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Abstract  
Unmanned aerial vehicle (UAV) imaging is a dynamically developing field, where the 
effectiveness of imaging applications highly depends on quality of the acquired images. No-
reference image quality assessment is widely used for quality control and image processing 
management. However, there is a lack of accuracy and adequacy of existing quality metrics 
for human visual perception. In this paper, we demonstrate that this problem persists for 
typical applications of UAV images. We present a methodology to improve the efficiency of 
visual quality assessment by existing metrics for images obtained from UAVs, and introduce 
a method of combining quality metrics with the optimal selection of the elementary metrics 
used in this combination. A combined metric is designed based on a neural network trained to 
utilize subjective assessments of visual quality. The metric was tested using the TID2013 
image database and a set of real UAV images with embedded distortions. Verification results 
have demonstrated the robustness and accuracy of the proposed metric. 
Keywords 
image quality assessment, no-reference metric, visual quality, UAV images, correlation 
analysis, artificial neural network  

1. Introduction 

A scope of applications of drones and other unmanned aerial vehicles (UAVs) has expanded 
rapidly in recent few decades. Since most of UAVs contain cameras, there is a growing interest in  
analysis and processing of visual data. UAVs mainly use optical band cameras, thus, the existing 
digital image processing solutions are applicable [1-2]. However, the mobility and autonomy of these 
systems can impose significant restrictions and one must consider all these factors.  

The key problems of applying digital image processing in UAV applications are as follows: 
1. UAVs require an adaptive integrated approach to suppress the present noise, motion blur, and 
other typical distortions, which can only partially be compensated by a camera stabilization. 
2. For data transmission from drones, a wireless connection is used. The range and reliability of 
data transmission determine one of the key characteristics of UAVs – the flight range. In this 
sense, the efficiency of processing and compression of high-resolution data for transmission over a 
radio channel with limited bandwidth is decisive. 
3. The data obtained at the end device, in addition to storage and more complex post-processing, 
can be used in various applications. Among them, high level vision tasks based on machine 
learning, such as detection, recognition, etc., become more widespread [1, 3, 4]. 
Common to all above mentioned challenges, there is a need to accurately assess image quality and 

measure distortion parameters, which will be used in image reconstruction methods, to enhance the 
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visual quality of the acquired images. In addition, an effective lossy compression is required. Certain 
results of UAV image processing have already been reported [5, 6, 7]. Nevertheless, robust methods 
that can accurately assess the visual component and determine the optimal parameters for subsequent 
image processing methods are required.  

Image quality assessment (IQA) is usually applied by visual quality metrics. To improve their 
accuracy, some features of human perception are employed. There are two main classes of visual 
quality assessment methods. Full-reference (FR) visual quality metrics are widely used to verify 
image processing methods by evaluating the relative changes in image quality. No-reference (NR) 
metrics assess the quality based on the characteristics of the image itself and can be applied as a tool 
in many UAV applications [8, 9]. 

There are many developed NR IQA methods, but their common problem is a low accuracy, due to  
only limited amount of information available for analysis, and these metrics inability to accurately 
separate image elements (textures, borders, gradients, etc.) from distortions (noise, blur, etc.) [10, 11].  

To design and verify visual quality metrics, special test image databases [11] are used. They 
contain images distorted by certain types of distortions. For each image, a visual quality score (mean 
opinion score (MOS)) is formed based on the results of a large number of subjective experiments with 
volunteers. Correlation analysis between metric values and MOS serves as a quantitative indicator of 
its compliance with human vision. Considering the most universal and large test image databases with 
tens of distortion types such as TID2013 [12], the efficiency of no-reference metrics usually does not 
exceed 0.5, according to the Spearman rank order correlation coefficient (SROCC). 

Fortunately, one can increase accuracy of IQA using existing methods through their joint use, e.g., 
using methods presented in [13, 14]. In this paper, we propose a method of combining no-reference 
visual quality metrics based on an artificial neural network (ANN) that is focused on solving various 
problems of processing UAV images. Since many tasks with UAVs require the mobility of computing 
devices, the priority of this work is to ensure high accuracy of visual quality estimation while 
maintaining acceptable performance. 

2. The efficiency of metrics for UAV purposes 

Drones can lead to a significant amount of various distortions for an image during its acquisition, 
processing, compression and transmission over a communication channel. In this regard, the design of 
a combined metric requires the presence of test image databases that allow simulating such situations. 
As a result of the analysis of many image databases [11], we have chosen TID2013.  

A distinctive feature of this image database is that it contains 24 types of various distortions, 
including such unique ones as bit errors in the transmission of compressed images. TID2013 contains 
25 reference images that have been distorted by 24 types of distortion at 5 levels of intensity, for a 
total of 3000 test images. A complete list of distortions and their applicability to solving the current 
problem is given in Table 1.  

Let us analyze the distortions listed in Table 1 and their relation to imaging from UAVs: 
 Additive Gaussian noise (##1-2) is the basic model for representing most of the physical 
processes that cause noise. It is more pronounced in low light conditions. 
 Spatially correlated noise (#3) is a characteristic of optical images due to the use of the Bayer 
filter or its modifications on sensors. It significantly increases with digital zoom. 
 Impulse noise (#6) may be a manifestation of dead pixels and a lot of other causes such as 
coding/decoding artifacts. 
 Quantization noise (#7) may occur during image acquisition and transformations. 
 Blurring (#8) is one of the most relevant distortions due to the motion and vibrations of the 
UAV. 
 Denoising (#9) is a manifestation of the noise reduction built into most cameras. 
 Compression (##10-11) is a typical stage in the image processing chain to reduce data 
redundancy. 
 Transmission errors (##12-13) are typical for wireless communication channels, especially 
over long distances. 



 Changes in brightness, contrast and saturation (## 16-18) allow simulating changes in lighting 
conditions at different time instances of a day and weather conditions. 
 Multiplicative noise (#19) is relevant because sensor noise is mostly signal-dependent. 
 Noise (#20) allows the simulation of some artifacts of image processing and compression. 
 Lossy compression of noisy images (#21) is a typical example of a real situation where an 
image with some noise is compressed. 
 Chromatic aberration (#23) is a result of the refraction of light in the camera's optics. 

 
Table 1 
List of TID2013 distortions and their relevance for UAV purposes 

##  Distortion type  Relevance for UAV imaging 

1  Additive Gaussian noise  + 
2  Additive noise  

(more intensive in color components) 
+ 

3  Spatially correlated noise  + 
4  Masked noise  – 
5  High‐frequency noise  – 
6  Impulse noise  + 
7  Quantization noise  + 
8  Gaussian blur  + 
9  Image denoising  + 
10  JPEG compression  + 
11  JPEG2000 compression  + 
12  JPEG transmission errors  + 
13  JPEG2000 transmission errors  + 
14  Non‐eccentricity pattern noise  – 
15  Local block‐wise distortions of different intensity  – 
16  Mean shift (intensity shift)  + 
17  Contrast change  + 
18  Change of color saturation  + 
19  Multiplicative Gaussian noise  + 
20  Comfort noise  + 
21  Lossy compression of noisy images  + 
22  Image color quantization with dither  – 
23  Chromatic aberrations  + 
24  Sparse sampling   – 

 
The listed 18 distortions comprehensively allow a use of the vast majority of noise types and 

distortions that can occur in UAV images or be the result of weather conditions. These distortion 
types give together 2250 test images from the TID2013 dataset that will be used in the paper. 

Let us analyze the performance of the existing NR metrics on this subset of images. Since our task 
is to ensure high accuracy of estimation, the maximum possible number of different metrics is 
included. The SROCC values for the entire TID2013 database and the selected subset are given in 
Table. 2.  

As it can be seen from the results in Table 2, the best performance is demonstrated by the ILNIQE 
metric, but its SROCC values (equal to 0.492 for all and 0.529 for the selected 18 UAV distortions) 
are relatively (inappropriately) low. It should be noted that Table 2 shows the absolute SROCC values 
because the metrics have been developed using different image databases that can evaluate the visual 
quality (MOS values) in two ways: as a higher value for better quality, or vice versa - a higher value 
as a larger difference from the perfect quality. 
  



Table 2 
SROCC values of no‐reference IQA on TID2013 subsets 

##  Metric  SROCC 
(All) 

SROCC 
(UAV) 

  ##  Metric  SROCC 
(All) 

SROCC 
(UAV) 

1  ILNIQE [15]  0.492  0.529    23  DIQU [34]  0.240  0.251 
2  CORNIA [16]  0.435  0.521    24  SDQI [35]  0.224  0.248 
3  HOSA [17]  0.471  0.515    25  DIPIQ [36]  0.140  0.209 
4  C‐DIIVINE[18]  0.373  0.448    26  MLV [37]  0.201  0.195 
5  BLIINDS2 [19]  0.395  0.425    27  FISHBB [38]  0.145  0.152 
6  BRISQUE[20]  0.367  0.416    28  JNBM [39]  0.141  0.152 
7  BIQI [21]  0.405  0.409    29  DESIQUE[40]  0.069  0.150 
8  SSEQ [22]  0.341  0.406    30  GMLOG [41]  0.109  0.139 
9  NIQE [23]  0.313  0.403    31  NIQMC [42]  0.113  0.124 
10  QAC [24]  0.372  0.379    32  ARISM [43]  0.145  0.109 
11  SISBLIM_SM [25]  0.318  0.360    33  CPBDM [44]  0.112  0.109 
12  LPSI [26]  0.395  0.357    34  LSSn [31]  0.168  0.105 
13  LPC‐SI [27]  0.323  0.354    35  PSS [31]  0.022  0.087 
14  SISBLIM_SFB[25]  0.336  0.348    36  LSSs [31]  0.114  0.084 
15  DIIVINE [28]  0.344  0.343    37  ARISMc [43]  0.138  0.081 
16  BIBLE [29]  0.281  0.333    38  PSI [45]  0.001  0.075 
17  OG‐IQA [30]  0.276  0.327    39  SMETRIC[46]  0.097  0.074 
18  BPRI [31]  0.229  0.313    40  FISH [38]  0.052  0.041 
19  TCLT [32]  0.233  0.308    41  NR‐PWN [47]  0.016  0.039 
20  SISBLIM_WFB [25]  0.293  0.301    42  NMC [48]  0.054  0.033 
21  MSGF‐PR [33]  0.244  0.274    43  BLUR [49]  0.008  0.020 
22  SISBLIM_WM [25]  0.239  0.265    44  NJQA [50]  0.100  0.007 

3. The problem of metrics selection 

It is possible to increase the accuracy of image quality assessing by combining several metrics. 
Successfully selected metrics are able to complement each other and provide a comprehensive 
analysis of the image taking into account various types of distortions. As it was shown in [13], the 
greatest efficiency is achieved through multi-parameter optimization using artificial neural networks. 
Combining the listed 44 metrics can potentially give the best accuracy of visual quality assessment. 
However, most of these metrics can make a low contribution requiring significant computing 
resources. High mobility and minimal computing costs are among the key requirements for UAV 
applications. Therefore, it is necessary to reduce the number of metrics without a significant decrease 
in the accuracy of IQA. Several possible solutions can be employed for the correct choice of 
elementary metrics (listed in Table 2) as inputs of an ANN, but not all of them are feasible or give an 
effective solution: 

1. A complete enumeration of options is not possible in practice, since even for 5 or 10 
incoming metrics, it will be necessary to calculate 1.6×108 and 2.7×1016 combinations, 
respectively. 
2. The choice of the best metrics with high SROCC rates or the exclusion of similar metrics with 
high cross-correlation values has shown insufficient efficiency in [51]. 
3. “Intelligent” selection of appropriate metrics. As a possible solution, the approach of using 
regularization was tested in [13] and proven to be effective. Lasso (least absolute shrinkage and 
selection operator) regularization is widely used in machine learning to reduce the model 
complexity and prevent overfitting. As a result of introducing restrictions, it allows determining 
the least important input features (corresponding metrics) and excludes them by setting zero 
weight coefficients. This approach can be applied to reduce the number of metrics. 



To display the influence of the number of elementary metrics used on the accuracy of the trained 
ANN, we employ several of their combinations defined using Lasso in the range of values from the 
minimum 3-5 to all 44 metrics. The Lasso parameters were selected in such a way as to obtain non-
zero weights for a given number of the metrics. Totally, 10 dimensions are considered in the paper: 4, 
5, 7, 10, 16, 20, 25, 30, 35, and 44. Metric combinations with 16 metrics and less, which are focused 
on, are presented in Table 3.  

 
Table 3 
List of the metrics, defined by Lasso 

Metrics’ number  Metrics’ names 

4  ARISM, CORNIA, DIPIQ, ILNIQE 
5  Above 4 + LPCSI 
7  Above 5 + MLV, NIQMC 
10  Above 7 + MSGF‐PR, NIQE, PSS 
16  Above 10 + C‐DIIVINE, GMLOG, HOSA, JNBM, PSI, TCLT 

4. Preliminary results 

Despite the popularity of neural networks, their use in the field of image quality assessment has 
some limitations.  

First, there are limited variety and size of datasets, because only image databases containing MOS 
values can be applied. It should be noted that due to the limited number of distortion levels and the 
variety of reference images, it can be assumed that some test images have unique properties and their 
distribution into training or test subset may affect the accuracy of the trained neural networks. 
Therefore, it is impossible to choose exactly which images should be in each of these sets. To ensure a 
result approaches the optimal one, for each ANN configuration over 100 repetitions with a random 
distribution of images on training (70%) and testing (30%, respectively) subsets have been completed. 

Second, the choice of the type of ANN can have a significant impact on the final efficiency. Two 
types of networks are considered: feed-forward and cascade networks, which have a non-linear 
relationship between layers since the resulting value of each layer, including the input one, affects all 
subsequent layers.  

 

 
(a) 

 
(b) 

Figure 1: Generalized schemes of the used feed‐forward (a) and cascade (b) networks 
 
Further, the efficiency of ANN is also determined by its structure (the number of hidden layers and 

the number of neurons in each of them). Since a significant number of factors affecting the efficiency 



of the final neural network have already been indicated, several basic configurations are used at the 
preliminary stage of the analysis. A more precise configuration of the ANN will be determined at the 
final stage of creating the combined metric. At this stage, variants of the neural network structure with 
1-3 hidden layers are used. For each of them, there are two options for the number of neurons N in 
each layer: 1) in all layers, it is equal to the number of input metrics M (N = M), and 2) each next 
layer starting from the second one the number is divided by two (N1 = M, N2 = M/2, N3 = M/4). 
There are only 5 options totally because for a single-layer network they are identical. 

As the activation function, a sigmoid function is used, which allows, regardless of the value ranges 
of the used metrics, to obtain, after the 1st hidden layer, the values in the fixed range [0,1]. This 
procedure allows us to implement the built-in function fitting and value normalization. This stage 
involves the construction of 10,000 variants of ANN (2 types × 5 configs × 100 repetitions × 10 
metric combinations). All calculations were performed using the MatLab software. 

Let us analyze the results obtained after training all these ANNs. The main dependence is that the 
accuracy of the combined metric grows with the number of elementary metrics used. The maximum is 
achieved for all 44 metrics. The graph of SROCC dependence on the number of metrics is shown in 
Fig. 2 for ANNs with maximum SROCC rates among repetitions of each configuration for the feed-
forward network.  

Based on these results, several conclusions can be drawn. Thus, the use of an ANN for metrics 
combination is an effective solution for UAV applications, since even the minimal number of them 
(4) significantly exceeds in accuracy the maximum result among elementary metrics (SROCC = 
0.53). The current 5 configurations of the ANN structures give similar indicators, their comparison 
will be carried out in more detail later. This graph allows making some recommendations for 
choosing the structure of an ANN depending on the requirements and constraints of the problem 
solved. For example, if it is necessary to ensure maximum performance, the desired choice would be a 
combined metric of 5 elementary ones, its result reaches SROCC = 0.74, which is much higher than 
for 4 metrics, but a further increase of accuracy with the number of input parameters is slow. 
Nevertheless, if accuracy or balance with performance is a priority, then the options of 10 or 16 
elementary metrics can be useful. Their accuracy reaches 0.82 – 0.84 of SROCC. Further, the 
accuracy at the level of 0.85 is practically independent of the number of metrics. Considering that one 
of the requirements of this study is to maintain acceptable performance with high accuracy, we will 
use a combined metric consisting of 10 elementary metrics. 

 

 
Figure 2: Dependence of SROCC on the number of elementary metrics selected by the Lasso criterion 

 
To display the main statistical indicators and some problems, Fig. 3 shows a box chart for 4 (full 

graph and limited range higher than 0.5 under it), 5 (similarly to the previous one), 10, and all 44 
metrics. Its advantage is the ability to display simultaneously the median, the lower (0.25) and upper 
(0.75) quartiles, any outliers (computed using the interquartile range), and the minimum and 
maximum values that are not outliers. From these graphs, it can be noted that with a small number of 
metrics (4 and 5), the complexity of the neural network (number of neurons) is not enough for proper 
training, as a result of which anomalous results were obtained - incorrectly trained neural networks 
with indicators below individual metrics. This is also the problem of multilayer neural networks with 



fewer neurons in each layer. For 10 and more metrics, this problem is no longer observed. The highest 
values for each presented network configuration are already denoted in Fig 1. Quantitative indicators 
of the best neural networks for the feed-forward network from Fig. 1 and Fig. 2 are given in Table 4, 
where M means the number of elementary metrics. 

 

 
Figure 3: Box charts of the results of the obtained neural networks for 4, 5, 10, and 44 input metrics. 

 
Table 4 
Results of the best feed‐forward networks for different numbers of inputs (4, 5, 10, and 44) 

NN 
config 

Description (in 
NN layers) 

SROCC 

M = 4  M = 5  M = 10  M = 44 

1  [M]  0.683  0.722  0.805  0.858 
2  [M, M]  0.692  0.723  0.818  0.840 
3  [M, M, M]  0.700  0.742  0.797  0.846 
4  [M, M/2]  0.697  0.724  0.795  0.853 
5  [M, M/2, M/4]  0.688  0.732  0.809  0.881 

5. Final network modifications 

In the first phase of experiments, when forming a neural network for 10 input metrics, the 
following configurations were used for neural networks with 1-3 hidden layers: [10], [10, 10], [10, 10, 
10], [10, 5] and [10, 5, 2]. 

The general trend in Fig. 2 shows that the number of neurons in layers less than 10 may not be 
enough. Therefore, additional configurations with a number of neurons up to 20 per layer (×2 
compared to the number of input metrics) were additionally built. More than 30 configurations for 
both network types have been used and the best results of the ANN for each number of hidden layers 
and some statistics are partly shown in Table 5. It shows lists of neural network configurations, both 
the best 2 from the initial five and additionally trained for 10 input metrics (50 repetitions).  

To evaluate the effectiveness of each configuration and both types of networks, some statistical 
indicators are given: the maximum (best neural network) and minimum value, median, skewness, and 
quartiles 0.75 and 0.95. Skewness is a measure of the asymmetry of the data around the sample mean. 
If skewness is positive, the data spread out more to the higher values. The skewness of the normal 
distribution (or any perfectly symmetric distribution) is zero.    

The maximum performance for both types of networks in Table 5 has been achieved by 
configuration #8. Despite the random learning process, in general, for a feed-forward network, an 
increase in the number of neurons to 20 leads to an increase in accuracy. This is also confirmed by the 
values of the quartiles 0.75 and 0.95. A further increase in the number of neurons does not provide a 
significant improvement. According to skewness values, it can be noted that there is a slight tendency 



toward obtaining neural networks with low performance, and in the worst cases they differ a little 
from elementary metrics (SROCC can be less than 0.6). Cascade neural networks do not provide any 
advantages demonstrating somewhat lower performance for almost all configurations. This network 
shows the advantage in terms of maximum SROCC for configurations with a small number of 
neurons (#2 and #4), therefore, it is presumably the most effective for solutions with a small amount 
of input data and simpler layer structures.  

According to the results of Table 5, the ANN with the maximum Spearman correlation coefficient 
of 0.8307 was chosen as a combined metric for visual quality assessment tasks. The list of metrics 
used in it and a visual comparison of its effectiveness for elementary metrics is shown in Fig. 4.  This 
metric is available at https://github.com/OlegIeremeiev/CNNM-UAV.git . 

 
Table 5 
Results of the best feed‐forward networks for 10 inputs 

NN 
config 

Description  
(in NN layers) 

SROCC 

Max  Min  Median  Skewness  0.75 
Quartile 

0.95 
Quartile 

Feed‐forward network 
1  [10] [10]  0.8178  0.6433  0.7351  ‐0.0261  0.7621  0.8033 
2  [10] [5]  0.7949  0.6256  0.7487  ‐0.9202  0.7716  0.7899 
3  [20]  0.8111  0.6475  0.7483  ‐0.5799  0.7704  0.8041 
4  [20] [10]  0.8074  0.6312  0.7563  ‐0.7113  0.7862  0.8024 
5  [20] [20]  0.8280  0.6787  0.7625  ‐0.2461  0.7906  0.8209 
6  [15] [10] [10]  0.8214  0.6430  0.7452  ‐0.3190  0.7726  0.8116 
7  [10] [15] [20]  0.8050  0.6383  0.7386  ‐0.3225  0.7608  0.8009 
8  [20] [15] [10]  0.8307  0.6500  0.7607  ‐0.5689  0.7806  0.8161 
9  [10] [20] [15]  0.8195  0.5945  0.7387  ‐0.6796  0.763  0.8120 

Cascade network 
1  [10] [10]  0.8010  0.6074  0.7507  ‐1.2935  0.7698  0.7902 
2  [10] [5]  0.8213  0.5437  0.7435  ‐1.6415  0.7643  0.7844 
3  [20]  0.7989  0.5954  0.7521  ‐1.0453  0.7685  0.7966 
4  [20] [10]  0.8176  0.5606  0.7582  ‐1.5616  0.7811  0.8098 
5  [20] [20]  0.8080  0.6108  0.7577  ‐1.5696  0.7784  0.8000 
6  [15] [10] [10]  0.8126  0.6253  0.7487  ‐0.9623  0.7739  0.8040 
7  [10] [15] [20]  0.8185  0.6326  0.7618  ‐0.9489  0.7821  0.8041 
8  [20] [15] [10]  0.8214  0.6193  0.7726  ‐1.3170  0.7895  0.8053 
9  [10] [20] [15]  0.8177  0.6681  0.7572  ‐0.2515  0.7797  0.8122 
 

 
Figure  4:    Scatter plot of  the 10  elementary metrics  and  the  combined metric  (CNNM)  including 
them.  

 



A visual representation of the effectiveness of assessing the quality of certain types of distortions 
is shown in the graph in Fig. 5. The numbers of distortions correspond to the serial number of the 
distortions selected for analysis (see Table 1). It can be seen that the combined metric provides 
consistently high results with a decrease in accuracy at distortions #12 (mean shift) and #14 (change 
of color saturation), these distortions are problematic for all the metrics used in the paper. 

 

 
Figure 5: Dependency of the metrics’ SROCC values on the type of distortion (absolute values) 

6. Combined metric analysis 

The purpose of creating a combined metric was to improve the accuracy of the visual quality 
assessment of images in various UAV tasks. However, there is a limitation: general-purpose color 
image database TID2013 with the corresponding MOS values was taken to train the neural network. 
Therefore, it is necessary to analyze the effectiveness of the obtained metric in practice for real 
images. 

It should be noted that the application area and its inherent types of distortion significantly affect 
the results obtained. Thus, in [14], the visual quality metric was proposed for the assessment of 
remote sensing images. Its SROCC value reached the level of 0.8813. At the same time, verification 
on UAV-related distortions from TID2013 showed significantly worse results - SROCC has decreased 
to 0.7083. The reason lies in the different sets of distortions. In particular, transmission errors are rare 
in remote sensing practice, since these systems operate in more static and predictable conditions. 
Distortions in brightness and contrast as a factor of weather and daylight conditions changing were 
also not taken into account in the design in [14]. This confirms the fact that individual metrics are 
often not enough for application areas with unique features and the combined approach based on 
neural networks allows for an increase of 50% or more. 

The practicality and applicability of the proposed solution can only be assessed on the basis of real 
images from the UAV. At the same time, this approach has significant limitations: the absence of 
MOS values and the complexity of obtaining images with all the considered distortions and needed 
combinations. Taking this into account, a number of assumptions and simplifications have been made, 
and the results obtained are mostly illustrative. 

1. Verification of visual metrics requires MOS, which values can only be obtained from a 
significant amount of subjective experiments and require considerable time. The first 
simplification is that the missing MOS values can to some extent be replaced by objective 
indicators, the accuracy of which significantly exceeds the analyzed metrics. For a comparative 
analysis of the combined and individual metrics, this may be sufficient. Such a condition can be 
provided by full-reference quality metrics - the accuracy of some of them reaches SROCC = 0.9 
for the entire TID2013 and more than 0.96 for certain types of distortions and significantly 
exceeds SROCC for existing no-reference metrics. 



2. It is technically difficult to ensure the presence of real test images with the considered 
distortions, therefore, it is proposed to artificially simulate their presence by adding the distortions 
under the interest of different intensities to the selected images. 
3. The level of distortion should preferably have a wide range of intensities from inconspicuous 
to significant. 
To verify the metrics, real images from UAVs were used. As a basis, some images of the UAVDT 

(Unmanned Aerial Vehicle Benchmark Object Detection and Tracking) dataset [52] were taken, 
examples of which are shown in Fig. 6. The dataset contains more than 40,000 images with a 
resolution of 1080 × 540 pixels. Of these, 16 images were selected with different terrain, daylight, and 
weather conditions. 

 

 

 

 
Figure 6:  Examples of reference images of the UAV test set. 
 

Creation of test images with the necessary types of distortion requires special skills. TID2013 
distortions were generated in accordance with a certain strategy, however, their generation code is not 
available. Therefore, our mechanisms for generating distortions are used in the paper, and from the 
list of selected types of distortions, 9 main ones are taken into account: 

 Gaussian white noise; 
 Multiplicative noise; 
 Gaussian blur; 
 Denoising (applying BM3D filter to images with Gaussian white noise); 
 JPEG and JPEG2000 compression; 
 Brightening, darkening, and mean shift (darkening and lightening). 
According to the variety of intensities, 9 different levels were chosen for a more accurate gradation 

of distortion, in contrast to 5 levels for TID2013. Their intensity varies from inconspicuous to 
significant. The distribution of peak signal-to-noise ratio (PSNR) values is shown in Fig. 7.  

 



 
Figure 7:  Histogram of PSNR values of the test images 

 
As a result, the verification test set based on real UAV images consists of 1296 images (16 images 

x 9 distortions x 9 intensity levels). 
In the role of MOS values for no-reference metrics verification, the best full-reference quality 

metrics are used. The SROCC values of some well-known FR IQA for all TID2013 images and UAV 
-related test set are given in Table 6. Since their problems and solutions are similar to those solved in 
the article, a combined full-reference metric was formed to improve the accuracy. It uses the metrics 
listed in Table 6 as input and consists of a two-layer neural network (marked as C_MOS) with the 
number of neurons [16, 8] and all other parameters listed above. Since its SROCC for the task 
considered is almost 0.04 higher than for the best of elementary metrics, this combined metric has 
been chosen as the analog of MOS for UAV test images. 

 
Table 6 
SROCC values of the full‐reference visual metrics on the TID2013 image dataset 

Metric  VSI 
[53] 

PSIM 
[54] 

MDSI 
[55] 

HaarPSI 
[56]  

UNIQUE 
[57]  

CVSSI  
[58] 

IQM2 
[59] 

ADM 
[60]  

C_MOS 

SROCC  0.8967  0.8926  0.8897  0.8730  0.8599  0.8090  0.7955  0.7861  0.9107 
SROC(UAV)  0.8274  0.8519  0.8873  0.8811  0.8496  0.8478  0.8507  0.8075  0.9261 

 
The results of the verification of the combined and elementary no-reference metrics are shown in 

Table 7. In addition to the overall assessment, the SROCC values for individual types of distortions 
are also shown. The two best results for each type of distortion are highlighted in bold.  

 
Table 7 
The results of verification of the no‐reference metrics on the UAV test set 

Distortion  ARISM  PSS  CORNIA  DIPIQ  ILNIQE  NIQE  LPCSI  MLV  MSGF  NIQMC  CNNM 

All  0.069  0.307  0.581  0.109  0.548  0.616  0.330  0.024  0.499  0.074  0.659 
AWGN  0.804  0.202  0.861  0.470  0.890  0.886  0.511  0.239  0.794  0.180  0.874 
Multiplica
tive noise 

 
0.702 

 
0.257 

 
0.784 

 
0.053 

 
0.722 

 
0.701 

 
0.557 

 
0.313 

 
0.624 

 
0.309 

 
0.903 

Blur  0.942  0.898  0.904  0.254  0.869  0.900  0.966  0.949  0.784  0.200  0.956 
Denoise  0.360  0.072  0.186  0.196  0.004  0.153  0.020  0.181  0.228  0.118  0.154 
JPEG  0.769  0.958  0.868  0.534  0.713  0.728  0.166  0.087  0.866  0.367  0.787 
JP2k  0.134  0.378  0.738  0.337  0.240  0.632  0.054  0.486  0.028  0.433  0.764 
Brighten  0.524  0.070  0.027  0.027  0.166  0.035  0.183  0.372  0.197  0.378  0.474 
Darken  0.359  0.044  0.057  0.575  0.341  0.301  0.342  0.460  0.021  0.052  0.281 
Mean 
shift 

 
0.515 

 
0.328 

 
0.027 

 
0.429 

 
0.335 

 
0.442 

 
0.169 

 
0.391 

 
0.253 

 
0.054 

 
0.520 

 



From the obtained results, it can be seen that despite the limitations of the approximate MOS 
values, the combined metric provides the maximum overall accuracy and is one of the best for most of 
the indicated types of distortions, providing the best balance between various distortions. It should be 
noted that these results have been obtained for the most common types of distortions, which are 
commonly used in the design of elementary metrics. Considering the types of distortions used in 
TID2013, but not modeled in this set (e.g. transmission errors, etc.), it can be expected that the 
combined metric can have additional benefits by providing more stable visual quality estimation. 

7. Conclusions 

The paper is devoted to visual quality assessment of UAV images, which is actual for automating 
the image processing and improving image quality for UAV applications. A list of more than 40 
known no-reference visual quality metrics is considered. To analyze the effectiveness of visual quality 
metrics, the TID2013 image database and a subset with actual types of distortions have been selected. 
The verification of existing visual quality metrics has shown an accuracy of less than 0.53 for the best 
one and less than 0.3 for most metrics according to SROCC. Therefore, the method of combining 
visual quality metrics using the neural network has been proposed to improve the accuracy of visual 
quality assessment. The problem of the optimal choice of elementary metrics for reducing the 
redundancy and rational use of computing resources has been considered and the solution based on 
the Lasso regularization method has been proposed, which determines the weight coefficient equal to 
0 for the excluded and least important metrics. Training the neural networks of different types and 
their configurations has been carried out, taking into account the limitations of the test image database 
used in experiments. The analysis of the effectiveness of this approach, which reaches a result of 
about 0.85 for 20 metrics or more, has been carried out, and the dependence on the number of metrics 
used in the paper together with the main statistics is shown. For 10 metrics, as the optimal solution for 
high accuracy and performance, the results have been refined with the training of additional 
configurations of the structure of neural networks. It is shown that the accuracy of the final combined 
metric reaches SROCC = 0.83. 

To evaluate the effectiveness of the metric on real images, a test image database of almost 1300 
images was formed. As an alternative to the missing MOS values, a combined full-reference metric 
has been created. Its accuracy reaches 0.926 for the used TID2013 distortion set and is significantly 
higher than the values of any no-reference metric, which is acceptable for their comparison. It is 
shown that, on this test set, the obtained metric provides the best result. 

In the future, research in this area can be expanded by adding new distortions typical for UAV 
images and new neural network models including deep-learning models of limited complexity. 
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