
Case Driven TLC Model Checker Analysis in Energy Scenario

Vadym Shkarupylo a,b, Ihor Blinov c, Valentyna Dusheba b, Jamil Abedalrahim Jamil
Alsayaydeh d

a National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony, Str., Kyiv, 03041,

Ukraine
b G.E. Pukhov Institute for Modelling in Energy Engineering of the NAS of Ukraine, 15, General Naumov,

Str., Kyiv, 03164, Ukraine
c Institute of Electrodynamics of the NAS of Ukraine, 56, Peremohy, Av., Kyiv, 03057, Ukraine
d Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, 76100, Malaysia

Abstract
Today, model checking techniques and corresponding tools are widely applied in diverse
case driven scenarios, the safety critical ones in particular. Addressing current situation in
Ukraine, an energy domain is among the topical spheres, where safety critical business
processes take place. To foster the functional safety of corresponding program-algorithmic
solutions, the model checking techniques and related tools are applied to the formal
specifications of named solutions. Doing so is not a trivial task: it depends on a particular use
case scenario determining the architecture (structure and couplings) of the resulting design
artifact. Moreover, the outcomes of formal techniques and tools application directly depend
on specification atomicity level chosen – as a tradeoff between the complexity of program-
algorithmic constituent addressed to be represented in formal specification and available
computational and spatial resources of the computing platform with model checking
technique implementation – because of an exponential growth of transition system state
space. To this end, to foster the effectiveness of model checking technique application, with
respect to a particular case driven scenario, the analysis of broadly applied TLC model
checker has been conducted on the basis of a role model from energy domain.
Experimentation has been conducted by addressing two alternative implementations of the
TLC method. Both – computational and spatial properties – have been covered. To estimate
also the domain related spatial expenses on verification, with respect to the number of
software threads utilized, the approximation task has been resolved.
Keywords 1
Artifact, formal specification, model checking, safety critical scenario, TLA, TLC,
verification

1. Introduction

Nowadays, the complexity level of modern program-algorithmic solutions addressing the scenarios
taking place in diverse safety-critical domains, e.g., energy scenarios (Finnish nuclear industry [1]),
avionics (satellite operational mode management scenarios [2]), safety critical software as a part of
railway control systems [3], etc., typically exceeds the limitations of computational and spatial
resources required to successfully apply time-proven formal verification techniques and
corresponding instruments in one-to-one manner – due to the exponential growth of transition system
state space to be traversed through during an automated formal verification by way of model checking
[4]. For instance, considering the avionics scenarios, an exponential growth of both spatial [5] and
computational [6] expenses has been faced. To diminish named effect, different approaches have been

The Sixth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2023), May 3, 2023, Zaporizhzhia, Ukraine
EMAIL: shkarupylo.vadym@nubip.edu.ua (V. Shkarupylo); blinovihor@gmail.com (I. Blinov); vdusheba@gmail.com (V. Dusheba);
jamil@utem.edu.my (J. A. J. Alsayaydeh)
ORCID: 0000-0002-0523-8910 (V. Shkarupylo); 0000-0001-8010-5301 (I. Blinov); 0000-0002-8929-3625 (V. Dusheba); 0000-0002-9768-
4925 (J. A. J. Alsayaydeh)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org) Proceedings

proposed previously. Among those, there is an attempt to vary the atomicity level to be applied in
formal specification by coupling the specified properties into the groups, i.e., the “hyper-properties”,
expressing the relations between the constituents; to this end, the broadly applied Temporal Logic of
Actions (TLA; by Leslie Lamport) and the corresponding TLA Checker (TLC) have been brought to
the use [7]. Alternatively, the decomposition based approach can be applied: formal specification is
decomposed into sub-specifications to be subsequently verified with the time proven Event-B method
[8]. Yet another promising direction to proceed is to decrease the model checking related
computational expenses via a mu-calculus based abstraction reduction technique implementation [2].
In addition, the bounded model checking approach can be applied, e.g., by bringing the mathematical
apparatus of the discrete time Markov chains (DTMC), paired with the probabilistic computation tree
logic (PCTL) and probabilistic symbolic model checker (PRISM) [9]. Moreover, to diminish the
effect of transition system state space exponential growth, the Reduced Ordered Binary Decision

Diagrams (ROBDDs) are shown to be the proven instrument – more than 2010 states can be
encompassed [10].

Thus, it can be seen that the problem of an exponential growth of the transition system state space
is multi-dimensional, and can be approached diversely. At the same time, it can be noted that
implementation related aspects taking place during the model checking are still lacking the attention
of the research community – in terms of the influence of a particular implementation on the related
computational and spatial expenses on certain case driven model checking task resolving.

In our work, the TLC model checker has been chosen to be the instrument to be applied during the
case study – because of its wide usage in diverse safety critical scenarios: the grounding is provided
below (in the Section 3).

Rest of the paper is organized as follows: in the Section 2, the problem statement is made;
Section 3 is devoted to the related work analysis; in the Section 4, the case study addressing the
scenario from the energy domain is described; Section 5 contains the conclusion and thoughts on the
future work; the acknowledgments are given in the Section 6; in the Section 7, the references are
provided.

2. Problem statement

Taking into consideration the aforesaid, paper addresses the problem of an exponential growth of
the transition system state space – in terms of the corresponding computational and spatial expenses.
An attempt to estimate named expenses, with respect to a case driven scenario from the energy
domain has been made. To this end, the broadly used TLC model checker (method) has been utilized
as an instrument. Two alternative implementations of the TLC have been investigated in terms of the
related computational and spatial expenses: the BFS (Breadth-first Search) one – implemented by the
default; the alternative DFS (Depth-first Search) implementation. As it can be seen from the naming,
these implementations differ by the method applied to traverse through the states of a transition
system.

Let the model checking task is formalized as follows [4]:

|,bM , (1)

where M – the transition system – Kripke structure over a set of the atomic prepositions AP ; b –

“behavior” – as a sequence of states to be traversed through during the model checking with the TLC
method; – temporal formula, in TLA+ syntax, prescribed in the formal specification. To positively

state regarding specification consistency, has to be “true” for each element of b .
In given paper, the model checking task has been resolved with respect to a case driven scenario

taking place in energy domain, and specified with a role model of European identification codes
registry update process.

The idea is to estimate and compare different implementations of the TLC method, by grounding
on a particular case driven scenario – with respect to corresponding computational and spatial
expenses that take place during the model checking. This approach is an attempt to discover and

assess the factors – e.g., the architecture (structure and couplings) specified in the formal model,
number of state variables, etc. – affecting the computational and spatial costs of formal verification
with a particular implementation of certain model checker (the TLC in our case). Moreover, an
attempt to estimate the outcome of bringing the multithreading to the implementations of the TLC
method has also been made.

3. Related work

When addressing specification atomicity concept, it first needs to be noted that, prior to being
represented formally, the specified properties are commonly represented in certain textual or
graphical form, e.g., with BPMN-notation (Business Process Model and Notation). To verify related
spatial properties, the sBPMN Verification Framework has been proposed [11]: it is based on the TLC
model checker application to formal specifications written in the TLA+ formalism of the TLA
temporal logic [12]. The distinctive features of named formalism are the modularity and mathematical
strictness. It can be addressed as a propositional logic coupled with the temporal operators: X (Next)
and G (Globally). Because of the fact that model checkers (the implementations of model checking
techniques) are the instruments to be applied to formal specifications, but not to the initial artifacts
directly, there is also a necessity to control the adequacy of specifications. It can be accomplished, for
instance, by comparing the properties of the transition system retrieved from the initial artifact – e.g.,
block-diagram, UML (Unified Modeling Language) activity diagram, etc. – and from the resulting
formal specification [5]. In addition, to formally check the abstractions applied in specification, a
deductive verification based technique can be utilized prior to the model checking [13]. Moreover,
similarly to [11], from the architectural viewpoint, the TLC and corresponding tools have successfully
been applied to discover the inconsistencies that may occur during the SDN (Software-defined
Networking) topology and related policies changes [14].

As a scenario representing the necessity of chosen specification abstraction level adoption, i.e.
atomicity level varying, an industrial distributed Taurus database formal specification synthesis and
verification process can be considered: named TLC model checker has been successfully applied to
consistency checking task resolving [15]. The obtained results have once again shown the
effectiveness of model checking technique to be utilized for design flaws discovery at the design stage
of engineering process, prior to the validation, e.g., testing in particular. In addition, in case there are
no design flaws that have been discovered while model checking, verification outcome can be
approached differently: either be treated as the design solution consistency approval, or as an
indicator that specification atomicity level applied needs to be shifted. Moreover, dealing with the
processes taking place in the large-scale distributed software systems, the task of eventual consistency
over the data replicas maintenance arises: formal instruments (TLC, TLA, TLA+) have been utilized
within the MET (Model Checking-driven Explorative Testing) framework – in an attempt to construct
the “bridge” between the model checking being applied at the design stage of engineering process and
the validation by way of testing: to address a tradeoff between the exhaustive nature of model
checking facing the exponential growth of transition system state space and case-driven testing [16].
To diminish the effect of named exponential growth, the compositional model checking techniques
can be applied, e.g., the Interaction-Preserving Abstraction (IPA) framework addressing the
specifications written in TLA+ [17]. Moreover, novel TLA+ Debugger utility makes it possible not
only debug the temporal formulas evaluations, but also inspect states and transitions of transition
system [18].

4. Case study

As a demonstrative problem domain, where diverse safety-critical scenarios take place, modern
electricity market of Ukraine [19], adjusted in accordance with the harmonized European electricity
market model, has been considered [20]. European identification codes registry update process has
been addressed as a case study (Figure 1).

Considering the UML (Unified Modeling Language) diagram, depicted in the Figure 1, the TLA+
specification atomicity level has been chosen to be applied in “one-to-one” manner. Similar step has
been made in the previous case study, where the avionics scenario has been approached [5].

Among the distinctive features of current case study, there are, in particular, the different type of
the initial artifact (UML activity diagram instead of block diagram), and also the different problem
domain.

Figure 1: Fragment of a role model addressing the European identification codes registry update
process

In the Figure 1, a fragment of the complete role model is depicted as the UML activity diagram. A

complete role model encompasses 23 activities, plus 6 conditional operators. Named model is
approached as an artifact – an entity with the architecture (structure and couplings) and the content
[21]. These constituents are represented in the formal TLA+ specification with respect to the approach
described below.

4.1. Formalization and experimentation

To synthesize the formal specification suitable for verification in an automated manner, the
following two staged approach has been applied:

1. To create the architectural prototype (encompassing both algorithmic structure and the
couplings; in a pseudo code-like manner) of yet to be synthesized TLA+ specification, the
PlusCal algorithmic language has been used [22]. An outcome of this stage is an input data
for the following one. The PlusCal specification is treated as the preliminary artifact.

2. To generate the resulting artifact – the TLA+ specification – from the PlusCal pseudo code,
the TLA+ Toolbox IDE (Integrated Development Environment) has been utilized [12].

The TLA+ specification is addressed to be the input data for the TLC model checker intended to
be applied in an automated manner.

4.1.1. Approach to the PlusCal specification synthesis

To obtain the preliminary artifact, the following approach has been applied:
1. Each of the aforementioned activities (Figure 1) has been represented in the PlusCal

specification with a state variable. Named variables have been grouped within corresponding
set V : 23V .

2. Moreover, additional three state variables have been created to represent conditional
operators: initial conditional operator, prior the fork construct; group of 4 conditional
operators after the fork construct (Figure 1); final conditional operator which is out of the
scope of diagram fragment depicted. As an outcome, the complementary state variables have
been introduced with the following set: V : 3V .

3. Yet another state variable has been used to initiate/terminate the computational process
formalized in the PlusCal specification.

Thus, with respect to the approach applied, the resulting state variables set has been obtained as

follows: vVVV , where Vv is the initiate/terminate state variable.

4.1.2. TLA+ specification synthesis and checking

It has taken 348 rows of pseudo code to represent the role model in PlusCal. After that, the
instruments of TLA+ Toolbox IDE have been applied to generate the resulting TLA+ specification
from the PlusCal representation. As an outcome, the TLA+ specification has been synthesized
containing 508 rows of code. Thus, it can be seen that the initial PlusCal artifact is significantly more
concise comparing to the resulting TLA+ specification, while preserving the same architectural
constituent.

The consistency of synthesized TLA+ specification has been proven in an automated manner –
with the TLC applied. To state about the consistency of the initial role model (Figure 1), the
aforementioned adequacy checking technique has been used [5].

Spatial properties of a transition system traversed through during an automated TLC checking can
be represented with the elements of Kripke structure M (1) [4], over a set of atomic prepositions

DVAP , where, in our case, 1,0D – set of allowable state variable values, i.e., set of Boolean

values: LRSSM ,,,0 , where SS 0 – set of initial states; S – finite set of states; 2SR – total

set of transitions: RssSsSs ,: ; APSL 2: – states labeling function.

4.1.3. Transition system analysis

In our case, 100 , ssS , where DVs : : 1,,0,10 vvsLsL , where VVv state
variable represents the group of four identical conditions after the fork construct in the Figure 1.
Depending on whether the identification code exists initially, we can have either 00 Ss or 01 Ss
initial state.

To form the AP set, a dichotomy principle has been applied: PAPAAP , where
 0 VPA , 1 VPA . Elements of these subsets have been approached as follows:

 PAvi 0, – i-th activity has not been accomplished yet (27,...,2,1i); PAvi 1, – i-th activity
has already been accomplished.

Transition system (TS) spatial properties discovered during an automated formal verification with
the TLC model checker are as follows: “TS depth” – 28 – number of sequential transitions from
certain initial state (00 Ss or 01 Ss) to the final one; total number of distinct states found –

290S . These properties have been treated as the indexes of model checking task complexity.

4.1.4. Experimentation and obtained results

Experimentation has been conducted on the following platform: CPU – AMD Ryzen R5 2400g;
RAM – 16 GB; Java Runtime Environment, version “1.8.0_241”; TLC version: 2.14 of 10 July 2019.

During this, two alternative implementations of the TLC model checker have been encompassed:
the BFS- and the DFS-based ones. It needs to be noted, though, that the DFS-implementation of the
TLC is coupled with a significant drawback in terms of the automation – “TS depth” has to be
discovered first, and then be specified manually. On the contrary, default BFS-implementation does
not need to be accompanied with the “TS depth” parameter.

Results of previous experimentations have shown, that, depending on the architectural plane of
specification, there is a bound, in terms of the number of state variables, when certain TLC
implementation is more efficient in terms of the corresponding computational expenses [6, 23].

Adequacy of the resulting TLA+ specification has been proven with the aforementioned technique
[5]. Two alternative implementations (BFS and DFS) of the TLC model checker have been applied, in
both single and multithreaded manner.

Let 310 2,...,2,2tn be the number of software threads utilized for the TLC model checking. Let
 tnf be the related computational expenses. Let the speedup from multithreading implementation is

calculated as follows: tnfftn 1 . Obtained experimental results are provided in the Table 1.

Table 1
Computational expenses on the automated formal verification with the TLC model checker

tn tnf BFS ,

ms

 tnBFS
BFSS tnf DFS ,

ms

 tnDFS
DFSS DFS

02 1214.000 1.000 336 638.400 1.000 4194.000 1.000
12 1157.800 1.049 336 632.900 1.009 5382.890 1.283
22 1149.100 1.056 336 665.300 0.960 7267.050 1.733
32 1143.800 1.061 336 682.700 0.935 8209.850 1.958

In the Table 1, each numerical value is an arithmetical average of 210 measures; tnf BFS –

computational expenses related with the BFS implementation of the TLC method; tnf DFS –

computational cost of the alternative DFS implementation; tnBFS – speedup from bringing

multithreading to the BFS implementation; tnDFS – speedup taking place for the DFS

implementation of the TLC; constSBFS – total number of states generated while the BFS model

checking to construct the resulting transition system with 290S states;
DFSS – average total

number of states generated with the alternative DFS implementation (an average value has been
calculated because of the non-deterministic nature of the DFS implementation when the
multithreading is applied); DFS – model checking task spatial complexity relative estimation,

depending on the number of threads utilized; is calculated conceptually similarly to tn :

tnDFSDFSDFS SS
1

 .

In the Table 1, it can be seen that the DFS implementation of the TLC method has appeared to be
significantly more effective in terms of the related computational expenses, when comparing to the

default BFS alternative: from about 1.902 times (for 02tn) to about 1.675 times (for 32tn). It
does correspond to the results obtained previously [6, 23], and it can be considered as a significantly
viable argument in favor of the DFS implementation when the iterative approach to verification takes
place [24]. On the contrary, when addressing the spatial properties of the model checking task
resolved with a particular TLC implementation, the picture changes drastically – in terms of the ratio

between the numbers of transition system states generated (
BFSS and

DFSS values):

 24.434;12.482

BFSDFS SS . The BFS implementation becomes to be significantly more

preferable.
With respect to the multithreading, the BFS implementation once again looks to be having a

significant advantage in terms of the spatial aspect – because of the constant value of
BFSS index,

regarding the number of software threads utilized. At the same time, when dealing with the alternative

DFS implementation, the value of
DFSS index rises rapidly with the increase of the number of

concurrently acting threads.
In an attempt to estimate the growth of the DFS-related spatial expenses (from the number of

software threads utilized), an approximation task has been resolved on the basis of tn and DFS

indexes (Figure 2). As an outcome, the following estimation function tnDFS has been obtained:

 tnbatnDFS 1 , (2)

where 0.435a , 0.603b ; determination coefficient 0.9862 R .

Figure 2: DFS related spatial expenses growth estimation, with respect the number of threads
utilized

In the Figure 2, confidence intervals have been built for the confidence probability 0.95.

Expression (2) can be used as an estimation of spatial expenses growth, with the increase of the
number of concurrently acting threads.

In terms of the computational expenses, it can be seen, in the Table 1, that bringing multithreading
to the default BFS implementation does not lead to a significant speedup. Moreover, the major “leap
ahead” has been faced while shifting from 02tn to 12tn – about 5% improvement. These results
and concluding remarks conform to the ones obtained previously, when an avionics safety critical
scenario has been addressed [25]. On the contrary, in accordance with the data from the Table 1, when
dealing with multithreaded DFS implementation, the outcome is contradictory: in case of 12tn , just
a minor speedup (about 1%) has been faced; at the same time, by further increasing the tn value, the
results have appeared to be even worse, an opposite trend has been revealed. On the other hand,
previously obtained results from the avionics domain have shown a significant positive trend (more
than two times speedup for the case of 22tn), with a slight decrease for the case of 32tn [25].
Such contradictory outcomes for different case scenarios prompt an assumption that DFS
implementation is vastly case sensitive, depending on the number of state variables and the
architectural plane of formal specification.

To summarize the distinctive features of both implementations of the TLC method, with respect to
the energy domain scenario considered, the following conclusions can be formulated:

1. Default BFS implementation of the TLC model checker can be considered to be the more
preferable solution in terms of the following aspects: no need to specify the depth of search
space – a definitive argument in terms of the automation, when comparing to the DFS
alternative, where named parameter has to be specified manually; constant spatial expenses
on the model checking tasks resolving, in terms of the multithreaded implementation.

2. Under proper circumstances, the alternative DFS implementation of the TLC method provides
a significant verification related time costs reduction. By encompassing also the results of
previous experimentations (both synthetic and domain related – avionics) [5, 6, 23, 25], these
circumstances (factors) have been discovered to be the number of state variables and the
architectural plane of formal specification.

These concluding thoughts provide the background to further increase the set of case driven
scenarios with the TLC model checker implementations utilized, in an attempt to work out and
generalize the rules (recommendations) for a particular TLC implementation practical usage, in terms
of the related computational and/or spatial expenses decrease.

5. Conclusion

Thus, broadly used TLC model checker has been investigated in given paper on the basis of the
case driven scenario taking place in modern energy domain: a role model describing the European
identification codes registry update process has been addressed as a design artifact. The consistency
of corresponding program-algorithmic constituent has been proven with the named method applied.
To prove the credibility of the results obtained, the adequacy of the resulting formal specification has
been checked with respect to previously introduced technique.

Both alternative implementations of the TLC method have been considered, including the
multithreading aspect: the BFS and the DFS implementations. It has been found out that while the
BFS-related outcomes conform to the results and assumptions that have been made previously (on the
basis of synthetic and domain related – avionics – scenarios), the DFS-related ones, on contrary, have
appeared to be demonstrating just a minor speedup (about 5%) in the case of two threads applied;
with further increase of the number of threads utilized, even the negative speedup factor has been
faced. These results have led us to a conclusion that the DFS implementation of the TLC method
significantly depends on both the number of state variables taking place in formal specification and
the architectural plane of the latter. At the same time, in general, on the basis of the case study
conducted, the DFS implementation has appeared to be about 1.675 – 1.902 times more efficient in
terms of the related time costs, when comparing to the default BFS implementation of the TLC. On
the contrary, when addressing the spatial aspects (the number of transition system states generated),
the DFS implementation has appeared to be significantly worse comparing to the BFS alternative:
from about 12.482 to about 24.434 times.

With an intention to assess the character of the DFS-related spatial expenses growth, with respect
to the number of concurrently acting software threads, the approximation task has been resolved, and
corresponding estimating function has been obtained.

Future work is focused on an attempt to formulate the recommendations to both TLC
implementations (the BFS and the DFS) practical usage, depending on the number of state variables
taking place in the formal specification and on the peculiarities of the architectural plane of the latter.

6. Acknowledgements

Paper has been prepared on the basis of the results obtained in accordance with the tasks of the
following research works: 0120U102683 “Development of specialized computer technologies for
modeling and processing of operational information in energy problems”; 0121U110615
“Development of methods and means for safety-critical systems designing process artifacts
verification”, carried out by the Department of Mathematical and Computer Modeling of the G.E.
Pukhov Institute for Modeling in Energy Engineering of the National Academy of Sciences of
Ukraine, with a contribution of the Institute of Electrodynamics of the National Academy of Sciences
of Ukraine. Paper also addresses the tasks of W911NF-22-2-0153 research work carried out by the
G.E. Pukhov Institute for Modeling in Energy Engineering of the National Academy of Sciences of
Ukraine and funded by the US Army Engineer Research and Development Center (ERDC).

7. References

[1] A. Pakonen, T. Tahvonen, M. Hartikainen, M. Pihlanko, Practical applications of model
checking in the Finnish nuclear industry, in: Proc. 10th International Topical Meeting on Nuclear
Plant Instrumentation, Control and Human Machine Interface Technologies, San Francisco, CA,
USA, June 11–15, 2017, pp. 1342–1352.

[2] V. Nardone, A. Santone, M. Tipaldi, D. Liuzza, L. Glielmo, Model checking techniques applied
to satellite operational mode management, IEEE Systems Journal, vol. 13(1) (2019) 1018–1029.
doi: https://doi.org/10.1109/JSYST.2018.2793665.

[3] S. Resch, M. Paulitsch, Using TLA+ in the development of a safety-critical fault-tolerant
middleware, in: 2017 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), Toulouse, France, 23-26 October 2017, pp. 146–152. doi:
https://doi.org/10.1109/ISSREW.2017.43.

[4] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, H. Veith, Model checking: 2nd ed.
Massachusetts: The MIT Press, 2018.

[5] V. Shkarupylo, J.A.J. Alsayaydeh, I. Tomičić, A. Chemeris, V. Dusheba, A technique for
checking the adequacy of formal model, ARPN Journal of Engineering and Applied Sciences, 16
(2021) 1707–1719. URL:
http://www.arpnjournals.org/jeas/research_papers/rp_2021/jeas_0821_8670.pdf.

[6] V. Shkarupylo, I. Blinov, A. Chemeris, V. Dusheba, J. Alsayaydeh, A. Oliinyk, Iterative
approach to TLC model checker application, in: Proc. 2021 IEEE KhPI Week on Advanced
Technology, Kharkiv, Ukraine, September 13–17, 2021, pp. 283–287. doi:
https://doi.org/10.1109/KhPIWeek53812.2021.9570055.

[7] L. Lamport, F. B. Schneider, Verifying hyperproperties with TLA, IEEE Computer Security
Foundations Symposium, CSF 2021, IEEE (2021). doi:
https://doi.org/10.1109/CSF51468.2021.00012.

[8] K. Kraibi, R.B. Ayed, J. Rehm, S. Collart-Dutilleul, P. Bon, D. Petit, Event-B Decomposition
analysis for systems behavior modeling, in: Proc. 14th International Conference on Software
Technologies, ICSOFT 2019, Prague, Czech Republic, July 26–28, 2019, vol. 1, pp. 278–286.
doi: https://doi.org/10.5220/0007929602780286.

[9] H. Gao, W. Huang, X. Yang, Applying probabilistic model checking to path planning in an
intelligent transportation system using mobility trajectories and their statistical data, Intelligent
Automation and Soft Computing, vol. 25(3) (2019) 547–559.

[10] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Advances in
computers, vol. 58(11) (2003) 117–148.

[11] R. Saddem-Yagoubi, P. Poizat, S. Houhou, Business processes meet spatial concerns: the
sBPMN verification framework, in: M. Huisman, C. Păsăreanu, N. Zhan (Ed.), Formal Methods,
FM 2021, Lecture Notes in Computer Science, vol. 13047, Springer, Cham, 2021, pp. 218–234.
doi: https://doi.org/10.1007/978-3-030-90870-6_12.

[12] M. A. Kuppe, L. Lamport, D. Ricketts, The TLA+ toolbox, in: 5th Workshop on Formal
Integrated Development Environment, F-IDE 2019, Porto, Portugal, October 7, 2019, EPTCS
310, 2019, pp. 50–62. doi: http://doi.org/10.4204/EPTCS.310.6.

[13] J. Amilon, C. Lidström, D. Gurov, Deductive verification based abstraction for software model
checking, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of Formal Methods,
Verification and Validation. Verification Principles, ISoLA 2022, Lecture Notes in Computer
Science, vol. 13701, Springer, Cham, 2022. doi: https://doi.org/10.1007/978-3-031-19849-6_2.

[14] Y.-M. Kim, M. Kang, Formal verification of SDN-based firewalls by using TLA+, IEEE Access,
8 (2020) 52100–52112. doi: https://doi.org/10.1109/ACCESS.2020.2979894.

[15] S. Gao et al., Formal verification of consensus in the Taurus distributed database, in: M.
Huisman, C. Păsăreanu, N. Zhan (Eds.), Formal Methods, FM 2021, Lecture Notes in Computer
Science, vol. 13047, Springer, Cham, 2021. doi: https://doi.org/10.1007/978-3-030-90870-6_42.

[16] Y. Zhang, Y. Huang, H. Wei, X. Ma, MET: Model checking-driven explorative testing of CRDT
Designs and Implementations: report, 2022. doi: https://doi.org/10.48550/arXiv.2204.14129.

[17] X. Gu et al., Compositional model checking of consensus protocols via interaction-preserving
abstraction, in: 2022 41st International Symposium on Reliable Distributed Systems (SRDS),
Vienna, Austria, September 19–22, 2022. doi: https://doi.org/10.1109/SRDS55811.2022.00018.

[18] M. A. Kuppe, The TLA+ debugger, in: P. Masci, C. Bernardeschi, P. Graziani, M. Koddenbrock,
M. Palmieri (Eds.), Software Engineering and Formal Methods, SEFM 2022 Collocated
Workshops, SEFM 2022, Lecture Notes in Computer Science, vol. 13765, Springer, Cham, 2023.
doi: https://doi.org/10.1007/978-3-031-26236-4_15.

[19] I.V. Blinov, Ye.V. Parus, H.A. Ivanov, Imitation modeling of the balancing electricity market
functioning taking into account system constraints on the parameters of the IPS of Ukraine mode,
Tekhnichna elektrodynamika, 6 (2017) 72–79. doi: https://doi.org/10.15407/techned2017.06.072.

[20] I. Blinov, S. Tankevych, The harmonized role model of electricity market in Ukraine, in: 2016
2nd International Conference on Intelligent Energy and Power Systems, IEPS 2016 Conference
Proceeding, Kyiv, Ukraine, 07–11 June 2016. doi: https://doi.org/10.1109/IEPS.2016.7521861.

[21] M. Broy, A logical approach to systems engineering artifacts and traceability: from requirements
to functional and architectural views, in: M. Broy, D. Peled, G. Kalus (Eds.), vol. 34:

Engineering Dependable Software Systems, NATO Science for Peace and Security Series – D:
Information and Communication Security, IOS Press, 2013, pp. 1–48. doi:
https://doi.org/10.3233/978-1-61499-207-3-1.

[22] H. Alkayed, H. Cirstea, S. Merz, An extension of PlusCal for modeling distributed algorithms,
TLA+ Community Event 2020, Oct. 2020, Freiburg (online), Germany. URL:
https://hal.inria.fr/hal-03143502/.

[23] V.V. Shkarupylo, I. Tomičić, K.M. Kasian, The investigation of TLC model checker properties,
Journal of Information and Organizational Sciences, 1 (2016) 145–152. doi:
https://doi.org/10.31341/jios.40.1.7.

[24] E. Mercer, K. Slind, I. Amundson et al., Synthesizing verified components for cyber assured
systems engineering, Software and Systems Modeling, 2023. doi:
https://doi.org/10.1007/s10270-023-01096-3.

[25] V.V. Shkarupylo, I.V. Blinov, A.A. Chemeris et al., On applicability of model checking
technique in power systems and electric power industry, in: A. Zaporozhets (Ed.), Systems,
Decision and Control in Energy III. Studies in Systems, Decision and Control, vol. 399. Springer,
Cham, 2022. doi: https://doi.org/10.1007/978-3-030-87675-3_1.

