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Abstract
The proposed hand gesture recognition (HGR) system is designed to enhance human-computer interaction (HCI) and human-
robot interaction (HRI), which are crucial areas of research aimed at improving the way humans interact with computer or
robot systems. With the growing need for intelligent computers and robots in a range of applications, including healthcare,
manufacturing, and education, both HCI and HRI have gained significant importance. In this context, the HGR system plays a
vital role by enabling natural and intuitive communication between humans and technology through hand gestures. The
presented system uses a single camera and efficient image processing techniques that enable real-time gesture detection.
Unlike other methods, our approach employs a basic video camera, which is widely available on most computers, eliminating
the need for expensive and specialized hardware.
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1. Introduction
Hand gesture recognition (HGR) is a technology that
enables the identification and interpretation of hand and
finger movements in order to understand and respond to
user actions. This technology analyzes the visual signals
produced by hand gestures and finds the characteristic
patterns connected to particular commands or actions
using computer vision algorithms and machine learning
techniques. With numerous applications ranging from
virtual reality to industrial automation, HGR is a growing
area of research and development.

Hand gesture detection can be divided into two main
categories: static and dynamic. Static HGR is the abil-
ity to detect the static position of the hands at a given
moment. For example, it can be used to detect a hand
pointing in a direction or to detect an open or closed
hand. On the other hand, dynamic HGR refers to the
ability to detect hand movements in real time. This tech-
nology can be used to detect gestures such as waving or
finger movements. One of the main applications of hand
gesture recognition is in human-computer interaction.
Users can interact with devices in a more intuitive and
natural way by employing hand gestures. For instance,
without needing a real mouse or keyboard, hand gestures
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can be used to operate video games, move around virtual
worlds, or carry out tasks on a computer screen. Control-
ling a computer mouse in this way offers a more flexible,
intuitive, and natural way of interacting with the com-
puter than traditional input devices, making it one of the
most promising and practical applications. This technol-
ogy can also benefit users with disabilities, injuries, or
ergonomic issues that make it difficult or uncomfortable
to use a conventional mouse, as well as those who pre-
fer a more immersive and engaging way of navigating
and manipulating digital content. Additionally, there are
other potential uses for HGR in industries also as the
manufacturing field. HGR can be used to control ma-
chines and processes in the environment. For instance,
workers can use hand gestures to activate machinery
or control robotic arms, allowing for more efficient and
safer manufacturing processes. In conclusion, HGR is
a rapidly developing field that presents many chances
to enhance how people interact with technology. The
application-specific requirements and the trade-off be-
tween accuracy and user comfort determine the best hand
gesture detection method.

The paper proposes a real-time and computationally
efficient hand gesture recognition system with four steps:
Frame Recording, Hand Recognition, Hand Segmenta-
tion, and Gesture Recognition. It uses a simple algorithm
to detect and segment hands and predict executed ges-
tures. In contrast to current approaches, the suggested
hand gesture recognition system stands out for being
less expensive and eco-friendly. Instead of the complex
hardware and sensors needed by traditional systems, it
accomplishes this by capturing hand gestures using only
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a camera. This significantly lessens the requirement for
additional resources, increasing the system’s sustainabil-
ity and long-term cost-effectiveness.

2. Related Works
There are two main approaches to hand gesture recogni-
tion: Contact-based and Vision-based [1, 2, 3, 4].
Contact-based methods involve the use of sensors on a
glove to extract information about hand rotations, accel-
eration projections, and finger bending angles [5]. This
approach can achieve high accuracy, especially after a
calibration process to adapt the sensors to the user’s hand.
However, it can be costly and may not lead to a natural
interaction [6]. On the other hand, Vision-based methods
use visual devices such as stereo cameras, time of flight
cameras, or Kinect sensors to extract depth information
and create a 3D representation of the scene. Monocular
systems with a single RGB camera have also been used in
recent periods. These methods are generally cheaper and
more adaptable than contact-based methods. Moreover
a relevant number of studies are tackling the problem
from the point of view of behavioural analysis and the-
ory of mind[7, 8, 9]. Over the years, various methods
have been proposed for hand gesture recognition. These
range from the simplest method of wearing a colored
glove [10] that is recognized by a video camera, to meth-
ods that use skin color recognition [11] followed by hand
shape recognition. More advanced methods involve the
use of machine learning, such as Skeleton-Based Recog-
nition [12] and Deep-Learning Based Recognition [13].
Both contact-based and vision-based methods have their
advantages and disadvantages, and the choice of which
method to use depends on the specific application and
environment. Vision-based methods are typically used in
human-computer interaction and human-robot interac-
tion applications, while contact-based methods are more
commonly used in wearable devices for control purposes.
Hand gesture technology has two primary areas of ap-
plication, which are sign language recognition and video
gaming. Sign language is a means of communication for
individuals who are unable to speak, and it involves a se-
quence of hand gestures that represent letters, numbers,
and expressions. Researchers have proposed several ap-
proaches for sign language recognition, including the use
of gloves or uncovered hand interaction with a camera
using computer vision techniques to identify the ges-
tures [14] [15]. In contrast, video gaming utilizes hand
and body movements to interact with the game. The
Microsoft Kinect Xbox is an excellent example of gesture
interaction for gaming purposes, as it employs a camera
placed over the screen that connects with the Xbox de-
vice through the cable port to track the user’s hand and
body movements [16].

3. Proposed Method
For the proposed system, a simple and efficient algorithm
capable of working in real-time and with a small computa-
tional effort is proposed. The system pipeline comprises
four main steps: Frame Recording, Hand Recognition,
Hand Segmentation, and Gesture Recognition. Specif-
ically, for each image captured by the camera, a hand
detection process is performed to identify the portions of
the image where hands are present. Subsequently, a hand
segmentation step is conducted to generate a mask that
represents the shape of the detected hands. The resulting
mask is used as input for the Gesture Recognition step,
which predicts the executed gesture.

Figure 1: Pipeline scheme for the Hand Detection and Hand
Segmentation steps.

3.1. Hand Detection Step
The Hand Detection step is implemented with the aim of
generating a mask that represents the pixels correspond-
ing to a hand in an RGB image, along with a set of points
that indicate the centroids of the detected hand regions.
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This mask is obtained by combining two different masks
obtained from color analysis in the HSV color domain and
foreground detection. The color analysis approach in-
volves static thresholding of the image, using pre-defined
skin limit values in the HSV domain that may be adjusted
based on variations in skin tone or lighting conditions
within the image. The threshold values for Saturation or
Value properties may vary from 0 to 255. However, for
the Hue property, which represents the dominant color
family, the range is limited from 6 to 28. Foreground de-
tection is a well-established computer vision technique
that is used to distinguish between dynamic and static
pixels in image sequences by detecting moving objects.
To accomplish this, adjacent frames are analyzed to es-
tablish a model of the image’s background and identify
changes that occur. The generated mask, up to this point
from the system, is then applied to the original camera
frame to generate the Hand Pixel Mask, which contains
the pixels representing the possible detected hands. The
hands’ centroids are now determined using a clustering
algorithm, specifically a k-means algorithm [? 17, 18],
applied to the Hand Pixel Mask. However, tuning the pa-
rameter k is crucial to obtaining accurate results, and this
parameter is trained autonomously using the Elbow al-
gorithm. The Elbow algorithm determines the minimum
total intra-cluster distance in order to identify the optimal
value of k. The Sum of Squared Distances (SSD), which
in this particular case is computed as the squared sum
of distances between the pixels and their corresponding
centroids for each cluster, is used in order to determine
the best value for k. This process involves adding another
cluster and assessing whether the total SSD significantly
improves over the previous k value. Moreover, the dis-
tance of the hand from the camera can influence this
measure, since the closer the hand is to the camera, the
higher the pixel density on the image. Therefore, the SSD
is normalized based on the number of pixels present on
the Hand Pixel Mask. Furthermore, it is important to note
that the Elbow method relies on the slope of the resultant
function, which represents the normalized SSD values ob-
tained over the iterations on k. As a result, it is essential
to establish a slope threshold to act as a significant metric
for stopping the K increment process when the function
starts to become flat. In the event that this occurs, the
algorithm must be interrupted, and the previous stored
K value must be returned. The threshold values for the
slope and the normalized SSD play a critical role in the
sensitivity of the system in detecting new clusters. To
minimize the occurrence of false-positive clusters, the
proposed system includes an additional algorithm that
matches the centroids computed in the current frame
with those computed in the previous frame, using a dis-
tance metric such as the Euclidean distance. Since the
value of K is recomputed in each frame and can vary over
time, the mapping is not absolute, and it is possible for

new centroid clusters to be missed in situations where
the hands are in close proximity or overlapping. To make
the system more robust to noisy effects, a new position
of the centroids are computed in the following way:

newCentroidPos𝑡 = centroidPos𝑡−1 + step ·∆𝑡,

∆𝑡 = detectedCentroidPos𝑡 − centroidPos𝑡−1

This approach enables the system to track the trajectory
of each hand accurately in the image, even if a completely
wrong new observation is detected for the hand in some
sporadic time steps. For that reason, this error would
not significantly affect the results if enough frames per
second are captured. We have put a lot of effort on com-
puting the right hands’ centroids since they are critical
in eliminating any potential artifacts present in the Hand
Pixel Mask that represent other parts of the person’s skin.

3.2. Hand Segmentation Step
The Hand Segmentation step is implemented with the aim
of refining the output of the previous phase by generating
an Adaptive Skin Mask, by leveraging the outputs of the
Hand Detection step. This Adaptive Skin Mask is built
by using a more flexible threshold for selecting the skin
pixels that can adjust to varying lighting conditions that
may affect the hands over time. This approach aims to
provide greater flexibility compared to the fixed threshold
used in the Hand Detection step. The Hand Pixel Mask
is used in order to analyze the pixel distribution across
various color domains, such as RGB, HSV, and YCBCR,
through histogram analysis. Each domain produces a
unique threshold based on the mean and variance of the
found distributions. Specifically:

upperBound𝐷𝑖
= mean𝐷𝑖 + 2 · variance

lowerBound𝐷𝑖 = mean𝐷𝑖 − 2 · variance

and only the pixels that remain inside these bounds are
considered skin pixels. By converting the original RGB
image into different domains and focusing on the region
of interest (ROI) generated by using the Hand’s Centroids,
multiple masks can be generated. These masks are then
combined using a logical AND along with morphological
operations to improve the accuracy of the Adaptive Skin
Mask. It is important to note that in the case of multiple
hand detections in the image, the pixel distribution anal-
ysis is performed on each ROI. This enables the system
to adapt to different lighting effects that may affect the
hands.

3.3. Gesture Recognition Step
In the final phase of the pipeline, the Gesture Recognition
step involves the use of a Deep Convolutional Neural Net-
work (DCNN) that has been trained to accurately classify

54



Valerio Ponzi et al. CEUR Workshop Proceedings 52–58

Figure 2: The architecture of the proposed DCNN for the Gesture Recognition.

and recognize the specific gestures performed by the user.
Through the use of data augmentation techniques and
the training on a large dataset of labeled gesture samples,
the DCNN can effectively identify and classify the dif-
ferent gestures executed by the user with a high degree
of accuracy and reliability. In particular, the structure
of the model is presented in Fig. 2. It is composed of
two 2D convolutional layers (activation function ReLU
and kernel size 6x6 and 16x16, respectively) each of them
followed by a single 2D MaxPool layer (kernel 2x2). Af-
ter that, four fully connected layers are used in order to
produce the final prediction of the gesture. In detail, the
input and output features of these layers can be found in
the Fig. 2. In order to train the model a SGD optimizer is
used with a learning rate equal to 0.004 and momentum
equal to 0.9. In addition, a scheduler with an exponential
decay with gamma equal to 0.9 is used to decrease at each
epoch the learning rate.

3.3.1. Dataset

Figure 3: The 20 classes included in the Dataset.

To train the Gesture Recognition model, a comprehen-
sive dataset [19] consisting of a total of 24,000 images
and 20 distinct static hand gestures (Fig. 3) has been used.
Specifically, the training dataset consists of 18,000 images,

with 900 images corresponding to each gesture, while the
remaining 6,000 images (300 for each gesture) are divided
between the validation and test datasets. In addition,
various data augmentation techniques such as random
rotation (within the range of +15° to -15°), padding, ran-
dom cropping, flipping, etc. have been applied to increase
the robustness of the trained model. However, as the im-
ages in this dataset are segmented by humans, they do
not account for the potential noise that may be present
in general images obtained through unsupervised algo-
rithms. To address this limitation, Salt and Pepper noise
with p=0.2 was introduced to better simulate real-world
images and to increase the generalization power of the
network.

Figure 4: Original images contained in the dataset and their
corresponding augmented versions.

4. Results
Regarding the obtained results, a test accuracy of 93.8%
was achieved after training the model for 15 epochs. The
accuracy and loss plots during the training and validation
phases are shown in Fig. 5, 6, respectively. These plots
indicate that the model was not overfitting the training
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dataset. The Confusion Matrix (Fig. 7) demonstrates that
the model is highly capable of accurately predicting all
the different classes. The worst predicted class is the class
5, which is sometimes confused with the class 2 due to
their similarities, even under perfect conditions without
introducing noise (as shown in Fig. 3). This behavior is
also reflected in the F1 score shown in Table 1.

Figure 5: Accuracy over 15 epochs for the training and
validation of the model.

Figure 6: Loss over 15 epochs for the training and validation
of the model.

5. Conclusions
Our paper presented a potential solution for developing
accurate hand gesture recognition (HGR) system. Based
on the results, it can be said that the proposed method has
shown high accuracy and real-time functionality. The
test has indeed achieved an accuracy of 93.8% after train-
ing the model for 15 epochs. Despite the accurate detec-
tion and segmentation of hands, the research also focuses

Classes F1-score
Class-1 0.979
Class-2 0.881
Class-3 0.995
Class-4 0.980
Class-5 0.990
Class-6 0.826
Class-7 0.964
Class-8 0.978
Class-9 0.905
Class-10 0.981
Class-11 0.937
Class-12 0.988
Class-13 0.915
Class-14 0.934
Class-15 0.795
Class-16 0.921
Class-17 0.893
Class-18 0.965
Class-19 0.909
Class-20 0.837

Table 1
F1 score obtained by the model on the test dataset.

Figure 7: Confusion Matrix.

on testing the effectiveness of a robust convolutional neu-
ral network (CNN) capable of extracting features even
in the presence of imprecise masks. By defining various
scenarios based on accuracy, it can be concluded that
the proposed CNN model can still produce satisfactory
results in all classes.

The proposed system could therefore have great poten-
tial for various applications from the most known such
as human-computer interaction, virtual reality, and sign
language recognition to new ones. For example, during
the ongoing Covid-19 pandemic, a possible application
is the use of gesture recognition and mouse tracking in
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hospitals, which can help reduce the spread of the virus
by minimizing contact with shared surfaces. With the
aid of this technology, hospital staff and patients can in-
teract with computer systems and medical equipment
without physically touching them. This can support a
more hygienic and effective hospital environment while
also assisting in the prevention of the virus and other in-
fectious diseases. Furthermore, individuals with physical
limitations or disabilities may benefit particularly from
the use of gesture-based interfaces because it makes it
possible for them to interact with technology in a more
organic and intuitive way. Therefore, hand gesture recog-
nition technology holds the promise of revolutionizing
healthcare and enhancing patient care.
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