
Base Platform for Knowledge Graphs with Free
Software
Simon Bin, Claus Stadler, Norman Radtke, Kurt Junghanns, Sabine Gründer-Fahrer
and Michael Martin

Institute for Applied Informatics (InfAI), Leipzig

Abstract
We present an Open Source base platform for the CoyPu knowledge graph project in the resilience
domain. We report on our experiences with several tools which are used to create, maintain, serve, view
and explore a modular large-scale knowledge graph, as well as the adaptions that were necessary to
enable frictionless interaction from both performance and usability perspectives. For this purpose, several
adjustments had to be made. We provide a broad view of different programs which are of relevance to
this domain. We demonstrate that while it is already possible to achieve good results with free software,
there are still several pain points that need to be addressed. Resolution of these issues is often not only a
matter of configuration but requires modification of the source code as well.

Keywords
Free software, Architecture, Platform, RDF Knowledge Graphs, Crisis Informatics

1. Introduction

Semantic knowledge graphs (KGs) nowadays not only have become a key asset for search
engines but are at the centre of numerous applications, for instance, in data analytics, question
answering, recommendation systems, and decision support.

Current interest from research communities as well as industries and administration rests on
the capability of KGs to capture comprehensive machine-readable knowledge in application
scenarios and their strengths in integrating, managing and exploiting information from hetero-
geneous data sources at scale. One especially interesting application scenario for KGs is crisis
and resilience research. Semantic KGs can play a crucial role in increasing transparency of, for
instance, economic value chains and in understanding the complex mechanisms of crisis factors
at a global level.
Although methodologies and strategies for building knowledge graphs vary based on the

specific conditions and requirements of individual use cases, the creation, utilisation, and
maintenance of KGs involve several common necessities and corresponding implementation
phases. These processes have been discussed for more than twenty years [1, 2, 3, 4]. While
general approaches for KG development and maintenance are proposed, limited guidance
regarding the selection of efficient tools for implementing these methodologies is available.

Second International Workshop on Linked Data-driven Resilience Research (D2R2’23) co-located with ESWC 2023, May
28th, 2023, Hersonissos, Greece
Envelope-Open sbin@informatik.uni-leipzig.de (S. Bin)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:sbin@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Simon Bin et al. CEUR Workshop Proceedings 1–13

Knowledge graph engineering must address additional challenges in today’s rapidly evolving
landscape. Firstly, contemporary knowledge graphs should adhere to Linked Open Data require-
ments, such as the FAIR [5] data principles (Findable, Accessible, Interoperable, and Reusable)
and the 5-star Open Data Model.1 These standards ensure that the resulting knowledge graphs
can be easily discovered, understood, and integrated with other datasets, promoting data sharing
and collaboration across various domains. Secondly, knowledge graph engineering projects
often involve teams with diverse backgrounds and expertise levels in ontology authoring.
Consequently, the tools used for KG engineering must cater to both ontology experts and
domain-specific specialists, facilitating effective real-time collaboration and allowing all team
members to contribute meaningfully to the development and maintenance of the knowledge
graph.

We aim to create a knowledge graph-based platform for managing and exploring supply chain
data. The platform will offer customised views for scientists, engineers, and decision-makers to
foster collaboration and interaction with the knowledge graph. Our goal is to enable users to
analyse complex data, make informed decisions, and contribute to a resilient economy.

2. Related work

Recent studies [6, 7, 8, 9, 10] have shown that there are many different approaches for build-
ing specific KGs. Limitations are often faced regarding the approaches’ scalability, metadata
and ontology management, entity resolution and fusion, incremental updates, and quality
assurance [11].
While certain commercial tools like metaphactorya or the Enterprise Knowledge Graph

Platformb claim to offer comprehensive, all-in-one solutions, free and open-source alternatives
often only address specific aspects. Consequently, users seeking to employ free and open-source
tools must combine multiple applications and platforms to arrive at a complete knowledge
graph platform.
When embarking on the creation of a custom stack for knowledge graph and ontology

engineering, a valuable starting point for discovering relevant tools are link collections. Two
notable lists in this domain include the Awesome Knowledge Graph2 and the Awesome Semantic
Web3 repositories on GitHub. However, it is crucial to be aware that despite being curated,
these lists may still suffer from link rot, leading to outdated or non-functional resources. The
previously popular list hosted on the W3C website4 is rather outdated, with only 4 out of
21 listed tools still operable at the time of writing in the category of “RDF or OWL browser”
(LodViewc, Rhizomer [12], Structured Data Linter, and VocBench [13]). Refer to Table 1 for an
overview of the tools mentioned in this paper.

1https://5stardata.info/
2https://github.com/totogo/awesome-knowledge-graph
3https://github.com/semantalytics/awesome-semantic-web
4https://www.w3.org/2001/sw/wiki/Category:RDF_or_OWL_Browser

2

https://5stardata.info/
https://github.com/totogo/awesome-knowledge-graph
https://github.com/semantalytics/awesome-semantic-web
https://www.w3.org/2001/sw/wiki/Category:RDF_or_OWL_Browser

Simon Bin et al. CEUR Workshop Proceedings 1–13

Widoco

Protégé

Ontodia
Linked Data Viewer

tarql
RPT

View

Source

T-Box A-Box

RDF

Shacl

DALICCRDFS

OWL

Apache Jena Fuseki

Figure 1: Overview of our solution architecture

3. Solution and other tools

In the following, we will show how we tackle the previous concerns with free and open-source
tools. Our solution and the utilised tools are shown in Figure 1.

Ontology authoring. Part of creating knowledge graphs involves creating a schema (onto-
logy) for your data. We used the venerable Protégé [14] for this purpose. We looked but failed
to find other comparable OWL5 authoring tools. While working on the ontology together with
the partners, we found the best working approach to discuss one step of ontology evolution in
a group and then designate one person to implement the change. Afterwards, the change could
be reviewed on a source code control system. For the latter, it should also be ensured that all
engineers are using the same version of Protégé, this will ensure that the textual difference of
changes to the ontology is minimal and limited to the actual changes implemented.

INFO
The commercial tool TopBraid Composerd might provide an alternative, but we did not
evaluate it (the free edition would crash when trying to open our ontology). VocBench might
also be a candidate (we did not try it.)

To document and visualise our ontologies, we used the Widoco [15] documentation tool
in an automated fashion from the command line. Widoco extends LODE and also includes
WebVOWL [16], a graph-based visualisation of the ontology document. You can inspect the res-
ult on ‹https://schema.coypu.org/›. We have created a pipeline that updates our documentation
whenever the ontology files are changed in the Git source code repository on GitLab.6

5Web Ontology Language, https://www.w3.org/TR/owl2-overview/
6Source code for the pipeline script on gitlab.com/coypu-project/coy-ontology in the supplements folder

3

https://schema.coypu.org/
https://www.w3.org/TR/owl2-overview/
https://gitlab.com/coypu-project/coy-ontology/

Simon Bin et al. CEUR Workshop Proceedings 1–13

O
nt

ol
og

y
Sp

ec
ifi

ca
tio

n
D

ra
ft

back to ToC or Class ToC

back to ToC or Class ToC

Customerc

IRI: https://schema.coypu.org/global#Customer

An organization that sources something needed such as a product or service from
another organization.

Term status
CoyPu graph: Not currently in use

has super-classes

Company c

identity militiasc

IRI: https://schema.coypu.org/global#IdentityMilitias

Term status
CoyPu graph: In use, distinct subjects: 7977

Term rationale
CoyPu graph: ---USED BUT NOT IN ONTOLOGY---

Figure 2: CoyPu Ontology documentation enriched with usage information, hinting at incomplete
ontology

INFO
Potential alternatives for Widoco include pyLODEe or JODf. In our initial attempt, JOD did
not readily handle multiple ontologies and there was no way to reference the entities in the
documentation. It was also hiding too much information behind tabs, obstructing the view
at a glance. PyLODE did not support our annotations out of the box. These issues might be
fixable by spending some time on the templates, however.

The availability of the ontology documentation helps in locating the classes and properties to
use when creating the mappings (see Mapping structured data to RDF data). To further enhance
the usefulness of our documentation for the modelling workflow, we enrich the ontology
documentation with usage statistics from the actual instance data (see Figure 2). In the example,
the term “identity militias” has been found in use in our knowledge graph, but not yet described
in the ontology, whereas the term “Customer” is contained in the ontology but not (yet) used
in the knowledge graph. Calculation of the usage statistics is done using the RDF Processing
Toolkit (RPT)g with a set of VoID [17]-generating SPARQL queries.7

INFO
Automated pipelines that run automatically whenever changes to your ontology are commit-
ted to a source code control system, require integration with the source code control system.
There are two common ways to realise pipelines. One is to use the platform-specific CI/CD
pipelines,8 the other is using a Webhook event9 to trigger the start of an external pipeline.

7https://gitlab.com/coypu-project/dataset-stats/-/tree/main/compact
8Forgejo/Woodpecker: https://woodpecker-ci.org/docs/usage/intro,
GitLab: https://docs.gitlab.com/ee/ci/quick_start/,
GitHub: https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/

4

https://gitlab.com/coypu-project/dataset-stats/-/tree/main/compact
https://woodpecker-ci.org/docs/usage/intro
https://docs.gitlab.com/ee/ci/quick_start/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/

Simon Bin et al. CEUR Workshop Proceedings 1–13

To further increase the quality of our ontology, we have started to implement RDFUnit [18]
rules that check the ontology details and version. Another standard with growing adoption
is the Shapes Constraint Language (SHACL),10 which might be validated for example using
pySHACL [19] or Jena SHACLh.

Mapping structured data to RDF data. A big part of our knowledge graph is not our
original creation, but rather the mapping and integration, combination, and refinement of
existing data sources. Most of the data sources we used are structured data, for example in
XML, GML, JSON, CSV formats or data returned by Web APIs. Other parts of the data were
also extracted and semantified from unstructured or semi-structured data like news articles.

Several different tools were used by the different project partners, for example Tarqli, RPT or
Morph-KGC [20]. Each tool was chosen by the familiarity of the expert user and applicability
to the data source that is to be mapped. Tarql for instance is an excellent choice to map CSV
to RDF. RPT on the other hand can easily process CSV, JSON, and XML input files as well as
web APIs and remote services using SPARQL, and Morph-KGC can map CSV or connect to SQL
databases using RML.

INFO
There is a plenitude of mapping tools that can be found. Other projects that might be worth
investigating are SPARQL-Generate [21], RML [22], SPARQL Anything [23].

We found the concise syntax of SPARQL as used in Tarql and RPT to be very refreshing
compared to the rather detailedway inwhich R2RMLmapping documents arewritten. Especially
the way to register custom functions in RML is quite heavy-handed, whereas RPT allows defining
such functions using either JavaScript or Java annotations.11 We also tested some commercial
web-form based mapping editor, but found it to be rather cumbersome when having to edit and
refine the mappings compared to a good old programmers’ text editor.
Further tools used by our partners include Named entity recognition from text using Fal-

con 2.0 [24] as well as many custom-written programs.12 For some of these, the Python RDFLibj

was a popular choice when producing RDF data.

Dereference and visualise the Graph. In our experience in the CoyPu project, we found
it extremely helpful to grasp the Semantic Web concepts when the IRIs are dereferenceable,
i.e. you can open the IRIs of your graph entities in the browser. Users and experts alike want
to see and understand what is “in” the graph. The classes and properties are dereferenceable
through the use of Widoco and publishing the ontology documentation at the same location
as the Ontology IRI. To make the data dereferenceable and browseable, tools like Trifidk and
LodView can be used. It was easy to start Trifid with the Docker image provided by the authors.
However, the default view is a bit bland. There is a great overview of tools presented in [25],
but we found that at the time of writing only LodView and Trifid were still available.

9https://progrium.github.io/blog/2007/05/03/web-hooks-to-revolutionize-the-web/
10https://www.w3.org/TR/shacl/
11https://docs.oracle.com/javase/6/docs/technotes/guides/language/annotations.html
12https://docs.coypu.org/ExternalRepositories.html

5

https://progrium.github.io/blog/2007/05/03/web-hooks-to-revolutionize-the-web/
https://www.w3.org/TR/shacl/
https://docs.oracle.com/javase/6/docs/technotes/guides/language/annotations.html
https://docs.coypu.org/ExternalRepositories.html

Simon Bin et al. CEUR Workshop Proceedings 1–13

 Linked Data Viewer

Greece

https://data.coypu.org/country/GRC

a ▨ Country @en

▨ rdf: type ▨ Country @en

▨ geo:hasGeometry ▨ : country/GRC/geometry

▨ : country/GRC/geometry/boundary

▨ rdfs: label Greece @en

Resolve labels en

Calculate inferences

Local Browsing | Explore | Link

+

−

 Leaflet | © OpenStreetMap

Figure 3: Linked data viewer showing some subject triples

Our solution for IRI dereferencing (see Figure 3) is built on top of the Trifid rendering
componentl. Compared to Trifid, we have extended the code for full client-side querying,
a map widget for resources with geospatial data, rendering of inverse relations (similar to
LodView), source attribution (useful to know which data set the entity is from), lazy pagination
for many property values, label resolution and language switching, colour cards for name-
spaces and optional inferencing. Furthermore, we support browser-based authentication for
password-protected graph databases.

To make the graph explorable and the graph-based nature understandable, we have found the
Ontodia Graph Explorer (see Figure 4) [26]. It allows one to interactively add existing entities
from the knowledge graph to a drawing area on the screen, and will automatically add the links
between entities. It can also show the Ontology schema in a tree fashion and will show a list
of instances of the selected ontology class. We refined the graph explorer with a geo-spatial
map widget and the possibility to hide obstructive properties. Further, we included meta-data
schema and concept schema in the class tree. As a convenience, we have also integrated a link
into the Linked Data Viewer which will add the current entity to the graph explorer, and we
have made it possible to share created knowledge graph diagrams with other users through
custom links.

6

Simon Bin et al. CEUR Workshop Proceedings 1–13

Classes

ConceptScheme

MetaThing

Thing

Company

Event

Feature

Industry

Infrastructure

Location

City

Continent

Country
Instances

Has type Country

Syria

Thailand

Saint Vincent and the
Grenadines

United States of America

Slovenia

Saint Lucia

Sri Lanka

Niger

Iceland

Philippines

has actor

has country location

hasGeometry

has country locationC
Country

Russia E
External%2FOtherForces, StateForces

Police Forces of Russia (2000-) F…

A
Attack, Conflict, Event

Attack - Ukraine - Simferopol

IRI: https://data.coypu.org/event/acled/8005488

comment On 11 May 2021, the
Russian Federal
Security Service shot
dead an Uzbek
national in Simferopol
district, Crimea,
during searches.
Human rights activists
condemned police
b t lit

A
Administrative…

Ukraine

T
Thing

geometry

IRI: https://data.coypu.org/event/acled/8005488/geometry

+

−

 Leaflet | © OpenStreetMap contributors

Figure 4: Ontodia Graph Explorer with Map widget

INFO
LODmilla [27] would be another knowledge graph browser, but it does not receive much
attention these days. Another tool for exploring knowledge graphs is the RDF surveyor [28].
It extends the Trifid/LodView concept with more exploratory options. (We did not evaluate
these tools.)

For interactive testing of SPARQL queries and their results, we found YASGUI [29] and
GeoYASGUI [30] very convenient. Thanks to the integration of Google Charts and Openstreet-
map13 map widget, it is possible to present and verify the SPARQL results of geospatial data
and numeric data easily.

Documentation and Dataset catalogue. To provide project documentation, we make use of
Just the Docsm. The documentation can be written in Markdown in our source control system
and is then deployed on ‹https://docs.coypu.org/› using a pipeline. The configuration has been
extended with a “Try it!” link on SPARQL queries,14 so that these can be tried out directly on
the Jena Fuseki User Interface.
Additionally, a tabular listing of our data catalogue content is published at ‹https://datasets.

coypu.org/› by automatically executing SPARQL queries on our knowledge graph and rendering
the result to Markdown. This is done by feeding the SPARQL CSV output [31] into csvlookn.

The data catalogue itself is hand-created in RDF/Turtle format and collects all the details about

13https://www.openstreetmap.org, implemented with Leaflet: https://leafletjs.com/
14https://gitlab.com/coypu-project/skynet/platform-exhibits/-/tree/main/just-the-docs

7

https://docs.coypu.org/
https://datasets.coypu.org/
https://datasets.coypu.org/
https://www.openstreetmap.org
https://leafletjs.com/
https://gitlab.com/coypu-project/skynet/platform-exhibits/-/tree/main/just-the-docs

Simon Bin et al. CEUR Workshop Proceedings 1–13

the externally sourced data that is being used in the CoyPu project. This includes licensing
information, links to the data source, the target RDF graph where this data set is loaded and a
link to the Data Licenses Clearance Center [32]15 (DALICC) licence where available. We plan
to record further meta-data into our catalogue, such as the tools involved in transforming the
original data into RDF data.

INFO
The DALICC offers a RESTful web service that supports automated clearance of rights thus
supporting the legally secure and time-efficient re-utilisation of third-party data sources. The
service is also named DALICC and the source code can be found on GitHub. It is possible
to run your own instance of DALICC but some features like the usage of a remote SPARQL
endpoint are missing at the moment. We also consider extending the service with a feature
that helps to examine the rights and permission of data, derived from multiple datasets (e.g.
via SPARQL queries).

Hosting and serving the knowledge graph. We use Apache Jena [33] Fuseki backed by
Apache Jena TDB2, both combined making a full-fledged SPARQL Endpoint for scripts and
programs to work with. Getting started is mostly straightforward, for a simple deployment you
can download the Apache Jena Fuseki release and start it (Java is required).
Extensive customisation has been added to our Jena Fuseki. First of all, we configured geo-

spatial16 and Lucene [34] text index in Fuseki.17 The endpoint for the Graph Store Protocol18

was moved from the Fuseki-default to a /data sub-path, to stop inadvertent dumps of the full
graph. The endpoint has been access-restricted using Apache Shiro that is included in Fuseki19

(we hope to make it publicly available at a later date).
We identified a performance bottleneck involving SPARQL FROM queries and implemented a

FROM-as-GRAPH filter for Jena. Concerning the geospatial data, we added GeoSPARQL functions
such as lat, lon (to access the latitude and longitude of a point), centroid and aggUnion
(from the upcoming GeoSPARQL 1.1 standard [35]) and simplifyDp (to simplify a geometry)
or lineMerge20 functions, which we have suggested to the Open Geospatial Consortium for
consideration. Additionally, the geospatial index was reprogrammed to work on a per-graph
level rather than on the whole data set, and we also implemented a Fuseki service to recompute
the geo-index of individual graphs at run-timeo. The initial loading time of the index was
also heavily improved due to a custom serialisation format. To aid in RDFS21 reasoning and
owl:sameAs [36] resolution, we have implemented two new SPARQL-SERVICE based RDFS
and sameAs inferencers. They are also conveniently exposed in our linked data viewer (see
Dereference and visualise the Graph). These additional functions are implemented in our JenaXp

extension modules for Apache Jena.

15https://www.dalicc.net/
16https://jena.apache.org/documentation/geosparql/geosparql-assembler
17https://jena.apache.org/documentation/query/text-query.html#text-dataset-assembler
18https://www.w3.org/TR/sparql11-http-rdf-update/
19https://jena.apache.org/documentation/fuseki2/fuseki-security.html
20https://github.com/opengeospatial/ogc-geosparql/issues/402
21http://www.w3.org/TR/rdf-schema/

8

https://www.dalicc.net/
https://jena.apache.org/documentation/geosparql/geosparql-assembler
https://jena.apache.org/documentation/query/text-query.html#text-dataset-assembler
https://www.w3.org/TR/sparql11-http-rdf-update/
https://jena.apache.org/documentation/fuseki2/fuseki-security.html
https://github.com/opengeospatial/ogc-geosparql/issues/402
http://www.w3.org/TR/rdf-schema/

Simon Bin et al. CEUR Workshop Proceedings 1–13

Server Infrastructure. The knowledge graph and the associated processes cannot conveni-
ently operate on free resources. To deploy our knowledge graph, we have a physical server
with 250 GiB main memory, of which the Apache Jena Fuseki server is using 50 GiB. According
to one of the Jena maintainers,22 per TDB2 database approx. 2 GiB heap should be assigned
(we have configured 10 databases). We have configured the Java heap space to 32 GiB23 (after
having experimented with smaller values, but those were found insufficient when executing
larger CONSTRUCT or UPDATE queries).

The on-disk database files take currently 200 GiB of disk space, which amounts to 700 million
(7 ⋅ 108) triples spread across 39 graphs. For the spatial index for GeoSPARQL, 300 MiB of disk
space is used for our 4 million (4 ⋅ 106) geometries. The database files are stored on 4 SATA QLC
SSDs operating in a software RAID. Fuseki is accessing the database files using memory-mapped
I/O. Scanning through the whole index takes 200 seconds and scanning the whole literal table
takes 50 minutes.

To create the initial database, we used RPT to convert all the output from our various mapping
tools into N-Quads format and then the xloader script included in Fuseki. We did this after
testing all the various loaders provided by Fuseki and determining that this script works best for
our hardware/configuration. Altogether, it takes 8 hours for our system to convert the source
RDF files into a Fuseki TDB2 database. The break-down is as follows: 3h 20m for mapping the
data, 4h 20m for loading into TDB2, 1 minute to calculate the statistics for the query optimiser,
7 minutes to calculate the geospatial index for GeoSPARQL queries, 20 minutes to calculate a
Lucene index for full-text search on the RDFS labels and just short of 1 minute to reload the
database. (All times, sizes, and triple counts are approximate.)24

4. Conclusion

Many free and open-source software components have been created by the community when it
comes to knowledge graph serving and preparation. Nevertheless, it can be challenging to set
up the individual software components and configure them in the right way to work together.
We had to manually configure nearly all of the components, which requires a diverse skill set
ranging from Docker, YAML, JSON, and Bash, to SPARQL, JavaScript, and Java.
The remaining pain points are the long loading times and the query performance for more

complex SPARQL queries as well as missed automatic optimisations when using the full-text
search. Other issues could be improved, such as the per-graph Geo-index, but could be further
enhanced for example by implementing a self-updating geo-index.

We gave impulses to heavily optimise the speed of certain specific queries such as the named
graph list27 and raised other issues as we met them. Other improvements have been contributed

22https://lists.apache.org/thread/43vo5pdgfy0mst2pl6ppyyf65bwf7yb2
23java -Xmx command line flag
24An initial stumbling block for us was that the server was originally provided to the project with a ZFS RAID-1
filesystem [37] on Ubuntu. Despite database-specific tuning25 we were unable to make it work satisfactorily. The
system Input-output load became unbearably high so we had to reinstall the system using the ext426 filesystem.

25https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/Workload%20Tuning.html
26https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
27https://github.com/apache/jena/pull/1655

9

https://lists.apache.org/thread/43vo5pdgfy0mst2pl6ppyyf65bwf7yb2
https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/Workload%20Tuning.html
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://github.com/apache/jena/pull/1655

Simon Bin et al. CEUR Workshop Proceedings 1–13

directly by us, such as speed-ups for certain path query patterns, geospatial queries, or a whole
new bulk SPARQL service and cache implementation. Yet other improvements such as the
per-graph geo-index are still work-in-progress in our fork of Apache Jena, or part of our JenaX
extension modules for Apache Jena. We plan to upstream our changes if possible, and to provide
a docker compose file for easy reproducing of the set-up described in this paper.

Acknowledgments

The authors acknowledge the financial support by the Federal Ministry for Economic Affairs
and Energy of Germany in the project Coypu (project number 01MK21007[A-L]).

References

[1] M. Gruninger, Methodology for the design and evaluation of ontologies, in: International
Joint Conference on Artificial Intelligence, 1995.

[2] N. Noy, Ontology development 101: A guide to creating your first ontology, 2001.
[3] M. C. Suárez-Figueroa, A. Gómez-Pérez, M. Fernández-López, The neon methodology for

ontology engineering, in: Ontology Engineering in a Networked World, 2012.
[4] S. Auer, L. Bühmann, C. Dirschl, O. Erling, M. Hausenblas, R. Isele, J. Lehmann, M. Martin,

P. Mendes, B. Nuffelen, C. Stadler, S. Tramp, H. Williams, Managing the life-cycle of linked
data with the lod2 stack, volume 7650, 2012.

[5] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., The fair guiding
principles for scientific data management and stewardship, Scientific data 3 (2016) 1–9.

[6] A. Hur, N. Janjua, M. Ahmed, A survey on state-of-the-art techniques for knowledge
graphs construction and challenges ahead, in: 2021 IEEE Fourth International Conference
on Artificial Intelligence and Knowledge Engineering (AIKE), IEEE, 2021, pp. 99–103.

[7] P. Hitzler, A review of the semantic web field, Commun. ACM 64 (2021) 76–83.
[8] X. Zhu, Z. Li, X. Wang, X. Jiang, P. Sun, X. Wang, Y. Xiao, N. J. Yuan, Multi-Modal Know-

ledge Graph Construction and Application: A Survey, IEEE Transactions on Knowledge
and Data Engineering (2022) 1–20.

[9] V. Ryen, A. Soylu, D. Roman, Building Semantic Knowledge Graphs from (Semi-)Structured
Data: A Review, Future Internet 14 (2022) 129.

[10] G. Tamašauskaitė, P. Groth, Defining a Knowledge Graph Development Process Through
a Systematic Review, ACM Trans. Softw. Eng. Methodol. 32 (2023) 27:1–27:40.

[11] M. Hofer, D. Obraczka, A. Saeedi, H. Köpcke, E. Rahm, Construction of knowledge graphs:
State and challenges, Semantic Web (2023) 1–43.

[12] R. García, J.-M. López-Gil, R. Gil, Rhizomer: Interactive semantic knowledge graphs
exploration, SoftwareX 20 (2022) 101235.

[13] A. Stellato, M. Fiorelli, A. Turbati, T. Lorenzetti, W. Van Gemert, D. Dechandon, C. Laaboudi-
Spoiden, A. Gerencsér, A.Waniart, E. Costetchi, et al., Vocbench 3: A collaborative semantic
web editor for ontologies, thesauri and lexicons, Semantic Web 11 (2020) 855–881.

10

Simon Bin et al. CEUR Workshop Proceedings 1–13

[14] M. A. Musen, The protégé project: a look back and a look forward, AI matters 1 (2015)
4–12.

[15] D. Garijo, Widoco: a wizard for documenting ontologies, in: The Semantic Web–ISWC
2017: 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part II 16, Springer, 2017, pp. 94–102.

[16] S. Lohmann, V. Link, E. Marbach, S. Negru, Webvowl: Web-based visualization of onto-
logies, in: Knowledge Engineering and Knowledge Management: EKAW 2014 Satellite
Events, VISUAL, EKM1, and ARCOE-Logic, Linköping, Sweden, November 24-28, 2014.
Revised Selected Papers. 19, Springer, 2015, pp. 154–158.

[17] K. Alexander, R. Cyganiak, M. Hausenblas, J. Zhao, Describing linked datasets, Linked
Data on the Web Workshop (LDOW 09), in conjunction with 18th International World
Wide Web Conference (WWW 09) 538 (2009).

[18] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, Databugger:
A test-driven framework for debugging the web of data, in: Proceedings of the Companion
Publication of the 23rd International Conference on World Wide Web Companion, WWW
Companion ’14, International World Wide Web Conferences Steering Committee, 2014,
pp. 115–118.

[19] A. Sommer, N. Car, pySHACL, 2022. doi:10.5281/zenodo.7059600.
[20] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. S. Pérez, O. Corcho, Morph-kgc: Scalable

knowledge graph materialization with mapping partitions, Semantic Web (2022).
[21] M. Lefrançois, A. Zimmermann, N. Bakerally, A SPARQL extension for generating RDF

from heterogeneous formats, Proc. Extended Semantic Web Conference (ESWC) (2017).
[22] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, Rml:

A generic language for integrated rdf mappings of heterogeneous data., Ldow 1184 (2014).
[23] E. Daga, L. Asprino, P. Mulholland, A. Gangemi, Facade-x: an opinionated approach to

sparql anything, Studies on the Semantic Web 53 (2021) 58–73.
[24] A. Sakor, K. Singh, A. Patel, M.-E. Vidal, Falcon 2.0: An entity and relation linking tool

over wikidata, in: Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, CIKM ’20, Association for Computing Machinery, New York,
NY, USA, 2020, p. 3141–3148.

[25] B. Regalia, K. Janowicz, G. Mai, Phuzzy. link: A sparql-powered client-sided extensible
semantic web browser., in: VOILA@ ISWC, 2017, pp. 34–44.

[26] D. Mouromtsev, D. S. Pavlov, Y. Emelyanov, A. V. Morozov, D. S. Razdyakonov, M. Galkin,
The simple web-based tool for visualization and sharing of semantic data and ontologies.,
in: ISWC (Posters & Demos), 2015.

[27] A. Micsik, Z. Tóth, S. Turbucz, Lodmilla: Shared visualization of linked open data, in:
Theory and Practice of Digital Libraries–TPDL 2013 Selected Workshops: LCPD 2013,
SUEDL 2013, DataCur 2013, Held in Valletta, Malta, September 22-26, 2013. Revised Selected
Papers 3, Springer, 2014, pp. 89–100.

[28] G. Vega-Gorgojo, L. Slaughter, B. M. Von Zernichow, N. Nikolov, D. Roman, Linked data
exploration with rdf surveyor, IEEE Access 7 (2019) 172199–172213.

[29] L. Rietveld, R. Hoekstra, The yasgui family of sparql clients 1, Semantic Web 8 (2017)
373–383.

[30] W. Beek, E. Folmer, L. Rietveld, J. Walker, Geoyasgui: The geosparql query editor and

11

http://dx.doi.org/10.5281/zenodo.7059600

Simon Bin et al. CEUR Workshop Proceedings 1–13

result set visualizer, The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 42 (2017) 39.

[31] A. Seaborne, Sparql 1.1 query results CSV and TSV formats. W3C recommendation, 2013.
[32] T. Pellegrini, V. Mireles, S. Steyskal, O. Panasiuk, A. Fensel, S. Kirrane, Automated rights

clearance using semantic web technologies: The dalicc framework, Semantic Applications:
Methodology, Technology, Corporate Use (2018) 203–218.

[33] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, Jena: imple-
menting the semantic web recommendations, in: Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, 2004, pp. 74–83.

[34] A. Białecki, R. Muir, G. Ingersoll, L. Imagination, Apache lucene 4, in: SIGIR 2012 workshop
on open source information retrieval, 2012, p. 17.

[35] N. J. Car, T. Homburg, Geosparql 1.1: Motivations, details and applications of the decadal
update to the most important geospatial lod standard, ISPRS International Journal of
Geo-Information 11 (2022) 117.

[36] B.Motik, Y. Nenov, R. Piro, I. Horrocks, Handling owl:sameAs via rewriting, in: Proceedings
of the AAAI Conference on Artificial Intelligence, volume 29:1, 2015.

[37] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, M. Shellenbaum, The zettabyte file system,
in: Proc. of the 2nd Usenix Conference on File and Storage Technologies, volume 215,
2003.

12

Simon Bin et al. CEUR Workshop Proceedings 1–13

Table 1 Overview of the tools mentioned in this work; +repository updated after May 2022

Ref. Name Category Licence Repository / Website

Commercial
a metaphactory metaphacts.com

b
Enterprise Knowledge
Graph Platform eccenca.com

d TopBraid Composer Authoring franz.com/agraph/tbc
Free software

[13]+ VocBench Authoring BSD-3-Clause vocbench.uniroma2.it

[14]+
Protégé
Version 5.6.1

Authoring BSD-2-Clause protege.stanford.edu

[15]+
Widoco
Version 1.4.17

Docu. Apache-2.0 github.com/dgarijo/Widoco

e+ pyLODE Docu.
GPL-3.0 /

BSD-3-Clause github.com/rdflib/pyLODE

f+ JOD Docu. MIT github.com/eccenca/jod
m+ Just the Docs Docu. MIT github.com/just-the-docs/just-the-docs
n+ csvkit / csvlook Docu. MIT csvkit.readthedocs.io

g+
RDF Processing
Toolkit Mapping+ Apache-2.0

github.com/SmartDataAnalytics/
RdfProcessingToolkit

i Tarql Mapping BSD-2-Clause tarql.github.io
[20]+ Morph-KGC Mapping Apache-2.0 morph-kgc.readthedocs.io
[21]+ SPARQL-Generate Mapping Apache-2.0 ci.mines-stetienne.fr/sparql-generate
[22]+ RML Mapping MIT rml.io
[23]+ SPARQL Anything Mapping Apache-2.0 sparql-anything.cc

[24]
Falcon
Version 2.0

NER MIT labs.tib.eu/falcon/falcon2

[18]+ RDFUnit Quality Apache-2.0 github.com/AKSW/RDFUnit
[19]+ pySHACL Quality Apache-2.0 github.com/RDFLib/pySHACL
h+ Jena SHACL Quality Apache-2.0 jena.apache.org/documentation/shacl/
c+ LodView Deref. MIT github.com/LodLive/LodView
k+ Trifid Deref. Apache-2.0 github.com/zazuko/trifid

l+
Linked Data
Viewer Deref. MIT

github.com/AKSW/
Linked-Data-Viewer

[12]+ Rhizomer Explore GPL-3.0 rhizomik.net

[26]
Ontodia
Graph Explorer

Explore
LGPL-2.1+ github.com/zazuko/graph-explorer

changes on https://github.com/AKSW/graph-explorer

[27] LODmilla Explore Apache-2.0
lodmilla.sztaki.hu
github.com/dsd-sztaki-hu

[28] RDF surveyor Explore Apache-2.0
tools.sirius-labs.no/rdfsurveyor
github.com/guiveg/rdfsurveyor

[29]+ YASGUI Explore MIT yasgui.triply.cc

[30] GeoYASGUI Explore MIT
github.com/Triply-Dev/
YASGUI.YASR-deprecated/tree/geo

j+
RDFLib
Version 6.2.0

BSD-3-Clause rdflib.readthedocs.org

[33]+
Apache Jena
Version 4.8.0

Apache-2.0 jena.apache.org
work-in-progress on https://github.com/AKSW/jena

o+
Geo-Service
for Jena Fuseki

Apache-2.0 github.com/AKSW/fuseki-mods

p+ JenaX Apache-2.0 github.com/Scaseco/jenax

13

https://metaphacts.com/product
https://eccenca.com/products/enterprise-knowledge-graph-platform-corporate-memory
https://franz.com/agraph/tbc/
https://vocbench.uniroma2.it/
https://protege.stanford.edu/
https://github.com/dgarijo/Widoco
https://github.com/rdflib/pyLODE
https://github.com/eccenca/jod
https://github.com/just-the-docs/just-the-docs#just-the-docs
https://csvkit.readthedocs.io/en/latest/scripts/csvlook.html
https://github.com/SmartDataAnalytics/RdfProcessingToolkit
https://github.com/SmartDataAnalytics/RdfProcessingToolkit
https://tarql.github.io/
https://morph-kgc.readthedocs.io
https://ci.mines-stetienne.fr/sparql-generate/
https://rml.io/
https://sparql-anything.cc/
https://labs.tib.eu/falcon/falcon2/
https://github.com/AKSW/RDFUnit
https://github.com/RDFLib/pySHACL
https://jena.apache.org/documentation/shacl/
https://github.com/LodLive/LodView
https://github.com/zazuko/trifid
https://github.com/AKSW/Linked-Data-Viewer
https://github.com/AKSW/Linked-Data-Viewer
https://rhizomik.net/about
https://github.com/zazuko/graph-explorer
https://github.com/AKSW/graph-explorer
https://lodmilla.sztaki.hu/lodmilla/?id=hhaeuotogto2k565i7644folcg
https://github.com/dsd-sztaki-hu
http://tools.sirius-labs.no/rdfsurveyor/
https://github.com/guiveg/rdfsurveyor
https://yasgui.triply.cc/
https://github.com/Triply-Dev/YASGUI.YASR-deprecated/tree/geo
https://github.com/Triply-Dev/YASGUI.YASR-deprecated/tree/geo
https://rdflib.readthedocs.org/
https://jena.apache.org/
https://github.com/AKSW/jena
https://github.com/AKSW/fuseki-mods
https://github.com/Scaseco/jenax

	1 Introduction
	2 Related work
	3 Solution and other tools
	4 Conclusion

