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Abstract  
In this work, we present our research on efficiency of single-core execution of agent-based 
epidemiological models with contact-tracing transmission. We performed an analysis of 
existing epidemiological agent-based modeling tools from the perspective of their 
performance, which reflects computational time needed to perform a single simulation step of 
a model with fixed number of agents. 
We developed several simulation algorithms, based on different model types, and showed 
some optimizations to maximize the performance of them. 
We designed a metric to compare simulation step execution times on a single CPU core and 
used to estimate a performance of underlying simulation algorithms in the existing methods 
with developed one. Even though, as it will be discussed below, it is very difficult to estimate 
an execution time of some algorithm without actual access to it, we present the results of our 
method on both modern and old CPU.  
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1. Introduction 

Global epidemilogical events can make significant damage to global economy [1]. In order to 
reduce both epidemiological and economic impact, active measures must be considered. They include, 
but not limited to full or partial quarantine, obligatory face mask regime, vaccinations etc. However, 
even though some measures like full quarantine can significantly lower disease spread rate by 
flattening the curve of new cases, economic impact can be unbearable for certain communities. This is 
why a good balance between epidemiological and economic risks must be hold. But, determining the 
exact threshold of disease spread countermeasures severity is problematic without modeling particular 
epidemics. 

First research in the field of infectious disease spread modeling is dated early XX century. In their 
work, Anderson McKendrick and Willian Kermack [2] considered modeling an epidemic by splitting 
the population into several compartments with different stages of a disease. These stages can be, for 
example: (S)usceptible — individuals, who can be infected in the future, (I)nfectious — individuals, 
who were infected, show symptoms and can infect others. After assigning the initial number of 
individuals in each compartment, the dynamics of its change can be modeled as a system of 
differential equations. 

Work of McKendrick and Kermack served as the foundation for the research and development of 
compartmental epidemiological models, which are used these days to model various diseases like 
dengue fever, COVID-19, etc [3-11]. 
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With the invention of computers and increase in available computation power, another type of 
epidemiological model appeared — agent- or individual-based. This type bears some resemblance to 
compartmental by considering the number of individuals in each compartment. But, instead of 
modeling it via equations, each individual is modeled separately. It means, that each individual is a 
separate entity, which can move inside an environment and spread the disease by contacting other 
individuals. Such significant increase in model granularity allows the users to model complex 
stochastic behaviors, common for the real world. But, on the other hand, required computational 
resources, needed to run the model, also increased rapidly. This can be explained easily by the 
following example: in a community of  individuals, which can be considered a medium-sized model, a 
single simulation step requires computation of  agent-to-agent contact events. 

In this work, we explore the possibilities to optimize both time and space algorithmic complexity 
of simulation algorithm. 

2. Problem statement 

The present study aims to address the challenges of infectious disease modeling through the 
development of a mathematical framework for a generalized agent-based epidemiological model. As 
opposed to compartmental epidemiological modeling, agent-based considers modeling population as a 
set of distinct entities – agents. These agents can perform some activities and interact with each other. 
This agent-to-agent interaction is the main way of infection disease transmission. However, analysis 
of it requires iterating through all of agents pairs, making its algorithmic complexity quadratic, which 
is a problem for a large models with significant number of agents. For example, single simulation of 
FluTE model with number of agents equal to the population of United States of America takes about 6 
hours to run on a cluster with 32x CPUs [12]. The ultimate goal of this research is to enhance the 
computational efficiency of this process. Specifically, the study has the following objectives: 

Firstly, we aim to formulate a mathematical apparatus for a general agent-based epidemiological 
model. To achieve this, we will identify critical factors that influence disease transmission and 
develop a mathematical framework that accurately captures these dynamics. 

Secondly, we aim to explore ways to optimize the complexity of the simulation algorithm, which 
can be computationally expensive, especially when dealing with large populations. The optimization 
of the simulation algorithm will involve identifying ways to reduce its computational complexity 
while maintaining its accuracy. 

Thirdly, we aim to compare the performance of the model, based on optimized algorithm with 
previously developed models. By conducting a comparative analysis, we aim to demonstrate the 
effectiveness of the proposed optimization strategies in enhancing the efficiency of simulations. We 
will use standard evaluation metrics, such as the time required for simulation, to compare the 
performance of the optimized model with that of existing models. 

3. Literature review 

In this section, we describe our findings on existing tools and methods of agent-based 
epidemiological modeling. These tools can be divided into three distinct groups: 
 

 Programming language modules/libraries; 
 General-purpose modeling environments; 
 Specialized software for epidemiological modeling. 

We review each group separately. 

3.1. Programming language modules/libraries 

Swarm [13] is a set of libraries for Java programming languages which defines a model as a set of 
interacting agents, dynamics of their evolution and the schedule of events. This package is no longer 
maintained and has its successor — Ascape [14], which was simplified from the perspective of 



programming interface. Ascape also delivers a simple graphical interface for model adjustments and 
inspection and spreadsheet data export. 

3.2. General‐purpose modeling environments 

NetLogo [15] is modeling environment, consisting of the following elements: 
 Subject-oriented programming language, used for describing agents behavior, their inner 

states evolution and interactions between each other; 
 Tool set for the analysis of experiments data as the result of modeling. 

Overall, NetLogo allows one to flexibly define models, but this flexibility comes with certain 
limitations. First of all, as showed in [16], the overall performance of NetLogo simulation engine is 
significantly lower, compared to similar models implemented using other tools. NetLogo features 
fixed modeling space geometry in the form of rectangular grid, where each agent is ``attached'' to a 
certain cell of it and can interact with agent on adjacent cells. Despite the interaction of agents 
positioned far from each other can be implemented, it is not supported internally, can be cumbersome 
and limits computational performance of a simulation. 

RePast [17] is a software tool set, designed for modeling of complex systems. There are several 
implementations of it, based on different programming languages such as Java, C++. Repast also 
features an implementation, suitable for high-parallel environments [18]. 

3.3. Specialized software for epidemiological modeling 

As each model with software implementation can be viewed as specialized software for 
epidemiological modeling, we review only those, offering some amount of configurability. 

A Framework for Reconstructing Epidemic Dynamics (FRED) [19] is a software for agent-based 
epidemiological modeling, which uses a synthetic population database to represent every individual in 
a specific geographic region. The database contains geographically located synthetic households, 
group quarters, schools, and workplaces that reflect the actual spatial distribution of the area. Each 
agent has associated demographic and socioeconomic information and locations for their activities. 
The synthetic population closely matches the available census data for the United States with high 
spatial resolution. The model runs a discrete-time simulation with a time step of one day, allowing 
agents to interact with other agents at their shared activity locations, potentially transmitting diseases. 
The simulation records each infection transmission event to evaluate control measures and their 
impact on sub-populations. Agents can dynamically alter their daily activities. The fixed simulation 
step of 1 day allows for performance optimizations and is not a severe limitation for diseases with 
long latency periods, but it may be a limitation for diseases with short latency and infectious periods 
or short-term interventions. FRED was originally developed to study influenza, but it can be 
customized to investigate other infectious diseases, such as measles, by making adjustments to the 
configuration files that describe the natural history of the disease. 

Unfortunately, to our knowledge, standalone software for agent-based epidemiological modeling 
with wide range of configurability options similar to GLEaMviz [20] doesn't exist. 

4. Method 
4.1. General notation 

In this subsection, we describe a general mathematical apparatus of agent behavior within an 
epidemiological model with contact-tracing transmission. 

Simulation is done in discrete steps, which can be, for example, days. These steps form the 

simulation step set 𝑇 1…𝑁
¯

. 
Agents, representing individuals, who are somehow related to a modeled disease (can be infected, 

serve as vectors etc.) create the finite set A. Each agent has its schedule, dictating the geographical 
position of it. This position shouldn't be though of as coordinates in some space, as it would limit the 



model, but rather an occupancy of some entity, for example the household or the school. In order to 
model the change of agents' location during the day, we split each simulation step into a finite number 

of smaller time steps from the set 𝐻 1…𝑁
¯

. Thus, the schedule function can be defined as: 
𝜙:𝐴 𝑇 𝐻 → 𝑃,  (1) 

where P is a finite set of possible agents' location2 (henceforth, we assume each function can 
depend on some external model parameters, even though it's not displayed in the notation). 

Instead of using the compartments, agent-based models assign infection states to each agent, often 
mirroring respective compartments of compartmental models. This assignment can be expressed as 
infection state function: 

𝜉:𝐴 𝑇 → 𝑆,  (2) 
where S is a finite set of infection states. 
Naturally, the infection state of an agent can change by two separate processes: intrinsic and 

extrinsic. Intrinsic one considers events, occurring inside the organism, which is modeled by the 
agent. These events can be driven by an immunological response or nature of the disease. We call this 
process infection progress. Extrinsic process involves inter-agent communication and majorly 
represents the transmission of a disease. We call this process infection spread. 

Mathematically, these processes can be described by infection progress (Equation 3) and infection 
transmission (Equation 4) functions. 

𝛷 :𝐴 𝑆 → 0,1   (3) 
 

𝛷 :𝐴 𝑆 → 0,1   (4) 

For a given agent 𝑎 ∈ 𝐴 and infection state 𝑠 ∈ 𝑆, Φp describes the probability, that at next 
simulations step agent's a infection state will become equal to s as the result of intra-agent processes. 

Similarly, for given agents 𝑟,𝑑 ∈ 𝑆 and infection state 𝑠 ∈ 𝑆, Φt describes the probability, that at 
next simulation step agent's r infection state will become equal to s as the result of inter-agent 
communication with agent d. Discussing transmission function Φt, we refer to r as recipient, to d as 
donor. 

Thus, the goal of an agent-based epidemiological model at simulation step 𝑡 ∈ 𝑇 is to estimate 
𝜉 𝑎, 𝑡 1 ,∀𝑎 ∈ 𝐴  (5) 

This can be done by evaluating the probability of each agent 𝑎 ∈ 𝐴 to change its state to 𝑠 ∈ 𝑆, 𝑠
𝜉 𝑎, 𝑡 3, which can be expressed by the following expression: 

𝑃𝑟 𝜉 𝑎, 𝑡 1 𝑠 1 1 𝛷 𝑎, 𝑠 1 𝛷 𝑎,𝑑, 𝑠
∈ : , , , ,∈

  (6) 

Given this equation, a trivial algorithm for computing 𝑃𝑟 𝜉 𝑎, 𝑡 1 𝑠  is presented in 
Algorithm 1. As one may notice, this evaluation involves iteration over A, which has to be done for 
each agent as nested loop. Optimization of computation of this expression is the main concern of this 
work. 

4.2. Optimizations 

A significant part of literature discuss models, with transmission function independent of donor's 
and recipient's inner states, which can be formulated as following constraints of function Φt: 

∀𝑎,𝑎 ,𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆: 𝜉 𝑎 , 𝑡 𝜉 𝑎 , 𝑡 ⇒
𝛷 𝑎,𝑎 , 𝑠 𝛷 𝑎,𝑎 , 𝑠 ∧ 𝛷 𝑎 ,𝑎, 𝑠 𝛷 𝑎 ,𝑎, 𝑠

  (7) 

This assumption can be used to perform a significant optimization. The main idea of it is to 
estimate «contagiousness» of each location at each time step by tracking infectious agents' 
movements, which is defined as: 

∀𝑡 ∈ 𝑇: 𝐼 𝑝, ℎ, 𝑠 , 𝑠 1 1 𝛷 𝑠 , 𝜉 𝑎, 𝑡 , 𝑠
∈ , , ,

,  (8) 

                                                      
2Henceforth, we assume each function can depend on some external model parameters, even though it’s not displayed in the notation 
3𝑃 𝜉 𝑎, 𝑡 1 𝜉 𝑎, 𝑡  can be computed as 1 ∑ 𝑃𝑟∈ , , 𝜉 𝑎, 𝑡 1 𝑠  



where: 
∀𝑟,𝑑 ∈ 𝐴, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇:𝛷 𝑟,𝑑, 𝑠 𝛷 𝜉 𝑟, 𝑡 , 𝜉 𝑑, 𝑡 , 𝑠   (9) 

 

Figure 1: Description of a trivial algorithm for computation of 𝑃 𝜉 𝑎, 𝑡 1 𝑠 . 
 
Subsequently, susceptible agents' movements are used together with these estimates to compute 

the probabilities of their state change: 

∀𝑡 ∈ 𝑇,𝑃𝑟 𝜉 𝑎, 𝑡 1 𝑠 1 1 𝛷 𝑎, 𝑠 1 𝐼 𝜙 𝑎, 𝑡, ℎ , ℎ, 𝜉 𝑎, 𝑡 , 𝑠
∈

  (10) 

Even though, there are no evidence that Equation 7 holds for real world, it can be slightly adjusted, 
so that the scope of possible use cases of this model increases. If Φt can be decomposed into functions 
Φtr, Φtd so that: 

∀𝑟 ∈ 𝐴, 𝑠 ∈ 𝑆: 1 𝛷 𝑎,𝑑, 𝑠
∈

𝛷 𝑟, 1 𝛷 𝑑, 𝑠
∈

, 𝑠 ,  (11) 

the Algorithm 2 can be used. 
We don't try to solve this equation in the scope of this work, but the following solution is used in 

our experiments: 
∀𝑓:𝐴 → 𝑅 ,𝛷 𝑟, 𝑥, 𝑠 𝑥
∀𝛷 𝑑, 𝑠 :𝐴 𝑆 → 0,1

  (12) 



Figure 2: Description of a linear algorithm for computation of 𝑃 𝜉 𝑎, 𝑡 1 𝑠 . 
In a general case, when Algorithm 2 cannot be applied, there is still room for an optimization. 

Algorithm 1 considers iterating over all possible pairs of agents, even though most of them weren't 
even in contact. By iterating over pairs of agents, which are in the same contact group, the overall 
number of computation can be decreased. Here, a contact group is a subset of the agent set A, which 
were at the same location at a specified simulation step t and time step h: 

∀𝑎 ,𝑎 ∈ 𝐺 , , ⊆ 𝐴:𝜙 𝑎 , 𝑡, ℎ 𝜙 𝑎 , 𝑡, ℎ   (13) 
This computational optimization can be explained by the following: 

𝐺 , ,

∈

|𝐴 𝐻|

𝐺 , ,

∈

|𝐴 𝐻|
  (14) 



Figure 3: Description of a grouping-based algorithm for computation of 𝑃 𝜉 𝑎, 𝑡 1 𝑠  . 
As one may notice, the worst-case computational complexity of Algorithm 3 is O(n2), depending 

on the number of agents when |P|=1. But, when using with real-world models, it's easy to show that 
it's equal to O(n). In the case of real world, we can assume, the number of places is proportional to the 
number of agents: 

|𝐴| ∝ |𝑃|  (15) 
This can be explained by the fact, that, for example, the average number of residents of a household is 
independent of the total number of agents in the model4. 

Given this assumption, the model can be divided into a set of contact groups types, where i-th type 
has a number of associated contact groups, proportional to the number of agent's with coefficient ki 
and number of agents in each group equal to xi from some probability distribution Xi. Given this, 
computational complexity of Algorithm 3 can be estimated as: 

𝑂 𝑔 𝑛 𝐸 𝑛 𝑘 𝑥 𝑂 𝑔 𝑛 𝑛 𝑘 𝐸 𝑥 𝑂 𝑔 𝑛 𝑛 ,  (16) 

where gT(n) is algorithmic complexity of the grouping algorithm itself. 
Both space and time complexity of the grouping algorithm depends on the choice and 

implementation of the underlying data structure which holds values of function Φ. It must support the 
following operations: 

 Add tuple 𝑎, ℎ,𝑝  into collection (𝑎 ∈ 𝐴, ℎ ∈ 𝐻, 𝑝 ∈ 𝑃); 

 For tuple ℎ,𝑝  return all 𝑎 , so that 𝑎 , ℎ, 𝑝  was added into collection before; 

 Clear all data from the collection. 

                                                      
4There can be some variation for the models, differing in size by orders of magnitude. For 

example, rural settlement with population of 103 cannot be modeled by scaling down the model of a 
large city with 106 citizens — the economical and sociodemographic gap will be too significant. 



Moreover, the following constraints are present: 

 Overall number of tuples 𝑎, ℎ, 𝑝  is equal to |𝐻| ⋅ |𝐴|; 

 Number of unique tuples ℎ,𝑝  in the collection is at most |𝐻| ⋅ |𝑃|; 

 For a given tuple ℎ,𝑝 , maximum number of 𝑎 , so that 𝑎 ,ℎ,𝑝  was added into the 
collection is at most |𝐴|. 

Such a data structure is a multimap, which is an extension of the associative array for the case of 
storing several values by one key. Being an abstract data type, a multimap can be implemented in 
several different ways, however, having a common feature: dividing the structure into two 
components. The first component is a data structure that maps a key to a reference to a container 
containing a list of values; the second is the type of this container. So, for example, the first data 
structure can be a hash table [21], and the second — a linked list [22]. Based on this, the 
computational algorithm complexity 𝑔  can be given as: 

𝑔 𝑛 𝑔 𝑛 𝑔 𝑛
𝑔 𝑛 𝑂 𝑛 ⋅ 𝑖𝑛𝑑 𝑛 𝑖𝑛𝑠 𝑛

𝑔 𝑛 𝑂 𝑖𝑡𝑟 𝑛 𝑖𝑡𝑟 𝑛 ,
  (17) 

where ind1 is the algorithmic complexity of searching by the index in the first data structure, ins2 is 
the algorithmic complexity of inserting at the end of the second data structure, itr1,itr2 is the 
algorithmic complexity of iterating the elements of the first and second data structures, respectively. 

Based on the aforementioned constraints and the fact that all keys can be numbered from 1 to |𝑃| ⋅
|𝐻|, the obvious candidates for the first data structure are the static array and the list because it is 
valid for them: ind1(n)=O(1),itr1(n)=O(n). However, due to the use of the CPU cache, in practice the 
use of a static array is more efficient (Figure 4). 

Figure  4:  Comparison  of  container  iteration  speed.  Cargo  1.56.0  compiler,  compilation 
optimizations disabled 

In addition to implementing a multiset using a container of containers, an approach based on hash 
tables can be used. In this case, it involves two data structures, the first of which maps the value of the 
key to the number of elements by this key stored in the structure, and the second - the key and the 
index of the element to its value. 

This approach is appropriate, because the operations of adding and obtaining a value by key in 
such a structure will have an algorithmic complexity equal to O(1). This is justified due to the fact that 



similar operations on the hash table also have a constant complexity (in the absence of collisions) 
[23]. 

 To evaluate the time performance of each approach, a number of experiments were conducted, 
which involved the calculation of the execution time of the grouping algorithm for each approach with 
different numbers of agents and the ratio of the number of agents to the number of places. The results 
are shown in figures 5, 6, 7. 

 
Figure 5: The execution time of the grouping algorithm for the average ratio of the number of 

agents to the number of places equal 16:1 

 
Figure 6: The execution time of the grouping algorithm for the average ratio of the number of 

agents to the number of places equal 256:1 



 
Figure 7: The execution  time of  the grouping algorithm  for  the average  ratio of  the number of 

agents to the number of places equal 4096:1 
The results show that the implementation of a multiset through a vector of vectors is much more 

effective. This can be explained by the fact that the number of memory allocation can be reduced to a 
minimum with an optimally configured schedule for changing the size of the vector. And although it 
is impossible to predict the number of elements for each key in advance without having prior 
information about it, in the case of using a multiset to count visits of agents to places in the 
framework of infection modeling, it can be assumed that this number remains approximately the 
same. That is: 

∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇,∀ℎ ∈ 𝐻: 1 𝑝 𝜙 𝑎, 𝑡, ℎ 1 𝑝 𝜙 𝑎, 𝑡 1,ℎ   (18) 

Obviously, in the real world, this statement is generally not true. For example, it is valid to assume 
that the number of visitors of shopping malls increases significantly on Saturdays, compared to 
Fridays in countries where the working week ends on Friday. However, this can be partially solved by 
keeping the size of the buffers equal to at least the last number of elements multiplied by some 
constant. 

In the general case, one can achieve a minimum number of memory allocations equal to zero if set 
the size of each buffer equal to the number of agents. However, due to the assumption 15, the number 
of buffers is proportional to the number of agents. This makes the space complexity of such an 
algorithm equal to O(n2), which is unacceptable. 

Apart from aforementioned algorithmic optimizations, computational optimizations can also be 
applied. One may notice, the evaluation of state change probabilities involves large amount of 
multiplication operations if the form: 

𝑥 𝑥 … 𝑥 . . . 𝑥 𝑥 … 𝑥  
(19) 

Computation of such expression can be reformulated as: 

𝑥 𝑒𝑥𝑝 𝑝 𝑙𝑛𝑥   (20) 

If we denote by 𝑡 , 𝑡 ,𝑡 , 𝑡  the calculation time of the product, sum, exponential function, and 
natural algorithm, respectively, the calculation time of the left part will be equal to 𝑡 ∑ 𝑝 1 , the 
right one - 𝑡 𝑡 ∑ 𝑝 𝑡 𝑡 . In the general case, the latter value is greater because the 
calculation of the natural logarithm is a time-consuming operation. However, in the case where the 
values of xi are constants known during the compilation, the computation time of the right-hand side 



will be equal to 𝑡 ∑ 𝑝 1 𝑡 . Because computing the product of two floating-point numbers 
requires more CPU cycles (for most architectures) than computing the sum [24], computing the 
optimized version is more efficient when: 

𝑡* 𝑡
𝑡

∑ 𝑝 1
,  (21) 

which is valid for sufficiently large values of ∑𝑝 . Thus, if the disease distribution function 
depends only on the resulting state and the recipient and donor states, the specified optimization can 
be used. To check the effect of this optimization, an experiment was conducted, during which 
execution times with and without it were measured for various model sizes. We observed some 
difference between optimized and default approach on the experimental machine for small number of 
agents (Fig. 5). As, the test was done on a single machine with Intel Core i7-8700K, for more general 
results, additional experiments should be performed. We leave this problem for a future research. 

 
 

Figure 8: Simulation step performance  increase (higher values are better). White areas correspond 
to absent data points. 

4.3. Performance estimation 

Comparing the performance of algorithms across different machines is not a trivial task. Modern 
CPUs are able to reach significant performance boost by using caching, instruction pipelines and other 
technologies, the impact of which on a specific algorithm is difficult to predict [25]. So, to compare 
out approach to existing ones, we perform two sets of measurements: first one on a desktop machine 
with Intel Core i7-8700K and second — on a 12 years old laptop with Intel Core i3-2330M. 

In order to account for various model sizes and CPU core numbers, we use the following metric: 



𝑇
10 𝑁 ∗ 𝑁 ∗ 𝑁 ∗ 𝑁

,  (22) 

where T - simulation execution time in seconds, Na,Nd,Ns - number of agents, simulation steps and 
time steps in a model respectively, Nc - number of CPU cores. This metric is only suitable for 
algorithms with linear computational complexity as function of number of agents. 

5. Results 

We compared several models and their implementation approaches with CTrace [26] modeling 
language, whose translator implements aforementioned algorithms. Our test model didn’t captured all 
details of each model, but instead was based around their common features like agent activity 
scheduling, several different place types, etc. To compute the aforementioned metric for it, a number 
of experiments were conducted with various model sizes. 
 
Table 1 
Performance comparison of various agent‐based epidemiological models/approaches 

Method  Metric, s  Hardware 

FluTe[12]  4.00 — 13.71 32x Intel Core2 Duo T9400 
AvilovNetLogo[16]  511.36 — 10960.15 

Intel Core i3 330M 2.13Ghz 
AvilovOracle[16]  5.75 — 13.71 
FRED[19]  1.20 — 7.29 SGI Altix UV supercomputer 
MontañolaNetLogo[27]  2.47 — 24.71 Intel Core i5 3.20 GHz 
GiacopelliLombardy[28]  240 AMD 3900X 12-core 

CTrace[26] 
0.67 Intel Core i7-8700K 3.70 GHz 

1.38 Intel Core i3-2330M 2.20 GHz 

To be able to compare the developed approach to previously developed, we measured it’s 
performance on both modern CPU and 12-years old one. Even though, the CPU generation range is 
significantly wide, we can assume that our approach is at least as performant as previously developed, 
offering the most flexible model specification. This flexibility is explained by CTrace’s independence 
of modeling space structure, number and types of places (and other modeling entities), dynamics of a 
disease, etc.  Given these results, we can conclude that usage of the aforementioned optimization 
approaches can provide significant benefits for agent-based epidemiological model computational 
performance on a single CPU core. 

6. Conclusions 

This paper presents a discussion of the challenges encountered in the implementation of agent-
based modeling for infectious diseases. Specifically, the focus is on the time complexity of the 
simulation algorithm, which is identified as a key issue. To address this problem, a mathematical 
framework for agent-based epidemiological modeling is developed. This framework enables 
exploration of various optimization techniques for the simulation process. Several algorithms for 
contact tracing, which have linear time complexity, are proposed, depending on the nature of the 
infectious disease being modeled. These algorithms are tested and compared with existing models. 
Results demonstrate that the proposed approach is at least as effective as other implementations, while 
offering increased model flexibility through the use of the CTrace language interface. Described 
approach scales up by running multiple models, each per CPU core, which is often desirable for this 
kind of models as it leads to statistically more significant results. The question of single model 
parallelization we leave for a future research 
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