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Abstract  
A lot of research has been done on the comprehension and development of conceptual models.   
In other related areas such as linguistics and software engineering one has taken techniques 
from neuroscience into use, to study the biological and neurological processes when working 
with textual knowledge representations. This has only to a limited extent been the case when 
it comes to visual conceptual models so far.  
We will in this paper present ongoing research on the use of techniques from neuroscience to 
investigate how we develop and comprehend visual conceptual models. Traditionally, neuro-
science techniques have been depending on EEG or even large MR-machines for techniques 
such as fMRI, and we outline planned work, also for being able to study modeling tasks closer 
to how they are actually performed by using multimodal data analysis. 
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1. Introduction 

NeuroIS is a research field in which neuroscience theories and tools are used to better understand 
information systems phenomena. Existing research areas in NeuroIS is summarized in [14], where it 
appears that the main focus is on the use of information systems. Lately also software development 
tasks such as programming has been heavily studied in literature [12], whereas other tasks often linked 
to IS-development such as visual conceptual modeling has so far to a very limited degree been studied 
using techniques from neuroscience beyond the use of eye-tracking techniques [5].  

Visual conceptual modeling is a central activity in information systems analysis and design. It 
involves the construction of abstract models that capture the structure, behavior, and relationships of 
real-world entities or concepts, and the two-dimensional layout allows to play with both the primary 
and secondary notation [7] to convey meaning. Integrating neuroscience techniques into conceptual 
modeling open up new opportunities for understanding how the human brain processes and represents 
complex information, which can, in turn, inform and enhance the development of more effective 
modeling approaches when looked upon together with insights form fields such as conceptual modeling, 
linguistics, and cognitive psychology. 

The use of neuroscience in conceptual modeling primarily focuses on understanding the neural 
mechanisms underlying concept formation, representation, comprehension and manipulation. By 
leveraging advanced neuroimaging techniques such as functional magnetic resonance imaging (fMRI2), 
functional near-infrared spectroscopy (fNIRS3), and electroencephalography (EEG4), researchers can 
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2 fMRI: A magnetic resonance imaging (MRI) scanner measures blood oxygenation in the brain and exploits the different magnetic properties 
of oxygenated and deoxygenated blood. 
3 Functional Near-Infrared Spectroscopy (fNIRS) is a brain imaging technique that (like fMRI) uses hemodynamic responses to indirectly 
capture neuronal activity. However, compared to fMRI, fNIRS is less expensive and more portable, offering higher ecological validity 
4 Electroencephalograms (EEG) are recordings of the electrical activity of neurons in the brain. Using electrodes placed on the scalp, EEG 
measures the summation of synchronous postsynaptic action potentials produced by a population of neurons with a very high temporal 
precision (milliseconds) 



examine brain activation patterns and connectivity while participants engage in tasks that require 
conceptual reasoning or problem-solving. A challenge with some of the more advanced techniques from 
neuroscience such as fMRI is that the accuracy of results comes at a cost, in particular on the ecological 
validity of the trial situation and the cost-benefit of the technique used, thus we are aiming for using 
less intrusive techniques in concert in combination with multimodal data analytics. A comprehension 
description of current techniques in neuroscience as applied in informatics can be found in [12]. 

Moreover, the study of individual differences in conceptual processing and the neural basis of 
expertise in specific domains can provide valuable information on the factors that contribute to the 
development of expert-level conceptual reasoning and problem-solving abilities. 

The use of neuroscience techniques in connection to conceptual modeling has the potential to 
significantly advance our understanding of the neural basis of complex information comprehension, 
processing and representation. By combining insights from both fields, researchers can develop more 
effective conceptual modelling approaches that better align with the inherent capabilities and 
constraints of the human brain. 

As mentioned, techniques such as eye-tracking is used quite a bit for model comprehension and 
modeling process analysis [1], but papers in the area primarily mention a more extensive treatment with 
neuroscience techniques to be tried as the next step [15], although other techniques are gradually being 
taken into use [13]. In this novel direction talk, we will present preliminary plans for experiments on 
how to use input from a number of different sensors to do multimodal data analysis for proving better 
understanding on how the brain is doing different modeling tasks. 

2. Current research plan 

We plan a number of experiments, starting with studying simple model comprehension tasks, being 
extended to more complex tasks in a setting as close to a normal modeling situation as sensors improves. 
A normal modeling situation will compared to laying still in an MR-machine involve movement that 
typically introduce noise which it is hard to deal with in with some of the current sensors, but we see 
this has improved over the last years and is expected to be further improved.  As a start we envisage the 
following experiments: (partly with inspiration from what that is recently done in the field of code 
comprehension):  

 
1. Investigate the usage of the brain when working with conceptual/visual models:  
RQ 1: Which brain regions are activated during model comprehension (similar to what is done in 

[9], where one looked at the brain regions active when performing computer program comprehension 
tasks).  Experimental task: a model (in a modeling language known to the participant) is presented to 
the user, which is to use this for answering presented comprehension questions. Will start with a model 
in one diagram (i.e., the whole model is visible, no need for scrolling/navigating in a hierarchy etc. to 
avoid to much bodily movement by the participant. The models to use are similar to those used in 
standard process model comprehension tasks [6]. 

  
2. Investigate the usage of the brain when working with conceptual/visual models as compared to 

how it operates when using a text expressing the same information (with possibly some parallel to what 
is done in [2] where differences in working with visual and textual programming languages were 
investigated)  

 
Main hypothesis: Different parts of the brain is used more intensively when working with visual 

knowledge representation than when working with textual knowledge representations.  Experimental 
task: Have two domains, both presented as a model and a text, and comprehension questions for both 
domains. Have a Latin-square set-up to give participants different settings, e.g., one group first see a 
model of domain A, and then a text of domain B etc.  In addition to study the parts of the brain used, 
measure cognitive load and possibly also other characteristics (see below).  

 
 



3: Investigate the usage of the brain when using different modeling languages (BPMN vs. UML AD 
for process modeling for instance). Have a similar latin-square set-up based on models in both languages 
representing two different domains.  

 
4. How do layout and other aspects of secondary notation influence model comprehension (cf. [9], 

where they looked at how layout and beacons in source code influence program comprehension). Need 
to be detailed based on issues found in cognitive psychology, listed as empirical model quality issue in 
the SEQUAL framework on model quality [4]. 

  
5. How can detected information on e.g., cognitive load be used to provide feedback tools to support 

the modeler.  
 
 A more detailed set-up currently done in connection to the first two tasks also extending into 

affective and behavioral aspects are presented below: 
 
 RQ1: What are the differences in affective, behavioral and cognitive processes across different 

levels of model comprehension? 
• Sub-RQ: what are the major brain regions responsible for visual model comprehension? 
• Sub-RQ: how does the cognitive load evolve during the comprehension process? 
• Sub-RQ: what are the roles of stress and physiological arousal leading to certain comprehension 

performance level? 
 
Prediction question: how accurately can we predict the comprehension level of the modelers using 

the affective, behavioral, and cognitive measurements using deep learning networks? What are the 
various dimensions of explainability in such a predictive model?   
 

The experiment follows a time series repeated measure design as follows, with: 
 

 
Where the models are represented both in text and as visual business process models, and the 

participants are divided in a Latin-Square fashion. NASA TLX is a self-assessment of task load [11]. 
We aim to have around 60-70 participants in total. Participants will be recruited from NTNU student 
and employee population. NTNU has more than 40000 students across all academic fields. The way the 
study is to take care of protecting the participants privacy has been reported to and accepted by the 
national authorities in this matter (NSD-approval). 

 

 
Figure 1: Test setup 

 



Figure 1 illustrates the set-up and the different sensors in the multimodal experimental setup. The 
setup can provide a large variety of the information about the situation, not all necessary for the specific 
task, which will be listed below, and also support a richer level of   man-machine interactivity than e.g., 
the use of fMRI and other techniques dependent on more heavy machinery (e.g.  MR-machines) pursued 
in contemporary neuroscience. 

2.1. EEG Measurements 

 Lower Alpha wave power (8—9 Hz):  Relaxed, but not drowsy 
 Upper Alpha wave power (10—12 Hz): Normal, relaxed yet focused 
 Lower Beta wave power (13—17 Hz):            Normal, relaxed yet focused 
 Upper Beta wave power (18—30 Hz): Active thinking, alertness 
 Gamma wave power (more than 30 Hz): Higher mental activity  
 Theta wave power (4—7 Hz) :  Idling, inefficiency, related to ADHD 
 Fractal dimensions:    Long term memory 
 Bursts in alpha wave:   Performance 
 Alpha magnitude:    Workload 
 Decreasing Alpha and Theta band power: Cognitive load 
 Phase coupling of Theta and Gamma: Short term memory 
 Alpha band power:    Attention 
 Wavelet coefficients of Gamma band: Emotional intensity 
 Theta band power:    Memory load 
 Increasing theta and decreasing alpha: Increasing performance 
 Gamma-band activity:   Short term memory load 
 Decreasing Theta and Increasing Alpha Working memory 

2.2.  Eye Tracking Measurements 

 AOI5 hit: How much attention is paid to the different parts of the visual field. 
 AOI transition:     Attention shift proportions. 
 AOI revisit on the screen:   Failure of memory/Need for confirmation. 
 Local or global saccades (threshold on the saccade length): Focal6 or ambient7 cognitive 

processing. 
 Short fixations on a specific part :   Anticipation of finding information. 
 Number of saccades per unit time:   Decreasing task difficulty/ Increasing mental   

workload/ Increasing arousal. 
 Number of blinks per second:   Time on task, mental workload, fatigue. 
 Blink duration:     Drowsiness, mental workload. 
 Number of fixations per second   Decreasing search efficiency/Expertise based 

on the task / Difficulty in interpretation. 
 Fixation duration:    Attention. 
 Skewness of fixation duration histogram:  Cognitive processing. 
 Pupil diameter:     Increased emotions, anticipation mental 

workload/ Decreased drowsiness, fatigue. 
 Saccadic velocity:    High cognitive load, task difficulty, memory 

load. 
 Scanpath Velocity = number of forward saccades/number of backward saccades: Amount of 

information processing. 

 
5 AOI = Areas of interest that are defined by the researcher 
6 Focal: short saccades and long fixations 
7 Ambient = long saccades and short fixations 
 



 Saccade duration:    Task difficulty/ Decrease in information 
processing. 

 Saccade velocity:    Low arousal and sleepiness 
 Saccade velocity skewness:   Anticipation 
 Cross-recurrence (probability of looking at the same place at the same time): Increases 

during dialogue episodes also increase during certain dialogue types and verbal and deictic 
references. Correlates with collaboration quality and outcome. 

 Scanpath shape similarity (Overall shape, Same shape but different scale, Similar subparts):
      Collaborative outcome. 

 Gaze similarity:     Similar to cross recurrence but temporal 
measurement. 

 Mean and SD pupil diameter; number of long fixations; saccade length: Cognitive load. 

2.3. Wristband Measures 

Wristband measures are mostly used in prediction, so we lack the measures that are directly 
interpreted: HR = heart rate, EDA = electrodermal activation (skin conductance), BVP = blood volume 
pressure, TEMP = skin temperature 

 
 

 EDA peak height / EDA peak rate / EDA slope: Cognitive load. 
 BVP power spectrum low/high ratio / BVP amplitude / # EDA responses detected/ EDA 

mean/ EDA rising time / TEMP slope:  Stress. 
 TEMP (mean, sd, kurtosis, skewness)/ EDA peaks / HR variability (mean, sd, kurtosis, 

skewness):      Emotional stress. 
 EDA change detection measures:   Acute stress cycle (normal, aroused, 

stressed, relaxed). 
 HR recovery rate changes (duration and counts): Chronic stress. 

 
We can additionally compute the action units (AUs) from the faces of the participants capture using 

cameras. Once we have these AUs then we can compute various emotions as the combination of these 
AUs, such as Happiness, Sadness, Surprise, Fear, Anger, Disgust, and Contempt.  Second, we can 
compute the emotional profile (entropy of AUs, stability of emotions, emotional similarity between the 
peers) of the participants similar to [12].  We have not space here to go in detail on the machine learning 
interpretation of data, but this will be presented at the conference. We also note that using a large 
number of inputs in parallel brings additional challenges in synchronizing the output of the different 
sensors. 

3. Concluding remarks 

Whereas neuro-science techniques are being used for a number of tasks connected to IS usage and 
programming, the application in connection to the use of visual conceptual models has so far been 
limited. We have in this novel direction talk given an overview of a multi-modal approach for capturing 
neuro-scientific data in connection to conceptual modeling, which we hope will bring up ideas in the 
conference for how to bring this area of research forward. 
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