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Abstract
Several techniques for the automatic detection of violent scenes in videos and security footage appeared in recent years, for
example with the goal of unburdening authorities from the need of analyzing hours of Closed-Circuit TeleVision (CCTV)
clips. In this regard, Deep Learning-based techniques such as Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs) emerged as effective for violence detection. Nevertheless, most of such techniques require significant
computational and memory resources to run the automatic detection of violence. Thus, we propose the combination of an
established CNN, MobileNetV2, designed for the use in mobile and embedded devices with a recurrent layer to extract the
spatio-temporal features in the security videos. A lightweight model can run in embedded devices, in a edge computing
fashion, for example to allow processing the videos near the camera recording them, to preserve privacy. Specifically, we
exploit transfer learning, as we use a pre-trained version of MobileNetV2, and we propose two different models combining
it with a Bidirectional Long Short-Term Memory (Bi-LSTM) and a Convolutional LSTM (ConvLSTM). The paper presents
accuracy tests of the two models on the AIRTLab dataset and a comparison with more complex models developed in our
previous work, in order to evaluate the drop of accuracy necessary to use a model compatible with limited resources. The
network composed of MobileNetV2 and the ConvLSTM scores a 94.1% accuracy, against the 96.1% of a model based on a more
complex 3D CNN.
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1. Introduction
Closed-Circuit TeleVision (CCTV) emerged as one of the
mainstream crime prevention techniques [1], providing
abundant and precise information for security and law
enforcement applications [2, 3]. In fact, Artificial Intel-
ligence (AI) methodologies, especially those based on
Deep Learning, are demonstrating their effectiveness in
applications that take advantages of CCTV footage, such
as weapon detection [4, 5], face recognition [6, 7], and
accident detection [8]. With the goal of unburdening
authorities from the need of manually analyzing hours of
CCTV videos and allowing them to take decisions in short
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time [9], many techniques to automatically detect vio-
lence in videos emerged in the scientific literature. In this
regard, the first studies focused on the use of flow descrip-
tors and hand-crafted features (see, for example, [10, 11]).
However, Deep Learning-based techniques demonstrated
better accuracy in violence detection, proposing to use
Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs) for such task [12]. These tech-
niques are capable of modeling the spatio-temporal in-
formation included in the CCTV footage, i.e., features
that represent the motion information contained in a se-
quence of frames, in addition to the spatial information
contained in a single frame.

In our previous work [13], we tested 13 different Deep
Neural Networks (DNNs) for the task of violence detec-
tion in videos. Specifically, we compared a pre-trained
3D CNN, C3D [14], combined with a Support Vector Ma-
chine (SVM) classifier, with C3D combined with fully con-
nected layers, with a trained-from-scratch Convolutional
Long Short-Term Memory (ConvLSTM) [15] plus fully
connected layers, with other ten networks based on time
distributed pre-trained 2D CNNs combined with Bidirec-
tional LSTM (Bi-LSTM) [16] (5 networks) and ConvLSTM
(5 networks). The C3D-based models got the best accu-
racy results in detecting violence on different datasets,
taking advantage of the 3D architecture capable of mod-
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eling the spatio-temporal features of the videos as well as
of the transfer learning. Nevertheless, 3D CNNs require
computational and storage resources which are usually
not compatible with mobile and embedded devices [17]
i.e., for edge computing.

To tackle such issue, in this paper we propose two
models based on the combination of a CNN specifically
designed for mobile devices i.e., MobileNetV2 [18], with
a recurrent layer to extract the temporal information and
fully connected layers for the classification of the videos
into violent or not. Specifically, in one model we used
the Bi-LSTM as the recurrent layers, whereas in the other
we used the ConvLSTM. To understand its effectiveness
and evaluate any potential drop of accuracy, we test the
proposed networks on the AIRTLab dataset [19], com-
paring the results with those obtained in our previous
work. As such, this paper contributes to the state of the
art in violence detection with:

• The proposal of using MobileNetV2, pre-trained
on the Imagenet dataset [20], by time distribut-
ing it over the frames of the security videos to
be classified into violent or not, in combination
with a recurrent module to model the temporal
information in addition to the spatial information
of the videos.

• The comparison of the proposed networks with
our previous tested models [13] to evaluate the
drop of accuracy necessary to use a network tai-
lored for mobile and embedded devices i.e., Mo-
bileNetV2.

The rest of this paper is organized as follows. Section 2
provides a literature review about Deep Learning tech-
niques applied in the violence detection task. Section 3
describes the proposed networks, providing the neces-
sary background and detailing the structure of the used
dataset. Section 4 discusses the experimental evaluation
and presents the main findings. Finally, Section 5 draws
the conclusions of this study.

2. Related Works
Several violence detection techniques based on Deep
Neural Networks and, specifically, Recurrent Neural Net-
works (such as LSTM, Bi-LSTM, ConvLSTM) and CNNs
demonstrated their effectiveness [12]. For example, Sud-
hakaran and Lanz. [21] combined the spatial features
computed by 2D CNNs on the frames of the videos, with a
ConvLSTM, to extract the temporal features as well. They
got 94.5% accuracy on the Crowd Violence dataset [10]
and 97.1% on the Hockey Fight dataset [22]. Li et al. [23]
proposed a 3D CNN composed of 10 layers, adding dense
and transitional layers after the convolutional layers.
They got 97.2% accuracy on the Crowd Violence dataset,

and 98.3% accuracy on the Hockey Fight dataset. Accat-
toli et al. [24] and Ullah et al. [25] also based their work
on a 3D CNN, but, instead of training it from scratch,
they applied transfer learning. Accattoli et al. added a
SVM to the CNN, getting 99.2% accuracy on the Hockey
Fight and 98.5% accuracy on the Crowd Violence. Instead,
Ullah et al. implemented a end-to-end neural network by
adding fully connected layers to the 3D CNN, getting 98%
accuracy on the Crowd Violence and 96% accuracy on
the Hockey Fight. Sernani et al. [13] compared 13 differ-
ent Deep Neural Networks on the Hockey Fight, Crowd
Violence and AIRTLab datasets. Specifically, they tested
a pre-trained 3D CNN (C3D) combined with a SVM, C3D
with fully connected layers, a ConvLSTM combined with
fully connected layers, 5 time-distributed pre-trained 2D
CNNs combined with the Bi-LSTM and the same 2D
CNNs combined with a ConvLSTM. They got the best
results with the two C3D-based networks, with 96.1%
accuracy on the AIRTLab dataset, 97.86% accuracy on the
Hockey Fight, and 99.6% accuracy on the Crowd Violence.
Freire-Obregón et al. [26] used an Inflated 3D ConvNet
to extract the spatio-temporal features on the output of
two person trackers to perform context-free violence de-
tection, i.e., the violence detection applied to the subjects
in the videos only, discarding any background or con-
text information. They combined such feature extractor
with different classifiers, getting the best results with the
Linear Regression, with 99.45% accuracy on the Crowd
Violence dataset, 99.43% on the Hockey Fight, and 97.54%
on the AIRTLab.

Whereas the aforementioned techniques demonstrated
effective in the task of automatically detecting violence
in different video databases, they are all high demand-
ing for computational and storage resources, making
them inadequate to run in mobile and embedded devices
i.e., for edge computing. In our previous work [13], we
demonstrated that pre-trained 2D CNNs, time distributed
on the frames of the security videos and combined with
Bi-LSTM, achieve a lower accuracy than 3D CNNs. For ex-
ample, VGG16 [27] combined with a Bi-LSTM, achieved
94.92% accuracy on the AIRTLab dataset, 95.47% on the
Hockey Fight, and 97.39% on the Crowd Violence. Never-
theless, such accuracy in detecting violence might be still
acceptable, to get a compromise to run violence detec-
tion at the edge to avoid data transmission and preserve
privacy. Therefore, given such results and the need for
models capable of running violence detection at the edge,
differently from the listed works, we propose to “time-
distribute” MobileNetV2 [18], a 2D CNN specifically de-
signed for mobile devices, on the frames of the security
videos. We combine it with a recurrent layer and fully
connected layers to perform the violence classification
and test two different versions, one based on the Bi-LSTM
and one on the ConvLSTM.

In addition to the search for the best accuracy, the sci-



entific literature concerning the use of Deep Learning
techniques for the automatic detection of violent scenes
includes other studies. For example, Ciampi et al. [28]
tested some of the aforementioned techniques, such as
3D CNNs and ConvLSTM, on a novel dataset, the Bus
Violence, to study the behavior of the violence detec-
tion methodologies based on Deep Learning when the
background and context information significantly varies.
Silva et al. [29] proposed the use of a federated learning
approach to distribute the learning process across differ-
ent devices, preserving privacy, with a server combining
the locally trained model into a global model. However,
instead on relying on videos or on video portions, the
applied 2D CNNs to single frames, achieving the best
results with MobileNet (99.4% accuracy on the AIRTLab
dataset). Yang et al. [30] proposed a multimodal approach
(Multimodal Contrastive Learning – MCL) to use both
video and audio for the automatic detection of violence.
They got 84.03% average precision on the XD-Violence
dataset [31], against the 83.19% of using the video only
and the 76.07% of using the audio only.

3. Materials and Methods
As explained in Sections 1 and 2, many studies about
the use of Deep Neural Networks for the violence de-
tection in videos proposed complex architectures, such
as 3D CNNs, requiring computational and memory re-
sources that are usually not compatible with mobile and
embedded devices. To this end, we propose the use of
MobileNetV2, time-distributed over 16-frames chunks
of the videos, combined with a recurrent layer to model
the temporal information of the sequence of frames, in
addition to the spatial information. In the following, we
provide some background about MobileNetV2, the LSTM
architecture, and the ConvLSTM architecture (3.1). Then,
we present the proposed neural networks (3.2) and de-
scribe the dataset used for the tests (3.3).

3.1. Background: MobileNetV2, LSTM,
and ConvLSTM

In the original definition of LeCun and Bengio [32], a
unit of a layer in a CNN receives inputs from a set of
units in the local receptive field, via a convolution oper-
ation with kernels composed of shared weights. In Mo-
bileNetV2 [18] this concept is extended to cope with the
limited computational resources of mobile and embedded
devices. Instead of the traditional convolution operation
of CNNs, MobileNetV2 decomposes convolutional layers
into two separate layers:

• The depthwise convolution layer that applies a
separate filter to each input channel.

• The pointwise convolution layer applied to the
output of the depthwise convolution layer using
a 1x1 convolution.

In addition, in MobileNetV2, linear bottlenecks and resid-
ual connections follow the convolution. Specifically, lin-
ear bottlenecks use a linear activation function instead
of a non-linear activation function, reducing the compu-
tational cost of the network.

As a traditional CNN, MobileNetV2 models the spa-
tial information of images i.e., the frames of the videos.
Therefore, we added a recurrent layer to the output of
MobileNetV2 to model the temporal information avail-
able in the videos, using a Bi-LSTM and a ConvLSTM.
In the original LSTM architecture [33], a hidden unit is
composed by a self-recurrent cell, called memory cell,
whose input/output is regulated by three multiplicative
gates i.e., the input gate, the output gate, and the for-
get gate [34]. Specifically, the output ℎ𝑡 at time point 𝑡
of a LSTM hidden unit is given by the following equa-
tions [34]:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (1)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓 ) (2)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (3)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (4)

ℎ𝑡 = 𝑜𝑡 tanh(𝑐𝑡) (5)

where 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, and 𝑐𝑡 are the activation vectors of the
input gate, forget gate, output gate, and memory cell at
time point 𝑡, 𝜎 is the sigmoid function, 𝑏 denotes the bias
of each gate/cell, and 𝑊 are diagonal weight matrices.

In the original formulation, a LSTM processes input
data in ascending temporal order. However, the recog-
nition of a pattern might be more effective with the
use of future context as well. To this end, Bidirectional
RNNs [35] and, specifically, Bidirectional LSTMs [16]
have been proposed. The basic idea of such models is to
present the training sequences both forwards and back-
wards, using two separate recurrent nets, which are con-
nected to the same output layer. As such, we based one of
our models on the Bi-LSTM, as the videos are processed
once recorded, taking advantage of both previous and
future context.

For the ConvLSTM, we use the formulation of Shi et
al. [15], who extended the LSTM architecture by adding
convolutional structures to state transition. As Shi et al.
explained, the LSTM architecture is adequate to extract
temporal features, but includes too much redundancy for
spatial features. In this regard, they proposed to add con-
volutional structures in the transitions between the input
gate and the memory cell, and in the self-recurrency of
the memory cell, regulated by the forget gate. Therefore,
in a ConvLSTM, the output of a hidden unit is regulated
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Figure 1: The schematic of the proposed models. They process sequences composed of 16 frames (16-frames chunks) resized
to 224 x 224 pixels. To apply MobileNetV2 to the videos (i.e., a 3D input), given that it is a 2D CNN, the network is time
distributed over the 16 frames of the security video chunks used in this study. To extract the temporal features of the videos
in addition to the spatial features extracted by MobileNetV2, the time-distributed CNN is followed by a recurrent layer (a
Bi-LSTM or a ConvLSTM). Finally, the fully connected layers perform the classification of the videos into violent or not.

by the following equations:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 * 𝑥𝑡 +𝑊ℎ𝑖 * ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (6)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 * 𝑥𝑡 +𝑊ℎ𝑓 * ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓 )
(7)

𝑥𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐 * 𝑥𝑡 +𝑊ℎ𝑐 * ℎ𝑡−1 + 𝑏𝑐)
(8)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 * 𝑥𝑡 +𝑊ℎ𝑜 * ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (9)

ℎ𝑡 = 𝑜𝑡 tanh(𝑐𝑡) (10)

where the activations of input gate, forget gate, output
gate, and memory cell (𝑖𝑡, 𝑓𝑡, 𝑜𝑡, and 𝑐𝑡), as well as input
and output (𝑥𝑡, ℎ𝑡) are 3D tensors. As such, we used the
ConvLSTM in the second of our proposed models.

3.2. Proposed Classification Architecture
As depicted in the schematic in Figure 1, to classify the
videos into violent or not, we propose two Deep Learning-
based classifiers based on MobileNetV2, pre-trained on
the Imagenet dataset [20], followed by a recurrent layer
and fully connected layer. The weights of MobileNetV2
are freezed on the Imagenet training. Instead, the Bi-
LSTM layer or the ConvLSTM layer and the fully con-
nected layers are trained from scratch on the AIRTLab
dataset, as explained in Section 4 (Subsection 4.1). Given
that in our previous work we run the classification over
16-frames chunks of the videos, in this work we use the
same videos split into 16 frames chunks, in order to al-
low a fair comparison between the classifiers. The video
of the AIRTLab dataset are resized at 224 x 224 pixels,
as this is the input shape in the original MobileNetV2
implementation.

Table 1 includes the layers composing the first pro-
posed model. MobileNetV2, with its 2,257,984 freezed
weights, is time distributed over the 16 frames used as the
input. The Bi-LSTM is composed of 128 hidden units, fol-
lowed by a 0.5 dropout to limit the overfitting, a fully con-
nected layer with 128 ReLU neurons, another 0.5 dropout
and a fully connected sigmoid neuron for the final classi-
fication.

Table 1
The first proposed classification model. The Bi-LSTM and
two fully connected layers were added to MobileNetV2, pre-
trained on ImageNet. MobileNetV2 was time distributed in
order to be applied to a 3D input i.e., the clips of the AIRTLab
dataset.

Layer Architecture Output Shape Params #
Time Distr. MobileNetV2 - (16, 7, 7, 1280) 2257984
Time Distr. Flatten - (16, 62720) 0
Bi-LSTM 128 units (256) 64357376
Dropout 0.5 rate (256) 0
Dense 128 units, ReLU (128) 32896
Dropout 0.5 rate (128) 0
Dense 1 units, Sigmoid (1) 129

Table 2
The second proposed classification model. The ConvLSTM
and two fully connected layers were added to MobileNetV2,
pre-trained on ImageNet. MobileNetV2 was time distributed
in order to be applied to a 3D input i.e., the clips of the AIRTLab
dataset.

Layer Architecture Output Shape Params #
Time Distr. MobileNetV2 - (16, 7, 7, 1280) 2257984
ConvLSTM 64 3x3 filters, tanh (5, 5, 64) 3096832
Flatten - (1600) 0
Dropout 0.5 rate (1600) 0
Dense 256 units, ReLu (256) 409856
Dropout 0.5 rate (256) 0
Dense 1 unit, Sigmoid (1) 257

Table 2 lists the layers composing the second proposed
model. A ConvLSTM composed of 64 3 × 3 filters with
the tanh activation function follows the time-distributed
MobileNetV2. The network is completed by a 0.5 dropout,
a fully connected layer with 256 ReLU neurons, another
0.5 dropout and a fully connected sigmoid neuron to
perform the final classification into violent or not.

The Bi-LSTM-based model has a total of 66,648,385 pa-
rameters. The weights of MobileNetV2 are freezed, which
means that the total number of trainable parameters is
64,390,401 (corresponding to the 128 hidden units of the
Bi-LSTM, the 128 ReLU neurons of the first fully con-
nected layer, and the sigmoid neuron of the last layer). In-
stead, in the ConvLSTM-based model there are 5,764,929
parameters (3,506,945 are trainable, corresponding to the



64 filters of the ConvLSTM layer, the 256 ReLU neurons
of the first fully connected layer, and the final sigmoid
neuron for the classification). Therefore, the model based
on the ConvLSTM requires less memory than the model
based on the Bi-LSTM, being more adequate for the use
in mobile and embedded devices.

3.3. Used Dataset
To test the performance of the proposed classifiers and
compare them to our previous work, we run accuracy
tests on the AIRTLab dataset. It contains 350 videos (MP4
files with H.264 codec, mean length of 5.63 seconds). The
frame rate is 30 fps and the frame resolution is 1920
x 1080 pixels. The dataset includes 230 violent videos
and 120 non-violent videos. The 230 violent videos rep-
resent 115 violent actions recorded from two different
cameras placed into two different spots. Similarly, the
120 non-violent videos represent 60 non-violent actions,
recorded from two different cameras placed into two dif-
ferent spots. All the videos were taken inside the same
room. One camera was placed in the top left corner in
front of the room door. The second camera was in the
top right corner on the door side.

A group of non-professional actors played the violent
and non-violent actions. The number of actors varied
from 2 to 4 per video. In the violent videos, the actors
simulated actions frequent in scuffles, such as punches,
kicks, beating with canes, slapping, gun shots, and stab-
bing. In the non-violent videos, the actors simulated
actions which can result in false positives due to the sim-
ilarity with violent actions (for example for the presence
of fast movements). Specifically, the non-violent videos
contains actions such as exulting, hugging, gesticulating,
and clapping and giving high fives.

4. Results and Discussion
We tested the two proposed models with the same pro-
tocol used in our previous work [13] i.e., by measuring
the classification results over the AIRTLab dataset. The
objective is to compare the accuracy performance of the
classifiers based on a 2D CNN designed for mobile and
embedded devices with those of classifiers requiring more
resources. Therefore, in the following subsections, we
describe the experimental protocol (4.1), discuss the re-
sults (4.2), and present the limitations of our evaluation
(4.3).

4.1. Experimental Protocol and
Evaluation Metrics

Whereas MobileNetV2 was pre-trained on Imagenet and
its weights were freezed, the Bi-LSTM and ConvLSTM

Table 3
Number of training epochs in each split (S1-S5) of the stratified
shuffle split cross validation scheme.

S1 S2 S3 S4 S5 Mean
MobileNetV2 + Bi-LSTM 20 18 23 19 32 22.40 ± 5.68
MobileNetV2 + ConvLSTM 11 20 22 19 17 17.80 ± 4.21

layers, together with the fully connected layers, needed
to be trained from scratch. Therefore, to run the training
and test on the AIRTLab dataset, we applied a stratified
shuffle split cross-validation scheme. To this end, we
repeated a randomized 80-20 split 5 times, using the 80%
of the data as the training set, and the 20% as the test set,
preserving the percentage of samples from each class, in
each split. The data splits were the same for both the
proposed models and for the models of our previous work,
to implement a fair comparison. Given that the inputs
for the models are sequences composed of 16 frames and
the videos in the dataset include a total of 3537 of such
sequences, 2829 samples (i.e., 16-frames chunks) were
used for training, and 708 for testing, in each split. The
12.5% of the training data i.e., the 10% of the entire dataset,
was used as validation data.

Both the proposed models used the Binary Cross-
Entropy loss function, minimized with the Adam op-
timizer. We early stopped the training after 5 epochs
without any improvement on the minimum validation
loss, restoring the weights corresponding to the best
epoch. To this end, Table 3 lists the number of training
epochs in each split of the stratified shuffle split cross
validation scheme, for each model. The average number
of training epochs was 22.4 (± 5.68) for the model using
the Bi-LSTM layer, and 17.8 (± 4.21) for the model based
on the ConvLSTM. The batch size was 8 for both neural
networks.

The tests ran on Google Colab Pro with the GPU run-
time (the GPU used for the tests was a Nvidia A100 SXM4
with 40 GB of RAM) and extended RAM (83.5 GB), using
Keras 2.11.0, TensorFlow 2.11.0, and Scikit-learn 1.2.1.

Labeling as negative the 16-frames chunks of the non-
violent videos and as positive the chunks of the violent
videos, we computed the following metrics over the test
set in each split of the stratified shuffle split cross valida-
tion scheme:

• Sensitivity (True Positive Rate – TPR) i.e., the
portion of positives that are correctly identified
(over all the available positives).

• Specificity (True Negative Rate – TNR) i.e., the
portion of negatives that are correctly identified
(over all the available negatives).

• Accuracy i.e., the portion of samples that are cor-
rectly identified (over all the available samples).

• F1 score i.e., the armonic mean of precision (the



Table 4
The results of the model composed of MobileNetV2 and the
Bi-LSTM, computed for each split of the stratified shuffle-split
cross validation scheme.

Split 1 Split 2 Split 3 Split 4 Split 5
Sensitivity 100.00% 90.97% 97.48% 95.59% 97.69%
Specificity 00.00% 87.93% 62.50% 76.72% 82.76%
Accuracy 67.23% 89.97% 86.02% 89.41% 92.80%
F1 score 80.41% 92.42% 90.36% 92.39% 94.80%

ratio between the positives correctly identified
and all the identified positives) and sensitivity.

These metrics can be formulated in terms of true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN) according to the following equations:

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11)

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(12)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(13)

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 1
2
(𝐹𝑃 + 𝐹𝑁)

(14)

Moreover, in each split, we computed the Receiver Oper-
ating Characteristic (ROC) curve and the Area Under the
Curve (AUC), showing the TPR against the False Positive
Rate (FPR) when the classification threshold varies, to
understand the diagnostic capability of each model.

4.2. Results
Table 4 lists the metrics obtained by the model composed
of MobileNetV2 and the Bi-LSTM over the five splits of
the cross-validation performed on the AIRTLab dataset.
The metrics significantly vary across the splits, showing
a poor generalization capability. For example, in split 1,
all the 708 samples of the test set are labeled as violent,
causing 232 false positives. As such, the sensitivity is
100% whereas the specificity is 0%. The split where most
of the negatives are correctly identified is the number
2: here, 204 negatives out of 232 are correctly classified
(specificity 87.93%). In the same split, 433 violent chunks
out of 476 are correctly classified. As such, the accuracy
is 92.8%.

Instead, the model based on MobileNetV2 and the Con-
vLSTM exhibits a better generalization capability than
the previous one, as showed in Table 5. The sensitivity is
greater than 94% across all the splits, and the lowest speci-
ficity is in split 3 (85.34%). The best split is the number 5,
where the 𝐹1 score is 96.42%.

The difference in the generalization capability of the
two proposed models is highlighted by the ROC curves

Table 5
The results of the model composed of MobileNetV2 and the
ConvLSTM, computed for each split of the stratified shuffle-
split cross validation scheme.

Split 1 Split 2 Split 3 Split 4 Split 5
Sensitivity 94.54% 95.80% 97.90% 94.96% 96.22%
Specificity 88.36% 92.24% 85.34% 93.10% 93.10%
Accuracy 92.51% 94.63% 93.79% 94.35% 95.20%
F1 score 94.44% 96.00% 95.49% 95.76% 96.42%

in Figure 2. In fact, the model using the Bi-LSTM as the
recurrent layer scores an average AUC equal to 94.38%
(± 2.98%), whereas the model using the ConvLSTM gets
98.26% (± 0.46%). This behavior might be due to the
different number of trainable parameters of the two mod-
els. In the Bi-LSTM-based model there are 64,390,401
trainable parameters. Instead, in the ConvLSTM-based
model, the number of trainable parameters is 3,506,945.
As such, the Bi-LSTM-based model might be oversized
for the violence detection task on the AIRTLab dataset,
struggling to converge to an acceptable classification per-
formance. Therefore, the ConvLSTM-based model, that
is the lightest in terms of required resources between the
two proposed in this work, exhibits a better performance
in terms of classification accuracy and generalization
capability.

Table 6 compares the performance of the two models
proposed in this paper with those based on C3D tested
in our previous work. Even if lighter in terms of re-
quired computational resources, the model based on Mo-
bileNetV2 and the ConvLSTM gets an average AUC of
98%, against the 99% of the C3D-based models. The av-
erage accuracy and 𝐹1 score of the ConvLSTM-based
model are 94.1% (𝑝𝑚 0.91%) and 95.62% (𝑝𝑚 0.67%) being
only around 2% lower than the C3D + SVM model of
our previous work. Therefore, limited resources as those
of mobile or embedded devices might justify the use of
the MobileNetV2 combined with the ConvLSTM, as the
decrease in the accuracy metrics is limited.

4.3. Limitations
The results of the research described in this paper are
promising, but include some limitations. In fact, we
focused on the accuracy of two models based on Mo-
bileNetV2, which is designed for mobile or embedded
devices. Nevertheless, we ran our comparative tests in
the cloud, using a GPU. Whereas the decrease in accu-
racy is limited and justifies the use of the best between
the proposed models, tests on real mobile or embedded
devices i.e., at the edge, are needed to get more general
conclusions. Morevoer, our tests are based on a dataset
of videos where the violence is simulated by actors. Tests
on videos from real surveillance cameras are needed to
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Figure 2: ROC curve and AUC for the MobileNetV2 + Bi-LSTM (a), and MobileNetV2 + ConvLSTM (b) models.

Table 6
A comparison of the average values of the metrics for the two proposed models, based on MobileNetV2, with the metrics
computed for the models of our previous work, based on C3D, over the five splits of the stratified shuffle split.

Sensitivity Specificity Accuracy F1 score AUC
MobileNetV2 + Bi-LSTM 96.34 ± 3.03% 61.98 ± 32.14% 85.08 ± 9.18% 90.08 ± 5.04% 94.38 ± 2.98%

MobileNetV2 + ConvLSTM 95.88 ± 1.17% 90.43 ± 3.09% 94.10 ± 0.91% 95.62 ± 0.67% 98.26 ± 0.46%
C3D + SVM 97.06 ± 0.80% 94.14 ± 1.51% 96.10 ± 0.71% 97.10 ± 0.53% 99.30 ± 0.23%
C3D + FC 97.82 ± 0.69% 91.12 ± 2.03% 95.62 ± 0.42% 96.78 ± 0.30% 98.94 ± 0.31%

confirm the accuracy results.
In addition, we collected the metrics on 16-frames

chunks taken from the short videos of the AIRTLab
dataset (the average length is 5.6 seconds), to make this
work comparable with our previous research. Whereas
most of the related literature performs tests on short
videos, the accuracy on full length, real videos should
be evaluated. Indeed, using the short chunks of frames
taken from long videos as in our study might result in too
many false positives. Thus, results on the chunks should
be merged together with a proper strategy to maximize
the accuracy on full length videos. To this end, a simple
solution is labeling a part of a long video as violent only
when a fixed number of consecutive 16-frames chunks
are labeled as violent.

5. Conclusions
To be used in real applications, Artificial Intelligence and
Deep Learning-based techniques need to take into ac-
count real time performances and be capable of running
in mobile and embedded devices, in a edge computing

fashion. In fact, an intelligent answer preserves its impor-
tance only if given in time, as remarked in [36]. Hence,
in this paper, we proposed two Deep Neural Networks
for the classification of videos into violent or not. Both
networks are based on MobileNetV2, a CNN specifically
designed for mobile and embedded devices. Such CNN
is responsible for the extraction of the spatial features
in the videos. We combined MobileNetV2 with a recur-
rent layer for the extraction of the temporal features as
well. One of the two proposed models uses a Bi-LSTM
layer as the recurrent module. Instead, the other uses a
ConvLSTM.

We ran comparative tests on the AIRTLab dataset. The
model using the ConvLSTM, the lightest in terms of re-
quired computational and memory resources between the
two proposed in this paper, got the best accuracy, with
an average AUC equal to 98.26% (± 0.46%). Compared to
the models of our previous work, based on a 3D CNN, the
decrease of performance in terms of AUC is around 1%,
and 2% in terms of classification accuracy over the splits
of the AIRTLab dataset. Such results encourage the use of
mobile models for embedded devices. For example, this



might be useful to process data directly near the camera
that is recording the security video and, thus, preserve
the privacy while addressing public security.

Future works will address the identified limitations.
In particular, tests on real mobile or embedded devices
need to be performed to get more conclusive and general
results.
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