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Abstract  
The informational capabilities of a method for processing grayscale images aimed at 
improving contrast and increasing object detail to increase the accuracy of diagnosis based on 
them are presented. The proposed adaptive composite algorithm is based on multi-stage 
processing, which includes the use of two-dimensional frequency Fourier transformation and 
the method of fuzzy intensification in the spatial domain, and makes several transitions 
between different feature spaces. The application of the Fourier transform involves the 
correction of its coefficients and the reconstruction of the image by inverse transformation. 
Only arguments of complex coefficients can be adjusted. The impact of the frequency 
transformation parameters on the detail of the resulting image is analyzed. The method of 
fuzzy intensification is used as a refinement for the second stage of frequency transformation. 
The results of processing are presented on the example of real X-ray images. 
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1. Introduction 

The number of areas in which the raw data comes in the form of images is constantly growing. 
These include surveillance, monitoring, polygraphy, medicine and many other areas. The role of 
computer vision systems, which implement methods of improving the quality of digital images for 
further visual or automatic analysis in order to make accurate decisions based on them, is growing [1]. 

For example, medical images, which are an integral part of the diagnosis of various diseases, 
usually have low resolution (in the spatial and spectral domain), high level of noise, weak contrast, 
geometric deformations, as well as various types of uncertainty and inaccuracy. In addition, the 
insufficient sensitivity of the human eye perceives, according to Weber's law, only a 2% difference in 
brightness (the gray level of a standard monitor is approximately 0.04%), and this value significantly 
depends on the surrounding background, which reduces the ability to detect low-intensity objects of 
interest based on visual analysis [2]. 

It is important to note that appropriately assessing the quality of the image is quite a difficult task, 
since the characteristics of the image as a whole and in local areas (areas of interest) can differ 
significantly. This makes it difficult to automatically calculate the quantitative value of the overall 
quality assessment of both the raw data and the processing result. In practice, expert evaluations are 
usually used to determine the quality of images. 
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Digital processing of medical images allows to significantly improve their quality, in particular, 
contrast and resolution [3, 4]. Due to the huge variety of types of images, there are currently no 
universal methods that provide a guaranteed result of solving this problem [5]. 

X-ray images, which are an important diagnostic tool for many diseases, are characterized by low 
intensity, uneven background, high level of noise, weak contrast, and poorly defined boundaries of 
structures, and are particularly difficult to analyze and choose an effective processing method [6]. 

2. Review of Literature 

Approaches to the improvement of digital images are usually divided into two categories: 
processing methods in the spatial and frequency domains [7]. The concept of "spatial transformations" 
combines approaches that are based on the direct change of brightness values of pixels of raster 
images [8-10]. 

Frequency methods, in particular, change not the image, but the form of its representation, 
converting the output signal into its components of different frequencies and amplitudes. In this form, 
it is much easier to perform filtering or amplification of individual components of the signal, to 
highlight important parameters whose detection by other methods is less effective or impossible [11]. 
Such algorithms are quite effective from the perspective of denoising signal, do not require a priori 
information, which is often absent in practice. This mathematical tool is widely used in medical 
imaging in the formation of CT, MRI and ultrasound images of human anatomy [12]. 

These medical images, besides the shortcomings caused by weak lighting exposure, noise, low 
contrast, etc., include uncertainty and fuzziness, which complicates the extraction of necessary 
information. Thus, the task of improving their quality is an essential task for carrying out a proper 
diagnosis. In [13], various fuzzy logic methods are considered for this purpose, which, like the 
frequency domain, allows obtaining an additional feature space for analysis. 

Since the 1980s, fuzzy set theory [14] has been used for image processing, which has the ability to 
model the problems associated with uncertainty and inaccuracy, which are always present in digital 
images. Their presence is determined both by the features of the physical processes of image 
formation systems and by the stage of creating a digital image [15]. 

The main difference between fuzzy methods and other processing methodologies is that the input 
data (gray levels, histograms, features, etc.) are transformed into a fuzzy domain. An NM   image G  
with L  L gray levels can be represented as an array of fuzzy sets with respect to the analyzed property 
with the value of the membership function mn , which varies in the interval  1,0  for each pixel mnx : 
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The transition to a fuzzy domain (fuzzification) can be interpreted as a specific type of input data 
encoding, which depends on both the goal and the characteristics of the output image. The use of 
fuzzy logic makes it possible to obtain new effective algorithms for processing digital images (fuzzy 
clustering, equalization, intensification, etc.) [17-19]. 

Based on the features and characteristics of different types of medical images, a combination of 
different algorithms is usually used to obtain a good processing result [18, 20, 21]. 

3. Problem statement 

The paper is devoted to the description and experimental research of a new adaptive composite 
method for enhancing low-contrast images by increasing contrast and detail level, which combines 
frequency and fuzzy transformations and makes several transitions between different feature spaces. 

4. Materials and Methods 

For an image of size NM  , which is described by a real two-dimensional discrete function 
),( yxF  the discrete two-dimensional Fourier transform (2D DFT) provides the creation of a complex 



two-dimensional function, which is defined in a frequency coordinate system ),( vu  based on the 
expression: 
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The basis functions are sinusoidal and cosinusoidal waves with increasing frequencies. )0,0(F  
represents the constant component of the image, which corresponds to the average brightness, and 

)1,1(  NMF  represents the highest frequency [11]. 
The 2D DFT is a selective Fourier transform and therefore does not contain all frequencies that 

make up the image, but only a set of samples that are sufficient to describe the image in the spatial 
domain. The number of frequencies corresponds to the number of pixels in the image and allows 
access to the geometric characteristics of the image in the spatial domain. 

The inverse two-dimensional discrete Fourier transform (2D IDFT) is given by: 

 














 


1 1

0

2

),(),(
M

ou

N

v

N

vy

M

ux
i

evuFyxF


. 
(3) 

The ranges of changes in spatial 1,...,2,1,0  Mx , 1,...,2,1,0  Ny  and frequency coordinates 
1,...,2,1,0  Mu , 1,...,2,1,0  Nv  are the same. 

The Fourier transform always creates an output image with a complex number value: 
),(),(),( vuIivuRvuF  ,  (4) 

where ),( vuR  and ),( vuI  are real and imaginary components of ),( vuF . 
The main method of using this transform for image analysis and transformation is by computing 

and visualizing the spectrum. 
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It is the amplitude of the Fourier transform that contains most of the image information in the 
spatial domain. The higher the value of |),(| vuF , the brighter the point with coordinates ),( vu . The 
bright center of the spectrum means that the original image contains mostly homogeneous areas, 
without differences in brightness. Bright periphery - many local differences in brightness. 

In the phase spectrum which is calculated by the formula: 
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the value of each point determines the shift from the components of the image. At zero phase, all 
sinusoids are centered in the same place, resulting in a symmetrical image, the structure of which has 
no real correlation with the original image. The phase reflects to a certain extent the location of the 
harmonic components in a spatial domain. 

The importance of phase is particularly evident in certain specific areas, such as optical metrology, 
materials science, adaptive optics, X-ray diffraction optics, electron microscopy, and biomedical 
imaging. The most interesting samples relate to phase objects with very low absorption but with a 
non-uniform spatial distribution of their refractive index or thickness. This leads to small variations in 
amplitude but significant variations in phase components. [11]. 

Figure 1a shows a typical X-ray image and its histogram. The weak contrast is due to the limited 
range of reproducible brightness. An optimally visually perceptible image has a brightness 
distribution close to normal and a wide dynamic range, and is interpreted as a high-contrast image 
when the levels are distributed close to uniform. A classical low-contrast image has a narrow 
histogram located near the center of the brightness range. In this case, standard methods such as 
histogram equalization, linear contrast enhancement, gamma correction, and gradient mapping 
provide good results [1, 2].  

Unlike low-contrast images, the characteristics of the image shown in Figure 1a, which we call 
"weakly-contrasted," can be formulated as follows: 

 a full (or almost full) range of gray levels with significant dark and light areas; 
 a multimodal histogram; 



 a smooth transition of brightness in "regions of interest" (below the threshold of visual 
perception) and blurred boundaries between them; 
 intensity levels are changed significantly in different areas; 
 anomalies are not always obvious (and may be absent) and are often compared to the level of 
noise; 
 low signal-to-noise ratio and complex structured background; 
 significantly different in quality (for the same object and recording method), depending on the 
conditions of formation (quality of film, equipment, recording time), making the analysis task 
particularly difficult. 
Figure 1b shows the result of applying adaptive histogram equalization (window size 8x8 pixels, 

uniform transformation function for the window), while Figure 1c shows the frequency domain 
transformation based on the expression. 

),(' ),(),( vuir
evuFvuF  ,  (7) 

where r is the transformation parameter (which significantly affects the result and requires tuning; the 
value used to obtain the image in Figure 1c was 8.0r ). 2D IDFT (3) is applied to the matrix 

 vuF ,' , as a result, the resulting image is formed, which is scaled to the range of  1,0 . 
Figure 1d shows the result of processing with the fuzzy intensification operator [14]. The transition 

to the fuzzy domain is based on the values maxI , midI  are the maximum and average values of the 

input image, respectively, and the parameters 2eF  and dF , which is calculated using the formula: 
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The membership function for mnI  is calculated according to the formula: 
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and its modification is performed as follows: 
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The final result of processing is formed according to the following formula: 
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The image processing results in Figure 1a indicate that, all methods provide a similar degree of 
improvement in contrast. However, there is no significant improvement in terms of visual analysis, 
such as object detection, boundary highlighting, and detailing of individual structures. 

The algorithm proposed in this work can be formulated as follows: 
1. 2D DFT (2) is applied to an image I , scaled to the range of  1,0 . This step allows to make a 
transition to a new feature space; 
2. frequency domain transformation based on formula (7) with a coefficient of 8.0r  and 

obtaining the matrix '
1F ; 

3. 2D IDFT (3) is applied to matrix '
1F  (returning to the original feature space), with results 

scaled to the range of  1,0 , afterwards adaptive histogram equalization is applied, which results in 

an image 2I . In the proposed algorithm, adaptive histogram equalization where used with window 
size 8x8 pixels, and uniform transformation function for the window; 
4. formation of 3I , according to the formula: 

223 III  ,  (12) 

where  2I  is mean of gray levels of the 2I ; 



5. contrast enhancement for the image 3I , using a method based on the application of the fuzzy 

intensification operator, resulting in the formation of the image 4I . This step also leads to 
transition to a new feature space; 
6. 2D DFT (2) is applied to the image 4I  and obtaining the function  vuF ,5 . This 
transformation makes transition to a new features space again; 
 

 

 
Figure  1:  X‐ray  image  processing:  а  –  input  image  (459x290);  results  of  processing  by  different 
methods:  b  –  adaptive  histogram  equalization;  с  –  Fourier  transform;  d  –  fuzzy  intensification 
operator 

 
7. formation of the matrix 6F  according to the following formula: 

        vuirr
evuFvuFvuF ,

556
21 ,,,  .  (13) 

It should be noted that the coefficients and require manual adjustment as they have a significant 
impact on the detailing of the result and may differ for different input images. This leads to 
additional time costs, so we also proposed formulas for the automatic calculation of matrices for 
these coefficients 
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where 5.0cr and '
4I  is defined by the next formula: 
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where 4I  is mean of gray levels of the 4I ; min
4I , max

4I  are the minimal and the maximal values of 

the 4I , correspondingly;    vuFvuF ,, 5
'

5   with following scaling of obtained matrix to the range 

of  1,0 . This method of calculation allows to control the level of detail by changing coefficient cr  
in formula (14). Increasing this coefficient leads to decreasing level of detail of final image while 
decreasing cr  leads to increasing the level of details of resulting image; 

8. 2D IDFT is applied to matrix 6F , resulting in the formation of image 7I  (returning to the 

original feature space), with results scaled to the range of  1,0 . After that, adaptive histogram 
equalization is used, which leads to the formation of the final result. 

 

5. Results and Discussion 

The described algorithm was used to process various X-ray images. Analysis of Figure 1a is used 
to calculate indicators of X-ray planimetry in patients with spinal cord and cervical spine injuries in 
the practice of medical and social expertise. Blurred boundaries of objects of interest and a lack of 
detail in their structure complicate the solution of this task. 

To obtain experimental results we used Matlab 2016. Source code for described methods was 
written in internal Matlab language (except for standard functions like fft2, ifft2, adapthisteq, 
mat2gray, etc.). 

Figure 2 shows the results of processing the X-ray image in Figure 1a. The study of the effect of 
the coefficient r  shows, that its variation allows for the detection of object structures and the 
adjustment of their level of detail. Experimental studies have shown that using the algorithm formula 
(7) at step 7 also allows for an increase in contrast and resolution, but increases the contribution of 
noise components. Figures 2a and 2b show the results of processing the image in Figure 1a using 
formula (7) at step 7 for different values of r , which demonstrate an increase in the level of detail and 
noise reduction as it decreases.  

Figure 3 shows brightness graphs of the line (its first 100 pixels) in the center of the image in 
Figure 1a when using formula (7) at step 7 of the proposed algorithm for values of 5.0r ; 

8.0r and 2.1r . Based on the obtained graphs, it can be concluded that the value of parameter r  
in formula (7) affects the ratio of high-frequency and low-frequency components. 

The use of formula (13) at step 7 of the proposed algorithm provides an adjustable increase in 
image detail by changing the parameters 1r  and 2r , with a decrease in the noise component. Figure 4a 

shows the result of the algorithm for 2.11 r  and 7.02 r , which show a significant improvement in 
visualization of the region of interest. Figure 4b presents the result of the proposed algorithm with 
automatic calculation of parameters 1r  and 2r  based on formulas (14), (15), which is very close to the 
manual selection of these parameters. 

In processing many medical images, the interest is not so much in increasing the image contrast as 
in the redistribution of brightness levels in order to make small brightness variations more noticeable 
and distinguishable, which is important for visually highlighting objects of interest. In this case, the 
fact of their presence and location is usually unknown. In such a case, the assessment of such integral 
numerical characteristics as contrast or brightness level is uninformative.  

In cases where the analysis area is defined (e.g., in monitoring the dynamics of disease progress), 
improving the visual distinguishability of the object of interest does not necessarily imply an 
improvement in the overall contrast level due to the increased contribution of the background 
component. Valid tracking of image quality changes can only be achieved by visually assessing the 
differences detected in the images. 

One of the ways to evaluate the processing result is to analyze the brightness change graphs in the 
region of interest (Fig. 5). The presented brightness graphs of a portion (pixels from 40 to 140) of an 
arbitrary row (in this case, 220th from the top) of the input I  and resulting 7I  images indicate both 

an increase in the dynamic range – 3/7  II , and a redistribution of brightness levels in low-



contrast areas of interest. The usage of the classical method of adaptive histogram equalization (Fig. 
1b) does not provide such an effect. 

 

 
Figure 2: Results of the proposed algorithm when using formula (7) at step 7 for different parameter 
values: a –  7.0r ; b –  8.0r   

 

 
Figure 3: Changes in the brightness of a line in the center of the image for the values  5.0r (data1); 

8.0r  (data2); 2.1r  (data3). 



 
Figure 4: The results of the proposed algorithm using formula (13) in step 7 for different parameter 

values are shown: a –  2.11 r ,  7.02 r ; b –  for automatic calculation of  1r and  2r  using  formulas 

(14) and (15), respectively. 
 

Figure 6a shows an X-ray image used for diagnosing inflammation (sinusitis), indicated by an 
arrow. The object of interest is not visible for direct visual analysis in the original image because of 
its location in an area of high brightness. The use of adaptive histogram equalization (Figure 6b) 
slightly improves the image but does not provide the necessary level of tissue structure detailing. The 
intensification operator (Figure 6c) worsens the original X-ray image. 

The application of the proposed algorithm (Figure 6d-6f) significantly increases the image 
detailing in the area of low brightness values and the object of interest. In particular, the detection of 
the structure of the nasopharynx and oral cavity region should be noted, while the inability to 
visualize soft tissue is a significant drawback of X-ray research methods. 

The values of 1r  and 2r  also affect the level of detail in the resulting image, as demonstrated by 

the comparison between Figure 6d ( 95.01 r , 7.02 r ) and Figure 6e ( 2.11 r , 7.02 r ). The 
improvement in the clarity of tissue structure delineation is most noticeable in the eye area. When 
using the automatic calculation of 1r  and 2r  based on formulas (14) and (15), the processed image 

(Figure 6f) is close to the best result obtained by manual selection of coefficients ( 2.11 r , 7.02 r ), 

but has a little higher level of detail due to adaptive nature of automatically calculated coefficients 1r  

and 2r  . This fact confirms the effectiveness of the proposed method for automatic calculation of the 
method's parameters. 
 



 
Figure 5: Changes  in the brightness of a  line number 220th (from the top) for  its pixels from 40 to 
140 for initial image (Fig. 1a) and processed images (Fig. 1b and Fig. 4b) 
 

 
Figure  6: X‐ray  image  of  a  human  face:  a  –  original  image  (266x272);  b  –  adaptive  histogram 

equalization;  c  –  intensification  operator;  proposed  algorithm  using:  d  –  95.01 r , 7.02 r ;  e  – 

2.11 r ,  7.02 r ; f – automatic calculation of  1r ,  2r  using formulas (14) and (15), respectively. 



6. Conclusions 

On the basis of analysis of the experimental results obtained, the following conclusions are made: 
  the application of a composite adaptive algorithm for processing grayscale images, which 
includes the transformation of the frequency response of the 2D DFT and the method of fuzzy 
intensification; 
 the algorithm has parameters that can be adjusted to control the level of detail in the object 
structure. We proposed an automatic calculation of these parameters ( 1r , 2r ), which reduces the 
time required for their selection and allows achieving a high level of detail without excessive detail 
effect; 
 researches have shown the effectiveness of this algorithm for low-contrast images of different 
physical nature; 
 the usage of various fuzzy transformation methods represents a promising direction for 
further research. 
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