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Abstract  
This study investigates various linear discrete formulations of the unbounded knapsack 

problem, including binary and bounded forms. Two variations of binary knapsack problem 

reformulations are examined, each with distinct linear constraints. Gurobi and CPLEX solvers 

are used to compare the performance of these models. The computational experiments are 

conducted on randomly generated instances of sizes 10-100. The results revealed that, on 

average, Gurobi was 20% faster than CPLEX. Integer, bounded, and 0/1 knapsack problem 

formulations had comparable mean run times. Incorporating specific constraints in the 0/1 

formulation yielded superior results compared to the basic 0/1 knapsack problem model. 

Overall, this research contributes to understanding efficient and effective formulations for 

solving the unbounded knapsack problem and choosing a better solver. 
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1. Introduction 

Combinatorial optimization (CO) is a branch of optimization that deals with finding the best solution 

among a finite set of possible solutions [1,7]. It has wide-ranging applications in various fields, 

including Computer Science, Operations Research, Engineering, Finance, and many others. Overall, 

CO is highly important because it provides powerful tools for solving complex problems and making 

better decisions in a wide range of applications [1,7]. 

Euclidean Combinatorial Optimization (ECO) is a subfield of CO dealing with images of 

combinatorial sets in Euclidean space and their convex hulls (combinatorial polytopes) [6,11,14,16]. 

Integer programming (IP) is a subdomain of ECO that deals with optimization problems where the 

variables are constrained to take on integer values. IP is an important tool in CO because many CO 

problems can be formulated as integer programming problems, such as the travelling salesman problem, 

Knapsack Problem (KP), the graph colouring problem etc. [18]. IP plays a crucial role in combinatorial 

optimization by providing a powerful tool for solving many problems involving integer decision 

variables.  

This paper focuses on KP, a classical CO problem in which a set of items must be packed into a 

knapsack subject to capacity constraints. The objective is to maximize the total value of the items 

packed into the knapsack, subject to the constraint that the total weight of the items does not exceed the 

knapsack capacity [3,10]. 
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Binary optimization (Binary Programming, BP) is a special case of IP that deals with optimization 

problems where the decision variables are restricted to take on binary values, i.e., 0 or 1. BP problems 

arise in many applications, such as network flow problems, scheduling problems, and Boolean function 

optimization. Here, the decision variables can represent binary decisions, such as whether to include or 

exclude a certain item in a set or schedule a job at a particular moment. Binary optimization problems 

have many applications in various fields. They can be solved using various techniques, including IP, 

dynamic programming, and heuristic algorithms such as simulated annealing, genetic algorithms, and 

tabu search. 

Due to the discreteness of the search domain, CO problems allow multiple formulations. The 

performance of a solver can depend greatly on the formulation of the problem being solved. Different 

problem formulations can result in different solution times, solution quality, and solution methods used 

by the solver. This is particularly true for the KP, which can be formulated in various ways [3,10], 

including as an IP problem [18], a dynamic programming problem [11], a constraint satisfaction 

problem, the Quadratic Unconstrained Binary Problem (QUBO) [15] etc.  

For example, in KP, the choice of the objective function can significantly impact the solver's 

performance. A simple objective function that only considers the value of items being packed can result 

in a suboptimal solution, particularly when the weights of the items are not uniformly distributed. In 

contrast, a more complex objective function that balances the value and weight of the packed items can 

result in a better solution but may require more computational resources. Similarly, the choice of solver 

used to solve the problem can also affect performance. Different solvers may be better suited to 

particular problem formulations or problem instances and can have different strengths and weaknesses. 

For example, some solvers may be better at solving linear programming problems, while others may be 

better at solving mixed-integer or nonlinear programming problems. 

In general, it is highly important to choose a problem formulation that is well-suited to a specific 

problem being solved and a solver that is well-suited to the problem formulation. Experimenting with 

different problem formulations and solvers may also be useful to determine which combination yields 

the best performance for a particular problem instance. 

KP is a well-known problem in computer science and optimization that has important applications 

in many fields, including finance, resource allocation, and logistics [3,5]. 

In this paper, we aim to investigate the solution time of the Unbounded KP, where each item placed 

in the knapsack has an unlimited number of copies depending on its formulation and solver, where 

solvers are limited to well-known Gurobi and CPLEX. 

2. Knapsack problem (KP) 

The knapsack problem (KP) [5,9,17,18] is a classic problem in CO that involves selecting a subset 

of items with the goal of maximizing the total value while satisfying a constraint on the total weight or 

volume. 

2.1. KP variations 

There are several variants of the knapsack problem, including: 

• 0/1 KP (binary KP): This is the classic problem variant, where each item can be included in 

the knapsack either completely (i.e., with weight equal to its capacity) or not at all. The goal is to 

maximize the total value of the selected items (Objective 1) subject to the constraint on the total 

weight (Constraint 1). 

• Bounded KP (BKP): In this variant, each item has a limited number of copies available, and 

the goal is to select a subset of items to maximize Objective 1 subject to Constraint 1 and the limit 

on the number of copies of each item that can be included (Constraint 2). 

• Unbounded KP (UKP, integer KP): In this special case, items have an unlimited number of 

copies, and the goal is to select a subset of them to maximize Objective 1 subject to Constraint 1 and 

the integrity of the number of copies of each item (Constraint 3). 



• Fractional knapsack problem (FKP): In this version, items can be included in the knapsack 

partially, i.e., fractions of an item can be utilized. The goal is to maximize Objective 1 subject to 

Constraint 1. 

• Subset sum problem (SSP): This is a special case of the knapsack problem where each item 

has the same weight and aims to select a subset that sums to a specific target value. 

These knapsack problems possess different properties and may require different algorithms. Also, 

formulations of the same problem can be different. Respectively, appropriate algorithms vary 

depending on the formulations 

2.2. KP applications 

KP has practical applications in many fields [1,2,3,4,8,10,12,13], including: 

• Resource allocation: In manufacturing and logistics, the KP can be used to determine which 

orders to fulfill, which items to stock, and how to allocate resources such as vehicles, workers, and 

machines. 

• Finance: The KP can be used in financial portfolio optimization, where an investor must choose 

a set of investments to maximize returns while respecting constraints on available capital and risk 

tolerance. 

• Project selection: In project management, the KP can be utilized to select a set of projects that 

maximize the expected value of the portfolio while respecting constraints such as budget and 

resource availability. 

• Cutting stock problem: In cutting stock problems, KP is used to find the optimal way to cut 

large items, such as sheets of metal, into smaller pieces with minimum waste. 

Also, the KP has various applications in natural language processing (NLP) [2,12]. Here are 

some examples: 

• Named entity recognition: Named entity recognition (NER) identifies named entities (such as 

people, organizations, and locations) in text. It is a problem of selecting the most relevant named 

entities can be formulated as a KP, where each named entity is represented by a weight (indicating 

its relevance) and a value (indicating its frequency or importance). 

• Sentence compression: Sentence compression involves generating shorter sentences that 

preserve the meaning of the original sentences. This can be formulated as a KP, where the goal is to 

select the most important words or phrases from the original sentence to include in the compressed 

sentence. 

• Text summarization: KP can be used in text summarization, where the goal is to select a subset 

of sentences that represent the most important content of a document. The problem can be 

formulated as a KP, where each sentence is represented by a weight (indicating its importance) and 

a value (indicating its length). 

• Keyword selection: In keyword selection, the goal is to choose a set of keywords that best 

represent the content of a document or a set of documents. This can be formulated as a KP, where 

each keyword is represented by a weight (importance) and a value (frequency or relevance). 

Thus, KP is an important problem in computer science and optimization, and its applications extend 

to a wide range of fields. 

2.3. Literature on KP 

The KP is a well-studied problem in the CO, and many books, articles, and research papers exist on 

the topic. Among them are books: 

• Books [3,10] provide a comprehensive overview of the KP and its variants, including exact and 

heuristic solution methods, complexity analysis, and applications in various fields. 

• The source [5] is a classic book covering fundamental computer science algorithms, including 

the KP and dynamic programming. 

• The book [18] provides an in-depth treatment of integer programming, including the KP, 

mixed-integer programming, and branch-and-bound methods for solving IP problems. 



• [9] is the book dedicated to the dynamic programming approach to solving the KP and other 

optimization problems. It covers the theory and application of dynamic programming algorithms 

with examples and exercises. 

• The book [18] covers approximation algorithms for optimization problems, particularly the KP, 

with a focus on algorithm design and analysis. 

Many more resources are available, including research papers, conference proceedings, and online 

tutorials. 

2.4. KP benchmark libraries 

Several benchmark libraries are available for the KP that can be used to evaluate the performance 

of different algorithms and solvers. Here are some of the most commonly used benchmark libraries: 

• OR-Library [19]: The OR-Library is a collection of test problems for various optimization 

problems, including KP instances. It includes a range of problem sizes and characteristics, such as 

varying numbers of items and capacities, and can be used to evaluate the performance of different 

algorithms and solvers. 

• DIMACS Implementation Challenge [21]: The DIMACS Implementation Challenge 

includes a set of benchmark instances for several combinatorial optimization problems, including 

the KP. The instances are designed to be challenging and can be used to evaluate the performance 

of different algorithms and solvers. 

• MIPLIB [20]: The Mixed IP Library (MIPLIB) includes a set of benchmark instances for 

mixed IP problems, including the KP. It contains instances of varying sizes and characteristics and 

can be used to evaluate the performance of different solvers and algorithms. 

These benchmark libraries can be useful for evaluating the performance of different algorithms and 

solvers and comparing the effectiveness of different approaches to solving the KP. 

2.5. KP solution techniques 

Various methods are known to solve the KP, ranging from exact methods providing optimal 

solutions to heuristic approaches that provide approximate solutions [3,10]. Among them are exact and 

approximate methods 

2.5.1. Exact methods 

• Linear IP (ILP): This mathematical optimization technique can solve the KP by formulating 

the problem as a linear program with integer variables and using an ILP solver to find the optimal 

solution. 

• Branch and Bound: This method enables solving quite large instances by exploring a search 

tree to find the optimal solution. The search tree is constructed by branching on each item and 

exploring all possible feasible combinations of items that lead to a better solution. 

• Constraint Programming: This declarative programming paradigm can solve the KP by 

expressing the problem's constraints as logical constraints and using a constraint solver to find a 

feasible solution. 

• Dynamic Programming: This exact method can solve the KP efficiently for small problem 

sizes. It works by constructing a dynamic programming table to determine the maximum value that 

can be obtained for each subproblem of the knapsack packing. Then it uses these subproblems to 

solve the larger problem. 

2.5.2. Approximate methods 

• Greedy Algorithms: These heuristic methods provide approximate solutions by greedily 

selecting items based on criteria such as the value-to-weight ratio. Although they do not always 



provide optimal solutions, they are computationally efficient and can solve the KP with large 

problem sizes. 

• Metaheuristic Algorithms: These heuristic methods use search and optimization techniques 

to find good solutions to Knapsack problems. Examples include genetic algorithms, simulated 

annealing, and tabu search. 

 The choice of method depends on the problem size, the required level of optimality, and the 

computational resources available. Exact methods are preferred for small problem sizes, while heuristic 

and metaheuristic methods are preferred for larger problem sizes or when an approximate solution is 

acceptable. Also, a set of relevant methods depends on the selected formulation of the KP. 

2.6. Gurobi and CPLEX solvers 

Gurobi and CPLEX are two of the most popular optimization solvers researchers and practitioners 

use to solve complex mathematical optimization problems. Here are some brief characteristics and 

comparisons between the two: 

Gurobi: 

• The developer is Gurobi Optimization, LLC; 

• uses state-of-the-art algorithms and heuristics to solve a wide range of optimization problems, 

including linear programming, quadratic programming, mixed-integer programming, and convex 

optimization; 

• has a user-friendly interface and can be easily integrated with programming languages such as 

Python, C++, and Java; 

• offers advanced features, such as parallel processing, customized callbacks, and automatic 

tuning for optimal performance; 

• known for its speed and efficiency and is often used for solving large-scale optimization 

problems in finance, energy, and logistics industries. 

CPLEX: 

• Developer is IBM; 

• offers a variety of optimization algorithms for linear programming, mixed-integer 

programming, quadratic programming etc.; 

• is highly customizable and can be easily integrated with programming languages such as C++, 

Java, and Python; 

• offers advanced features, such as parallel processing, customized callbacks, and warm-start 

capabilities; 

• is known for its robustness and reliability. 

Docplex is a Python package developed by IBM that provides an easy-to-use interface for modeling 

and solving optimization problems using the IBM CPLEX solver. Docplex allows users to formulate 

and solve linear programming (LP), integer programming (IP), mixed-integer programming (MIP), 

quadratic programming (QP), and mixed-integer quadratic programming (MIQP) problems using a 

high-level, object-oriented modeling language. 

When it comes to a comparison between Gurobi and CPLEX, the choice depends on the specific 

problem being solved.  

Some points of comparison are: 

• Performance: Both solvers are known for their speed and efficiency, but Gurobi is often 

considered slightly faster and more memory-efficient for certain types of problems. 

• User interface: Gurobi is often considered more user-friendly and easier to set up, while 

CPLEX offers more customization options for advanced users. 

• Licensing: Both solvers offer free academic licenses, but Gurobi is generally more expensive 

for commercial use. 

Thus, Gurobi and CPLEX are excellent optimization solvers with their own strengths and 

weaknesses. The choice between them depends on the user's specific needs and the problem being 

solved. 



Gurobi and CPLEX are both suitable for solving knapsack problems, as they offer powerful 

optimization algorithms for integer programming problems, which the KP can be formulated as. 

Solving the KP using Gurobi or CPLEX can be formulated as a binary or integer linear programming 

problem, where the binary decision variables represent whether an item is packed in the knapsack or 

not. Respectively, the objective function is the sum of the values of the packed items, and the capacity 

constraint is represented as a linear inequality. 

Gurobi and CPLEX both offer powerful algorithms for solving MILP problems, including branch-

and-bound, cutting-plane, and heuristics, which can be used to find the optimal or near-optimal 

solutions to the KP. Additionally, Gurobi and CPLEX offer some features that can be used to speed up 

the optimization process and improve the quality of the solutions. 

In summary, both Gurobi and CPLEX are well-suited for solving the KP and offer powerful 

algorithms and features for finding optimal or near-optimal solutions. The choice between them may 

depend on factors such as the specific problem formulation, the size and complexity of the problem, 

and personal preferences. 

Among other solvers to solve the KP is another popular Integer programming solver SCIP, constraint 

programming solvers, Choco and Gecode, solvers supporting evolutionary and local search algorithms. 

3. Unbounded KP formulations 

The UKP is a classic optimization problem in which a set of items, each with a weight iw  and a 

value iv , must be packed into a knapsack of limited capacity C  in such a way as to maximize the total 

value of the items packed.  

One way to formulate the unbounded knapsack problem mathematically is as follows: 

Let n  be the number of items, and let iw  and iv  denote the weight and value of the i -th item, 

respectively. Let C  be the maximum capacity that the knapsack can hold. Then the goal is to find the 

maximum possible value that can be packed into the knapsack. 

Let    01,..., ,  0n n nJ n J J= =  ,  decision variables form a  vector  ( )1,..., nx x , where ix  is a 

decision variable for each item i  represents the number of times that item i  is included in the knapsack. 

Then the objective function is: 

1
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To the model (1)-(3) further we will refer to as UKP.IP. 

Let us reformulate it as a Bounded KP. For that, we will define the maximum number ik Z+  of 

copies of the item i  that can be used in the knapsack. Clearly, 

,  i n
i

C
k i J

w

 
=  
 

.     (4) 

In this notation, we obtain the Bounded KP (1), (2), 
0 ,  ,
i
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where ik  is given by (4) (further we referred to as UKP.BKP). Evidently, the models UKP.IP and 

UKP.BKP are equivalent. 

Now, we can reduce UKP.BKP to 0/1.KP of higher dimension. For that, we introduce multisets of 

weights and values 
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In these notations, a binary equivalent of UKP.BKP is 
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subject to constraints: 
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where N  is given by (7). ( )1,..., Ny y y=  is another vector of decision variables where jy  is a binary 

decision variable that takes a value of 1 if an item j  is selected for packing, and 0 otherwise. 

To the model (9)-(11) we will refer to it as UKP.0/1KP.1.  

Note that, in contrast to the previous model, in UKP.0/1KP.1 some items can be identical, i.e., they 

are represented by the same tuple ,  w W, v V
w

v
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if 1' ni J −  such that 

' ' 1i iw w += , then ' ' 1i iv v + .     (13) 

From the ordering (12), (13) of the coordinates of decision variables, it follows that ', 'W V  are also 

ordered. Namely.  
' '

1,  Jj j Nw w j+   and  
' '

1,  j j iv v j I+  .    (14) 

where iI  is a set of indices of weights from 'W  equal to ,i nw i J . 

Now, we can strengthen the model UKP.0/1KP.1 by adding the following constraints: 

1,  j J ,
ij j I ny y i J+    and 

' '
1,  j j iv v j I+  .   (15) 

To the model (9)-(11), (15) we will refer to as UKP.0/1KP.2.  

4. Computational experiment 



We solved randomly generated KP instances of dimensions 10-100 in the form of the models 

UKP.IP, UKP.BKP, UKP.0/1KP.1, UKP.0/1KP.2 in order to compare their performance in two selected 

popular solvers – CPLEX and Gurobi, the software implementation was done in Python. For CPLEX, 

the package DOCPLEX was used. 

Generator of instance outline: 

• Set n ; 

• Set the number prn  of problems generated in the series; 

• Set ranges    min max min max, , ,w w v v  for generating weights and values, respectively; 

• Set m  - the upper bound for items copies; 

• Generate sets  ( )  ( )min max min max, , ,W U w w V U v v  ; 

• Generate a constant  0.8,1C m c   , where the value min

n
i

i J
c w


=  such that max w

n
i

i J
C


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fulfilled. 

We generated 100 instances in each dimension 10,20,...,100  and experimented with them. 

The main conclusion is that Gurobi performs better, and, on average, it is nearly 20% faster than 

CPLEX. The runtime of models UKP.IP, UKP.BKP, UKP.0/1KP.1 is very similar, and we cannot single 

out a top model. At the same time, a comparison of the binary models UKP.0/1KP.1 and UKP.0/1KP.2 

shows that the strengthening UKP.0/1KP.1 by introducing the constraint (15) is fruitful as a 

performance of UKP.0/1KP.2 is around 15% better than UKP.0/1KP.1. 

5. Further work 

The classical KP is a well-studied problem, but there are several of its generalizations and extensions 

that are of interest in the research community [3,8,10,13]: 

• Multiple KP: This is a KP generalization where multiple knapsacks are available for packing 

items. Each item has a weight and value, and the goal is to pack the items into the knapsacks while 

maximizing the total value subject to a capacity constraint on each knapsack. 

• Time-dependent KP: This is an extension of the KP where the items have a time-dependent 

value. Each item has a value that varies over time, and the goal is to pack the items into the knapsack 

at the optimal time to maximize the total value. 

• Stochastic KP: In this problem, the item values and/or weights are uncertain. The goal is to 

pack the items into the knapsack to maximize the expected value subject to the capacity constraint. 

• Multiple-choice knapsack problem: Each item is associated with a set of options. The goal is 

to choose one option for each item to maximize the total value subject to the capacity constraint on 

the knapsack. 

These generalizations and extensions of the classical KP provide additional complexities to the 

problem, making it more challenging to find an optimal solution. Researchers intensively work on 

developing general and specialized algorithms and heuristics for each of these variants of the KP, but 

still, many open problems remain in this research field. 

The knapsack problems arise as a subproblem in many nonlinear binary optimization problems 

( )0 maximiz fe y       (16) 

subject to the weight constraint  (10), the binary constraint (11) and any others linear or nonlinear 

constraints: 
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where  1: ,  i N mf B B i J→  . Functions present in (17) can be incorporated into the penalty function, 

and we come to the equivalent optimization problem to (10), (11), (16), (17)  having the form of: 
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=   is a vector of penalty parameters chosen large enough to ensure that 

optimizers of the above problem and the problem (18) coincide. The function ( )F y  can always be 

convexified with the help of a regularization term 
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subject to constraints (10), (11) equivalent to the above two. Here 0    is a regularization parameter 

chosen large enough to guarantee convexity of  ( ), y  . Also, we can assume that  ( ), y   is 

differentiable. If not it can be replaced by its convex differentiable extension from nB   onto nR  since 

a set nB  is vertex located [16]. Now, the conditional gradient method can be applied to solving (19) 

with constraints (10), (11) where an auxiliary problem  of minimizing a gradient  of ( ), y   on the 

correspondent polytope is solved on each iteration. These auxiliary problems are, in fact, binary 

knapsack problems. In such a way KPs can be used in nonlinear optimization over the binary domain. 

In future, we plan to extend the experimental part onto other formulations of the classical KP, such 

as QUBO, and consider nonlinear optimization generalizations and the listed and many more extensions 

and generalizations of KP. 

6. Conclusion 

This study explored different linear discrete formulations for solving the unbounded knapsack 

problem, including transforming the problem into binary and bounded forms. Two variations of binary 

knapsack reformulations were examined, each with distinct linear constraints. The performance of these 

models was compared using Gurobi and CPLEX solvers, and the implementation was carried out in 

Python. The experiments were conducted on randomly generated instances of sizes ranging from 10 to 

100, with the weights and values of items following uniform discrete distributions within specific 

ranges. Our findings indicate that on average, Gurobi is approximately 20% faster than CPLEX. The 

IKP, BKP, and 0/1 KP formulations had similar mean run times. Additionally, the inclusion of specific 

constraints in the 0/1 formulation demonstrated superior performance over the underlying 0/1 KP 

model. 
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