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Abstract  
Estimating a level of similarity of two objects is a common problem in pattern recognition, 
clustering, and classification. Among these problems can be reviewer recommendation, 
similar text documents analysis, human pose detection in video, species distribution 
clustering, recommendation in internet-shops etc. In case of categorical attributes an object is 
described as a distribution of membership degrees over categories. Similarity metrics of such 
distributions are usually defined as a superposition of objects’ similarities for each category. 
Most often it is a sum of similarities in separate categories. In addition to that each category 
is considered independently and in isolation from the others. Some practical problems have 
categories that are akin. Therefore, it is expedient to consider objects’ similarity not only 
directly, as a similarity between equivalent categories, but it is also necessary to consider an 
indirect similarity, cross-similarity through akin categories. It is such similarity metric of two 
categorical distributions that accounts for the kinship of different categories is proposed in 
this paper. The metric has two components. The first component is defined as Czekanowski 
metric. It defines a direct similarity of categorical distributions as a sum of intersection of 
distributions’ membership degrees of two objects. After the intersection the remaining 
residuals are accounted for in the second component of the metric. The second metric’s 
component is defined as element-wise product of two matrices: matrix of residuals 
composition from memberships of two categorical distributions and matrix of categories’ 
paired kinship. It is assumed that kinship indices for each pair of categories are known. As a 
result, with a large number of categories the overall noisy contribution from weakly akin 
categories is prominent. Therefore, it is proposed to filter the noise and account only for 
contribution from strongly akin categories. 
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1. Introduction 

Topic modeling is a machine learning technology for summarization of huge volumes of 
information [1]. A popularity of topic modeling is increasing drastically over the last decade. Annual 
number of research papers is doubling every 3-4 years. 

Estimating the level of similarity between two objects is a common task in topic modeling. For 
estimating the level of similarity it is necessary to describe each object as a vector of attributes. If 
objects are defined in a metric space, then each attribute is defined in a numerical scale. For example, 
in Fisher’s Iris dataset, each flower is described with four attributes, namely the petal width, the petal 
length, the sepal width, and the sepal length. Object’s attributes can be categorical as well, in this case 
they are defined as a distribution of membership degrees over categories. Such a categorical 
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representation of objects is often used in topic modeling problems. For the Fisher’s Iris dataset, the 
result of flower classification can be represented as a categorical distribution, for example, some 
flower is classified as Iris Setosa with a membership degree of 0.7, as Iris Virginica with a 
membership degree of 0.1, and as Iris Versicolor with a membership degree of 0.2. 

Depending on the type of object representation different metrics of similarity are used. For objects 
defined in a metric space, similarity is defined as a quantity that is inversed to the distance between 
two points. Coordinates of each point are numerical values of the object’s attributes. The smaller the 
distance between the analyzed objects the more similar they are. In paper [2] around 50 different 
metrics are analyzed, the most popular among them are particular cases of Minkowski’s metric: 
Euclidean distance, City Block distance, and Chebyshev metric. The cosine similarity metric is often 
used as well. It calculates the cosine angle between two vectors that start at the origin and end at the 
analyzed objects.  

In categorical space, the similarity between two objects is usually defined as similarity 
superposition of objects over each category. Most often it is the sum of similarities over each 
separated category. For this approach, each category is considered independently and in isolation 
from others. There is also an inversed approach when the object divergence is first found for each 
category and then aggregates to find the overall similarity. One of the popular variants of such a 
metric is proposed in [3] to find the similarity of fuzzy sets. The authors define the divergence of 
objects as a module of membership degree difference. All metrics from the survey paper [2] and other 
relevant publications, for example, [4, 5, 6, 7], do not consider the kinship between categories. But for 
some practical problems, the categories are akin. This leads to the fact that it is better calculate the 
similarity between objects not only directly as the similarity between equivalent categories, but also 
consider indirect cross-similarity through akin categories. Developing of such a metric that 
additionally considers the similarity of objects through akin categories is, therefore, the purpose of 
this paper. 

2. Objects representation in the space of akin categories 

We present here an example of problems in which objects are described in the space of akin 
categories. 

Let us consider task of finding similar researchers, for example, for reviewer recommendation 
system. Based on research papers, each researcher can be categorized into a few research specialties 
(research fields) according to some research classification system. For example, researcher A is 
categorized to System Analysis with a membership degree of 0.4 and to Information Systems and 
Information Technologies with a membership degree of 0.6. Researcher B is categorized to System 
Analysis with a membership degree of 0.7 and to Computer science with a membership degree of 0.2. 
Researcher C is categorized to System Analysis with a membership degree of 0.4 and to Marketing 
with a membership degree of 0.6.  

Finding the similarity between each pair of these researchers using known metrics will only take 
into account their membership degrees to System Analysis. Membership degrees in other categories 
are not taken into account because they are different for each researcher. The similarity between 
researchers A and B is defined only by their membership degrees to System Analysis category, which 
equals 0.4 and 0.7, respectively. If the similarity is defined as the common part of membership 
degrees using min operation, then between researchers A and B, it equals to 

    4.07.0,4.0min, BAFit . By the same reasoning, the similarity between researchers A and C 

equals to     4.04.0,4.0min, CAFit , and between researchers B and C equals to 

    4.04.0,7.0min, CBFit . This shows that the similarity of all pairs of researchers is the same. 
But the research domains are such that Information Systems and Information Technologies is 
significantly closer to Computer Science than to Marketing. Also, Computer Science is significantly 
closer to System Analysis than to Marketing. Therefore, the similarity between researchers A and B 
has to be stronger than the similarity between researchers A and C, or between researchers B and C. 
But the well-known similarity metrics do not take into account the kinship of categories; therefore, it 
is impossible to take into account such peculiarities using them. 



3. The proposed metric for akin categories 

Let us denote the number of categories as m. Then, objects X and Y, the similarity of which is to be 
estimated, we represent with the following membership distributions to categories: 

      XXX m ...,,, 21  and       YYY m ...,,, 21 . The distributions are considered to satisfy 
the following conditions: 

    ;,1,1;0 miXi   

    ;,1,1;0 miYi   
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The problem is that the level of similarity is to be calculated for objects X and Y. The domain 
research’s peculiarity lies in the fact that some categories are akin. Therefore, it is necessary to 
consider not only the similarity of identical categories but also the similarity of akin categories. Below 
we propose a metric that accounts for the semantic kinship of categories.  

The similarity between two objects X and Y is proposed to be calculated in the following way: 

     YXFYXFYXFit ,,,  ,     (1) 

where  YXF ,  denotes addend that assesses the direct similarity between the objects X and Y over 
identical categories;  

 YXF ,  denotes addend that considers the similarity of objects X and Y over akin categories. 

We calculate the first addend of the formula (1) by the simplified version of Chekanowski metric 
for the case when membership degrees are in the  1;0  and their sum equals 1. The resulting form of 
the first addend in (1) is as follows:  

      



mi

ii YXYXF
,1

,min,      (2) 

where  Xi  denotes membership degree of object X  to the i-th category, mi ,1 ;  

 Yi  denotes membership degree of object Y  to the i-th category, mi ,1 . 
The formula (2) can be interpreted as a sum of membership degrees of intersection of fuzzy sets 

X  and Y . In formula (2), it is implied that the overall similarity of two objects is a sum of their 
similarities by each category. The similarity by category is defined as both objects’ minimum 
memberships to the category. Thereby, one of the objects contributes the entire value of the 
membership degree to a category, and the other one – only a part of it.  

After applying the formula (2) we get the following residuals of membership degrees: 
      YXXr iii   ,0max ; 

       miXYYr iii ,1,,0max   . 
Let us consider the contribution of residuals to the similarity of two objects using kinship of 

categories. We assume that the information about categories’ pair kinship is known, and denote it 
with the following binary relation:  

ijkK , 

where  1;0ijk  denotes the kinship coefficient of the i-th and j-th categories, mi ,1 , mj ,1 . 

The categories are more akin, the higher the kinship coefficient. Kinship relation is symmetric and 
reflexive, therefore, jiij kk   and 1iik . 

We denote the composition of residuals in the form of a matrix as follows: 



ijeE , 

where     YrXre jiij ,min , mi ,1 , mj ,1 . 

The contribution of residuals to metric (1) using paired kinship of categories is calculated as 
follows:  

   
 


mi mj

ijij keYXF
,1 ,1

, .    (3) 

Example. Two objects are defined with the following membership degrees to categories 
 DCBA ,,, :  1.02.03.04.0X  and  1.01.01.07.0Y . Kinship of the categories are 

described by the following matrix: 

0.13.00.00.0

3.00.11.00.0

0.01.00.15.0

0.00.05.00.1

K .  

Let us calculate the similarity between objects X  and Y  using the proposed metric (1). 
To calculate the first addend of the similarity metric (1) let us find the intersection of two 

distributions. The intersection is shown in Figure 1 with a hatch.  
 

 
Figure 1: Intersection of two categorical distributions for calculating   YXF ,  

The numerical value of the first addend is as follows: 
          7.01.01.01.04.01.0,1.0min1.0,2.0min1.0,3.0min7.0,4.0min, YXF . 

Residuals after the intersection are:  

   01.02.00Xe ; 

   0003.0Ye .  

The residuals composition is calculated as 

0.00.00.00.0

0.00.00.01.0

0.00.00.02.0

0.00.00.00.0

E .  



By having performed element-wise product of matrices E  and K , we get the following matrix of 

contributions through akin categories: 

0.00.00.00.0

0.00.00.00.0

0.00.00.01.0

0.00.00.00.0

. From this matrix it is observed, that the 

contribution of kinship of the second and first category equals to 0.1. The kinship contribution of 
other categories is zero.  

The summed contribution of akin categories equals to:   1.0,  YXF . The resulting similarity 

value of objects X  and Y  using formula (1) equals   8.01.07.0, YXF .  

4. Computational Experiments 

In the above example, taking into account the kinship of categories increased the similarity metric 
by 0.1, which is 14% of the initial value obtained by the Chekanowski metric. Let us conduct 
computational experiments to establish how sensitive the proposed metric is to taking into account the 
kinship of categories. 

We perform 18 series of experiments. All the experiments within a series is carried out with the 
same number of categories. The number of categories (m) from series to series increases from 2 to 70 
with a step of 4. In each series, the similarity of 5000 pairs of objects X  and Y  is calculated. 
Attributes of objects X  and Y  as well as the kinship matrix of categories are randomly generated 
using the generalized Pareto law [8]: 
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The choice of this law is due to the fact that in topic modeling, the categories’ similarity 
distribution often is similar to the Pareto distribution (see, for example, [9, 10]). For each experiment, 
we firstly randomly generate parameters of the distributions. The shape parameter k  is generated 
from the range  5.0;15.0 , the scale parameter   is generated from the range [0.001; 0.01]; we set 

the bias as zero: 0 . In each experiment, using synthesized distributions, we randomly generate the 
coordinates of the vectors X  and Y , as well as kinship matrix K . In matrix K  the maximum value 
of the elements is limited to 0.4; vectors X  and Y  are normalized by 1. Then, we calculate the 
similarity between X  and Y  using the proposed metric (1). 

The results of the experiments in the form of box-plot diagrams are shown in Figure 2. It can be 
seen from the figure that the similarity values are in the range  1;0 . As the number of categories 

increase, the spread of results decreases. Median of distributions for 6m  does not depend on the 
number of categories. 

On Figure 3 box-plot diagrams of the distribution of the term  YXF ,  are shown, which takes 
into account the similarity of objects X  and Y  over akin categories. The median of this value 
increases from 0.001 to 0.066 with an increase in the number of categories. The spread of the 
distributions also increases, while the number of outliers decreases from 550 to 7. The increase in the 
median probably indicates that as the number of categories increases, a large number of weak ties 
between akin categories make a significant contribution to  YXF , . As the number of categories 
increase, the number of pairs of akin categories increases quadratically. The contribution of many 
pairs of akin categories is tiny. It looks as a noise. But the sum of huge number of noise contributions 
turns out to be large. The decrease of the number of outliers is also a negative factor. The need for a 
new metric is primarily due to the need to identify specific cases with strong cross-over effects due to 
akin categories. Also, the decrease in the number of outliers indicates that noise kinships make it 
difficult to detect such pairs of objects. 

 



 
Figure 2: Similarity distributions according to the proposed metric 
 

 
Figure 3: Distribution of the akin categories’ contribution 

Let us reduce the noise contribution of categories with weak kinship. We assume the kinship to be 
noisy if the kinship coefficient is less than 0.05. Box-plot diagrams of the noise kinship distribution’s 
contribution are shown in Figure 4. It shows that the median noise contribution increases linearly and 
reaches a value of 0.056 for 70 categories. The maximum value of the contribution from noise kinship 
is fixed at the level of 0.122.  

 



 
Figure 4: Distributions of noise contribution from consideration of akin categories 
 

As for the relative noise contribution (shown on Figure 5), its median exceeds 10% in the series of 
experiments for a large number of categories. In each series of experiments, there are numerous cases 
when the noise contribution exceeds 15%. The noise contribution exceeds 25% in 194 cases out of 
90,000 (Figure 6).  
 

 
Figure 5: Distributions of the relative value of the noise contribution from akin categories 

 



Figure 6: Distribution of noise contribution 

 

After noised component elimination, the box-plot diagrams of the akin categories contribution’s 
distribution are shown in Figure 7. The median of this value increases only from 0 to 0.005 as the 
number of categories increases. This is 13 times less than without noise elimination. At the same time, 
a large number of outliers are observed – their number is from 5-20%. This indicates that the metric is 
able to identify cases of strong interaction across akin categories. The box-plots of the proposed 
metric after removing the contribution from the noisy kinship of the categories are shown in Figure 8. 
Median of the refined metric lies in range [0.43; 0.69]. It is still high, especially for cases with large 
number of categories. Probably, it is caused by the noised memberships to many categories in source 
distributions in for X  and Y . Hence, it is better to eliminate the noised memberships before 
assessing the similarity of two categorical distributions. It is reasonable to do so for such topical 
modeling problems when it is known that any object may belong just to a small number of categories.   

 

 
Figure 7: Distributions of the akin categories contribution after noise filtering 

 



 

 
Figure 8: Similarity distributions according to the proposed metric with noise filtering 

5. Conclusions 

A new similarity metric of categorical distributions is proposed. A feature of the proposed metric 
consists of taking into account the kinship of categories. The proposed metric has two components. 
The first component is defined as Chekanowski metric. It calculates the direct similarity of 
distributions by categories as the sum of the intersection of distributions’ membership degrees of two 
objects. The second component of the metric takes into account the similarity of objects through akin 
categories. It is assumed that the kinship coefficients of each pair of categories are known. 

Computational experiments have shown that in the case of Pareto distributions of objects 
memberships to categories and Pareto distributions of kinship coefficients of categories, the proposed 
metric takes values from the interval [0; 1]. It was established that with an increase in the number of 
categories, the contribution to the proposed metric of the term, which takes into account the kinship of 
the categories, strongly increases. This is due to the fact that the number of weak ties between akin 
categories increases quadratically, each of which adds some contribution to the value of the metric. 
And although the contribution from many pairs of akin categories is tiny, roughly speaking - noisy, 
but the sum of the contributions turns out to be large.  

To eliminate the noise impact, we suggest ignoring the noise kinship of the categories. A simple 
filter with kinship coefficient threshold at the level of 0.05 eliminated this drawback. After such noise 
filtering, the distributions of the second component of the metric, which takes into account the kinship 
of the categories, have a significant number of outliers. A significant number of outliers is observed in 
all the series of experiments, both with a small number of categories and with a large one. This fact 
indicates that the proposed metric makes it easy to identify pairs of objects whose similarity is largely 
determined by membership to akin categories. 

The proposed metric can be used for topic modeling tasks, in which, when evaluating the 
similarity of two objects, it is necessary to take into account their membership to akin categories. 
Such tasks can be the selection of reviewers of research papers and theses, the analysis of the 
similarity of text documents, the identification of poses of people in a video stream, the clustering of 
species distribution, the formation of recommendations in online shops, etc. 
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