excellence - Data Repository, 2004. URL:https://ti.arc.nasa.gov/ 
tech/dash/groups/pcoe/prognostic-datarepository/#turbofan. 

[22] Yu. E. Voskoboinikov, Wavelet Filtering with Two-Parameter Threshold Functions: Function 
Selection and Optimal Parameter Estimation, Automation and Software Engineering 1.15 (2016) 
69–78. URL:http://https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-
repository. 

[23] G. He, S. Ma, A study on the short-term prediction of traffic volume based on wavelet 
analysis.Proceedings, The IEEE 5th International Conference on Intelligent Transportation 
Systems, IEEE, 2002. URL:https://ieeexplore.ieee.org/abstract/document/1041309. 

[24] NumPy Array manipulation: ndarray.flatten() function. URL:https://www.w3resource.com/ 
       numpy/manipulation/ndarray-flatten.php. 
[25] Yu. K. Taranenko, N. O. Rizun, Wavelet filtering of signals without using model functions. 

Radioelectronics 65 (2022) 110–125. URL:https://doi.org/10.20535/S0021347022020042. 
[26] N. Rehman, B. Khan, K. Naveed, Data-driven multivariate signal denoising using Мahalanobis 

distance, IEEE Signal Processing Letters 26.9 (2019) 1408–1412. 
URL:https://ieeexplore.ieee.org/abstract/document/8784188. 

https://ti.arc.nasa.gov/
https://www.w3resource.com/
https://doi.org/10.20535/S0021347022020042

	1. Introduction
	2. Analysis of the literature data and a formulation of the problem
	3. Mathematical model of discrete wavelet spectra
	3.1 Autocoherence for Stationarity Analysis of Discrete Spectra
	3.2 Proximity of time series for the analysis of autoregression and autocoherence
	3.3. Decomposition of the Time Series

	3.4  Noise Reduction by Limiting Detail Factors
	4. Regression Analysis of Real Data Based
	5. Coherent analysis of real data based on the developed mathematical model
	6. Using the Mahalanobis algorithm to analyze discrete wavelet spectra
	7. The Results of the Classifier Using the Machine Learning Method
	8. Conclusions
	9. References

