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Abstract 
Thermography has gained popularity in many fields. Since the human eye cannot see the 
thermal spectrum and in low light, thermal image analysis has become an integral part of 
medicine, manufacturing, construction, and other industries. Most thermal cameras produce 
low-resolution images when analyzing the temperature of objects, which complicates the 
process of analyzing original thermogram. Therefore, the problem of improving the quality of 
thermal images is relevant today. With the development of artificial intelligence and deep 
learning technologies, new super-resolution methods are emerging. Such methods can also be 
adapted for thermal image processing. This work examines the performance of modern super-
resolution methods in the thermal vision domain. 
 
Keywords 1 
Machine learning, thermography, deep learning, thermal image, neural network, super-
resolution, image processing, computer vision  

1. Introduction 

At all temperatures above absolute zero, every object emits energy from its surface in the form of a 
spectrum of different wavelengths and intensities. The radiation we call visible light, forms a very small 
part of the electromagnetic spectrum. The infrared or thermal wavelength region extends over the range 
0.7 to 1000 µm [1]. Infrared radiation can carry a lot of useful information about an object that is 
studied. However, it is invisible to the human eye, thus it is important to have special equipment to 
analyze infrared data. 

Infrared thermography (IRT) has a lot of applications in different fields. It is fast and non-invasive 
method of diagnostics that is widely used in medicine to detect abnormal body temperature, to diagnose 
breast cancer, diabetes neuropathy, etc. [2]. It is also used in the architectural and civil engineering 
fields [3]. In manufacturing, for example, a combination of IRT and deep learning helps to detect cracks 
in steel plates [4]. IRT also finds its application in the condition monitoring of electrical equipment 
using machine learning algorithms [5]. Moreover, it can be also used for field phenomics of different 
tree species using unmanned aerial vehicles (UAVs) [6]. 

Despite having a lot of applications in different fields, IRT has its own drawbacks. The main issue 
with thermal imaging is the resolution of the output thermogram. While modern RGB cameras are able 
to produce high-resolution images, the majority of thermal cameras produce images of low spatial 
resolution. Besides, thermal cameras that can produce high-resolution thermograms cost much more 
than regular ones and are not affordable to ordinary users. This creates a need for thermal image super-
resolution methods. 

The goal of Super-Resolution (SR) methods is to recover a high-resolution image from one or more 
low-resolution input images [7]. A high-resolution image provides a higher pixel density and thus more 
detail about the original scene. The need for high-quality images often arises in the field of computer 
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vision to improve the efficiency of pattern recognition and image analysis. SR methods have been 
developing for decades and have come a long way from classical approaches to modern deep learning 
models. 

The purpose of this work is the implementation and analysis of different modern SR methods in the 
thermal image domain. 

2. Related Work 

SR methods can be divided into several groups: interpolation methods, Convolutional Neural 
Networks (CNNs), Generative Adversarial Networks (GANs), and Transformers. Each of these 
methods has its own advantages and disadvantages but in practice, neural network based methods show 
better performance which usually overlaps their disadvantages. 

2.1. Interpolation Methods 

Interpolation methods are the simplest among SR methods. Among them are nearest neighbor 
interpolation, bilinear interpolation, and bicubic interpolation [8]. In the nearest neighbor method, each 
interpolated output pixel is assigned the value of the nearest sample point in the input image while 
bilinear interpolation is used to know values at random positions from the weighted average of the four 
closest pixels to the specified input coordinates. Bicubic is an advancement over the above interpolation 
and uses polynomials, cubic, or cubic convolution algorithms [8]. These methods are available in every 
image processing software. Despite their ease of implementation and clarity, the main disadvantage of 
the interpolation methods is the quality of the output image, thus they are usually used as baselines for 
more advanced SR methods. 

2.2. CNNs 

CNN is the main type of neural network that is used for image processing. It also has found its 
application in SR tasks. For the first time, the idea of using CNNs instead of classical approaches was 
introduced in [9]. In this method, the image is first upscaled using bicubic interpolation, then processed 
through a network consisting of three parts: image patch extraction, nonlinear mapping and 
reconstruction. Patch extraction represents patches of image as a multidimensional vector of features. 
Nonlinear mapping transforms each multidimensional vector into another multidimensional vector. At 
the reconstruction stage, the image patch representations are aggregated to generate the original 
enlarged image [9]. 

Method [10] is the improvement of the previous method that speedups image super-resolution. 
Unlike the method [9], the authors do not enlarge the image with bicubic interpolation before passing 
it to the neural network but work with the original image. In addition, the size of the convolutional layer 
filter was reduced to 5. Then, the number of filters is reduced to reduce the training load. At the 
nonlinear mapping stage, several convolutional layers are used instead of one. The next stage increases 
the number of filters, which improves the quality of image processing. The last step is the 
deconvolution, which produces an enlarged image. 

Method [11] uses neural network with autoencoder architecture for image restoration which includes 
SR task. The authors propose a deep fully convolutional auto-encoder network, which is an encoding-
decoding framework with symmetric convolutional-deconvolutional layers. The network is composed 
of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from 
corrupted images to the original ones [11]. 

The ideas of the method [9] found their usage in thermal image SR in [12]. The authors examined 
the use of datasets from different domains to train the model. The results show that a model trained to 
upscale regular RGB images is better at enhancing thermal images than a model trained on thermal 
images. 

In [13], the authors also studied the influence of the dataset domain on the quality of training and 
model results. The authors conducted experiments in such color models as grayscale, HSL, HSI, and 



HSV. In addition, the architecture of the model was also inspired by the method [9]. According to the 
results, the network trained by the gray outperformed the one that used the lightness and intensity 
domains, but the networks based on the brightness domain provided better performance compared to 
the gray-based network [13]. 

In [14], on contrary to the above methods, the authors showed that training a model on a dataset of 
thermal images gives better results than training on a dataset of RGB images. 

In [15] authors use a progressive upscaling strategy with asymmetrical residual learning [15] and 
also compare their work to SR methods that are commonly used in RGB image SR task. 

2.3. GANs 

GANs [16], as its name suggests, originally were used to generate images. GANs consist of two 
models: a generative model G that captures the data distribution, and a discriminative model D that 
estimates the probability that a sample came from the training data rather than G. The training procedure 
for G is to maximize the probability of D making a mistake [16]. 

The architecture of GANs is widely used in SR tasks. For example, in [17] authors proposed a novel 
model for SR, called SRGAN. This method uses residual network called SrResNet as a generator. 
Besides, the authors propose a perceptual loss function which consists of an adversarial loss and a 
content loss. 

An improvement of SRGAN is ESRGAN [18] which increases model performance and improves 
architecture and loss function of the previous method. In particular, they introduced a special block in 
generator model, called Residual-in-Residual Dense Block (RRDB). They also modified perceptual loss 
by using features before activation layers. 

GANs found their application in thermal image SR task. For example, method [19] uses CycleGAN 
[20]. The generator is ResNet6 model and discriminator is PatchGAN, whole model is trained in 
unsupervised way. Besides, the authors also released dataset for training thermal image SR models, 
which consists of low-resolution, middle-resolution, and high-resolution thermal images. 

2.4. Transformers 

Recently, the Transformer neural network architecture has been increasingly used in deep learning 
solving different tasks. Transformer was first introduced for solving natural language processing (NLP) 
tasks [21], but then showed impressive performance in other domains. The core of Transfomer is the 
attention mechanism that helps neural network to memorize long sequences and focus on specific parts 
of the input.  

In [22], the authors propose to use a Transformer, namely an encoder, to classify images, while 
preserving the original architecture as much as possible. This architecture is called a Vision Transformer 
(ViT). To do this, the image is divided into several patches (in this article, a patch is 16x16 pixels), so 
a sequence of patches is fed to the transformer's input. To preserve information about the location of 
the patches, information about the position of these patches relative to each other (positional coding) is 
added to the input sequence. In order for the model to learn to classify images, a representation of the 
image class to be learned during model training is also added to the input sequence. ViT shows better 
results in comparison to CNN models. 

Despite having good performance, ViT has several important drawbacks. One of these drawbacks is 
the processing of high-resolution images, as the computational complexity increases quadratically with 
image size. In addition, the architecture of a ViT is poorly suited for solving other computer vision 
tasks, such as segmentation, since in this task it is important to distinguish image features at different 
scales. 

To solve these problems Shifted-window Transformer (Swin Transformer) [23] was introduced. 
Swin Transformer has linear computation complexity as it computes self-attention not within every 
patch of the image but within patches in the local window. Then, to compute connections between each 
window, shifted window attention is used. It can thus serve as a general-purpose backbone for both 
image classification and dense recognition tasks [23].  



Transformers can be also used for solving SR tasks. For example, SwinIR [24] is a transformer-
based image restoration model mostly inspired by Swin Transformer. SwinIR consists of three parts: 
shallow feature extraction, deep feature extraction, and HQ image restoration. In turn, deep feature 
extraction block is a stack of special residual Swin Transformer blocks (RSTB) [24]. This architecture 
makes it possible to achieve excellent results in different image restoration tasks, such as SR, denoising, 
and artifact reduction. 

3. Method 

As each method has its own advantages and disadvantages, it was decided to conduct experiments 
with classical algorithms as baseline, CNNs, GANs and Transformer-based neural networks and then 
compare the results of these methods. 

In particular, in this paper following neural networks are examined: SRGAN, SrResNet (generator 
of SRGAN), ESRGAN, RRDBNet (generator of ESRGAN), SwinIR on thermal images and RGB 
images domains, and SwinIRGAN (combination of SwinIR as generator and SRGAN discriminator). 

4. Experiments 

Each of the selected models was already pretrained on its own domain. Also, models were trained 
and evaluated with the help of BasicSR [25] – deep learning framework for solving image restoration 
tasks, such as denoising and SR. Each model was trained to upscale thermal images by a factor of 2. 

4.1. Dataset 

Since the task of thermal image SR is quite specific, the number of open-source datasets for this task 
is quite low. 

One of the largest and most popular is the FLIR dataset [26]. This dataset offers annotated thermal 
and RGB images for object detection systems. The dataset contains more than 26000 annotated frames 
and 15 different object categories. In total, the dataset contains almost 10,000 thermal and more than 
9,000 RGB images with a size of 640 by 480 pixels [26]. Figure 1 shows an example of data from FLIR 
dataset. 

 
Figure 1: Example data from FLIR [26] dataset 

 
One of the most popular datasets for solving the RGB SR problem is DIV2K [27]. This dataset 

contains 1000 high-resolution images (1500-2000 pixels per image side) divided into training, test and 
validation sets. This dataset also contains reduced images by a factor of 2, 3, 4, and 8. 

In this work, both of these datasets are used. In particular, DIV2K is used to examine the 
performance of model trained on grayscale images of this dataset in thermal image domain. 

 
 
 



4.2. Data Preprocessing 

To use FLIR dataset for the thermal image SR task, only thermal images (single channel) were 
selected and a version of the dataset with thermal images reduced by a factor of 2 (320 by 240 pixels) 
was created.  

In order to use the DIV2K dataset for the thermal image SR task, a version of the dataset with images 
in grayscale format was created. Thus, images have one channel with a pixel range of 0-255. 

4.3. Evaluation 

To evaluate trained models SSIM [28] (structural similarity index measure) and RSNR (peak signal-
to-noise ratio) metrics were used. SSIM is defined as follows (1): 

 

𝑆𝑆𝐼𝑀ሺ𝑥,𝑦ሻ ൌ
൫2𝜇௫𝜇௬ ൅ 𝑐ଵ൯൫2𝜎௫௬ ൅ 𝑐ଶ൯

൫𝜇௫ଶ ൅ 𝜇௬ଶ ൅ 𝑐ଵ൯൫𝜎௫ଶ ൅ 𝜎௬ଶ ൅ 𝑐ଶ൯
, ሺ1ሻ 

 
where x, y are windows of image of size NN; 
x – mean of x; 
y – mean of y; 
x – variance of x; 
y – variance of y; 
c1, c2 – stabilization variables. 
PSNR is defined as follows (2): 
 

𝑃𝑆𝑁𝑅 ൌ 10 logଵ଴ ቆ
𝑀𝐴𝑋ூ

ଶ

𝑀𝑆𝐸
ቇ ൌ 20 logଵ଴ ൬

𝑀𝐴𝑋ூ
√𝑀𝑆𝐸

൰ , ሺ2ሻ 

 
where MAXI is maximum pixel value of image I; 
MSE – mean squared error. 

4.4. Experiment Setup 

Before conducting experiments, a set of hyperparameters was chosen. 
Adam [29] with a learning rate 0.0002 was chosen as an optimization algorithm for all models. All 

models were trained for 100000 iterations. The number of images in one batch is 16 for SwinIR, 
ESRGAN and RRDBNet and 64 for SRGAN and SrResNet. 

All models were trained not on whole images, but on square patches that were randomly selected 
from each image. This speeds up training and forces the neural network to pay attention to high-
frequency features. Thus, for all models, a patch of 128128 pixels was chosen, except for the classic 
SwinIR model (9696 pixels). 

 
 
 
 
 
 
 
 
 
 



4.5. Results 

The quantitative comparison is listed in Table 1. 
 

Table 1 
Results of thermal image super‐resolution 

Model  SSIM  PSNR 

Nearest Neighbors  0,7389  30,3350 
Bilinear Interpolation  0,7557  31,1910 
Bicubic Interpolation  0,7672  31,5820 

SRGAN  0,6617  28,3197 
SwinIRGAN  0,6751  29,6528 
ESRGAN  0,6853  29,8002 

SwinIR (DIV2K)  0,7642  31,4355 
RRDBNet  0,7829  32,3622 
SRResNet  0,7828  32,3471 

SwinIR (FLIR)  0,7833  32,3688 

 
Qualitative results are shown in Figure 2, Figure 3 and Figure 4. 

 
Figure 2: Qualitative comparison on FLIR sample (small objects), scaling factor 2 
 



 
Figure 3: Qualitative comparison on FLIR sample (pedestrian), scaling factor 2 
 

 
Figure 4: Qualitative comparison on FLIR sample (car), scaling factor 2 
 

Results of SSIM and PSNR metrics during training are shown in Figure 5 and Figure 6 respectively. 



 
Figure 5: SSIM metric on the validation set during training 

 

 
Figure 6: PRNR metric on the validation set during training 
 

From the obtained results, it can be concluded that SwinIR trained on FLIR dataset shows the best 
results among other models. Additionally, CNNs such as SrResNet and RRDBNet trained separately 
are better than these CNNs trained as GANs. As it can be seen from qualitative results, GANs have a 
lot of noise on upscaled images which causes bad quantitative results, while CNNs and Transformers 
almost completely denoise upscaled images. It can be explained by the fact that GANs are sensitive to 
the input data and selected training hyperparameters. It is also visible that SwinIR trained on FLIR 
dataset performs better than SwinIR trained on the grayscale DIV2K dataset. 

 
 
 



5. Conclusion 

This paper implements modern SR methods and examines their results on thermal image SR 
problem. The aim of this paper was to analyze the performance of popular SR methods on upscaling of 
thermal images. 

The main problem of this task is the lack of datasets for thermal image SR. Current datasets don’t 
have enough training data, the size of thermal images in dataset is not as big as in RGB datasets for SR 
tasks, and quality of thermal images is worse than quality of RGB images in training sets. 

According to the obtained results of thermal image upscaling it was concluded that Transformer and 
CNN models can perform better than GANs and classical algorithms. 

In addition, the following steps can be taken to improve the quality of SR of thermal images: increase 
the size of the dataset and training batch to improve the generalization ability of the models; collect 
dataset of thermal images with higher quality and lower percentage of noise in the images to improve 
the results of SR methods; tune training hyperparameters such as optimization algorithm, learning rate, 
loss function, etc.; improve the architecture of used models or modify them for the task of thermal 
image SR. 
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