People's Emotions Analysis while Watching YouTube Videos

Volodymyr Motyka ${ }^{1}$, Yaroslav Stepaniak ${ }^{1}$, Mariia Nasalska ${ }^{1}$ and Victoria Vysotska ${ }^{1,2}$
${ }^{1}$ Lviv Polytechnic National University, S. Bandera Street, 12, Lviv, 79013, Ukraine
${ }^{2}$ Osnabrü̈ck University, Friedrich-Janssen-Str. 1, Osnabrück, 49076, Germany

Abstract

For analysis, a dataset containing information about videos from video hosting YouTube is selected, namely: title, video category, channel (author), number of views, number of likes, number of dislikes, date of video release. The purpose of the study was to analyze the state of people while watching videos on this platform. For this, various methods of visualization and data processing, smoothing methods, correlation and cluster analysis are used.

Keywords

Cluster analysis, correlation, smoothing, YouTube, like, dislike, emotion, sentiment analysis

1. Introduction

Nowadays, sharing information between people in different parts of the world is not a problem if there is access to the Internet. Social networks, messengers, video hosting have become an integral part of our lives. Now almost everything can be done without leaving home. In 2005, one of today's most popular video sharing platforms, YouTube, was created. The idea is simple: the ability to share video/audio with anyone, and most importantly, anyone can share and it's all free, and what's more, people now have the opportunity to earn on YouTube from the content they share using monetization and advertising. It allowed people to relax, because they had an analogue of television. But you can choose what you want to watch, you can watch news, comedies, documentaries and much more, it allowed development, because scientists can spread their knowledge not only in within the walls of the university, but all over the world, it allowed people to spread their thoughts to the masses. Since people are the main users of YouTube, how they feel when they watch the content is extremely important. If a person feels uncomfortable while watching a video (more than one), then he will obviously not want to watch the video sooner or later, and this can cause some commercial problems. In addition, YouTube is one of the sources of operational and current news today. The topic of our research is the emotions that people experience when watching content on YouTube.

2. Related works

Let's pay attention to the exact numbers and look at the statistics of the most popular social networks for July 2021. The data are taken from the resource [1] and shown in Fig. 1. The number of users is given in millions. As can be seen from the statistics, YouTube is the second most popular platform in the world after the social network Facebook. In addition, YouTube is the second most popular search engine after Google. More than two billion of its users, equivalent to nearly one-third of all Internet users, \log in every month. However, that is not all. YouTube viewers watch more than a billion hours of video on its platform every day and are responsible for generating billions upon billions of views [2].

[^0]

Figure 1: The most popular social networks in the world by active users for July 2021 [1]
Let's look at how many more users have become in recent years:

Figure 2: The number of YouTube users during its existence (in billions) and the number of video views sorted by country [2-3]

One of the reasons for the jump in popularity was changing the interface and adding new functions and opportunities for users, for example, users could rate not only videos, but also entire playlists, and when choosing a video, they were immediately shown the number of video views and its duration. All this affects the emotional state of users. The reason for the jump in popularity in 2020 was the pandemic of the coronavirus disease, as an extremely large number of people around the world began to work, study at home. This increased the amount of free time people have and they started using social platforms like YouTube more [3-5]. It is impossible not to note the number of video views on YouTube. As can be seen from Figure 2, views more than once exceed the population of countries, so there is certain content that people are ready to view more than once and more than twice.

3. Methods and materials

We will use the methods of visual presentation of data, smoothing, correlation method to perform the tasks. Methods of visual presentation of data - methods of presenting data in the form of graphs, charts and/or other subtypes of them (histograms, pie charts, etc.), time series, etc. Depending on the specific task, a specific method of data presentation will be used. We will implement these methods using Microsoft Power BI and/or R tools. Smoothing methods are used to reduce the influence of the random component (random fluctuations) in time series. They make it possible to obtain more "pure" values, which consist only of deterministic components. Some of the methods are aimed at highlighting some components, for example, a trend [6-8]. We will implement these methods using Microsoft Excel, R and/or Microsoft Power BI. Correlation method (Correlation - analysis) - a method of studying the interdependence of characteristics in the general population, which are random variables with a normal distribution [9-13] for different NLP-talks based on emotions recognizing and analysis [14-23].

4. Experiments

The source of the selected dataset: https://www.kaggle.com/ahmedmohamedmahrous/youtubetextsentiment?select=USvideos.csv. Let's open the dataset using R Studio:

video_id	title	channel_title	categoryid	tags	views	likes	disisikes	comment_total	thumbnail_link	date			
XpVi6z19]jo	1 Year of vlogging -- How Logan paul changed yo...	Logan Paul Viogs	24	logan paul viga\|logan paul	logan	pau	loym...	4394029	320053	5931	46245	https//iytimg.com/vixpuvi6z19.jo/defauti.jpg	13/09/2021
K4wE152nHBo		Apple	28	AppleiPhone 10iPhone Ten\|	Phone	Portrait...	7860119	185853	26679		https//ivitimg.com/w/i/kwEI5zHHB0/defautijug	13/09/2021	
cldxuxasawc	My Response	Pendieple	22	[none]	5845909	576597	39774	170708		13/09/2021			
WYYYH003Eog	Apple Phone X first look	The verge	28	apple iphore x hands onl\|Apple Phore X Xip...	2642103	24975	4542	12829	httos//istimg.com/viWrvihbo3Eeg/deffutijpg	13/09/2021			
sjilindxoos	IProne X (parocy)	jaccsfilims	23		1168130	96666	568	6666	httos//istimg.com/v/s/ilhn/xodas/defautijg	13/09/2021			
cmKC2IESLuk	The Disaster Atist 1 Official Traier HD 1 A 24	A24		a24, 324 filmsla2 2 traierslindependent fims!..	1311445	34507	544	3040	https//istimg.com/wi/cmkxazes Luv/defautijpg	13/09/2021			
SwNr-NQimFg	The Check in: Hud, Ben Carson and Hurricanes	Late Night with Seth Meyers	23	Late nightseth Meyersicheckin intudien Ca.-	666169	9985	297	1071	httos//istimg.com/v/swN-NQ/mFg/defautijg	13/09/2021			
-HTXMnKWarA	IPhone X Impressions \& Hands On!	Maraues Brownice	28	IPhone Xiphone xiphore 10iPhone X Xmpr...	1728614	74662	2180	15297	https///.stimg.com/Vi/_HTXMhKWanAddefautijpg	13/09/2021			
_ANP3HR1JSM	ATTACKED BY A POUCE DOG!!	RomanatwoodViogs	22	Roman AtwoodRomanjAtwoodiroman atv.-	1338533	69687	678	5643	https//istimg.com/Vi/_ANP3HR1].sM/detautijpg	13/09/2021			
zglteobex-Q	Honest Traiers - The Mummy (2017)	Screen Junkes		screenjunkiesscreen junkesscreenjunkies n ...	1056891	29943	878	4046	https//ivtimg.com/w/zgotteobex-Q/defautijpg	13/09/2021			
Ayd_2abzim4	Honest Colege Tour	Collegetumor	23	CollegetumorCH originalscomeoy sketch .-.	859289	34485	726	1914		13/09/2021			
Csazfitxevo	Best Fioyd Masweather Interiew / Awkward Puppets	Avkward Puppets	23	best floyd msyweather interiewawivarclip..	452477	28550	405	2745	https//ivitimg.com/i/Csizifixevo/detautijpg	13/09/2021			
${ }^{18641377 c 9 w}$	Jennifer Lawrence Chalenges Simmy to an Axe Throwing Co...	The Tonight Show Staring Jim...	23	The Tonight Showlimmy Faionjueniter La..	258781	8085	${ }^{303}$	726		13/09/2021			
4MkC65emkG4	Hand in Hand A Benefitit for Hurricane Reilief \| MTV	miv	24		274358	9215	477	838	https//ivtimg.com/i/4MkC65emk64/defautijpg	13/09/2021			
v_e.9muoxt50	Colin Cliou: Mind Reader Predits Your Tweets - America's.--	Americis' Got Tient	24	America's Got Talent 2017]merica's got tal...	473691	14740	415	1696	https//istimg.com/vi/v_9muoxT50/defauitijg	13/09/2021			
1LJJeNTtQL.	iPhone X Hands on - Eversthing you need to know	Jonathan Morison	28	Appleiphone XiPhone siphone X unboxin...	514972	18936	641	3817	https//ivitimg.com/w/iltujntiol//efautipg	13/09/2021			
ZQK1Fowzz24	What Do You Want to Eat?	Wong fu Productions	24	pandalwhat should we eatibuzzeedicomed...	282858	14870	300	1398		13/09/2021			
tpuzzatzim	getting into a conversation in a anguage you don't actualy ...	Prozo		skitkorean\|	3nguage	corversationles libann...	1582683	65749	1531	3598		13/09/2021	
wstaellinprs	Juicy Cricken Preast - You Suck tat Cooking (episode 65)	You Suck At Cooking	26	how tolcookinglrecipelkitchen\|chicken	chick...	479951	23945	640	1941	https///istimg.com/vi/wsitelinPns/defoutitipg	13/09/2021		
ucricricim	Downsizing (2017) - Official Trier - Paramount Pictures	Paramount Pitures		downsizingipreviewrelese cotele officialdra..	2693468	7941	302	1432	https//istimg.com/ivivcricruoym/detautijg	13/09/2021			

Figure 3: Displaying the data of the selected dataset in RStudio
As can be seen from the dataset (Fig. 4), there are 11 columns with data.

- video_id - video id;
- title - video title;
- channel_title - the name of the channel that posted the video;
- category_id - the identifier of the category to which the video belongs within the YouTube platform;
- tags - "hashtags" used in the video;
- views - number of views;
- likes - number of likes;
- dislikes - number of dislikes;
- comment_total - number of comments;
- thumbnail_link - video link;
- date - the date of the presentation of the video.

We create a report table consisting of category_id and comment_total columns. Let's display data in Cartesian and polar coordinate systems using R tools:
\#Decart system
ggplot(data = videos, aes(x=category_id, $y=$ comment_total))+ geom_line()
\#Polar coordinate system
ggplot(data = videos, aes(x=category_id))+geom_bar(width = 0.5) +coord_polar(theta = "x")
Let's define quantitative data: views, likes, dislikes, comment_total. Let's add the category_id column to them for more convenient further analysis. Let's calculate the quantitative characteristics by
selecting the views data column, which characterizes the number of views of the corresponding video, using R:

- Sample size - the number of units in the sample: sample_size<-nrow(videos)
- Sample mean. We find using the built-in mean() method:

> avg<-mean(videos\$views, na.rm = FALSE)

- The median of the sample is the number that "divides" "in half" the ordered set of all the values of the sample, that is, the average value of the changing characteristic, which is contained in the middle of the series, placed in the order of increasing or decreasing of the characteristic. For this,

- Mode - the value that occurs most often in the sample. Since there is no built-in method for finding it in R , we will define our modes function:
modes <-function(v) \{\#\# modes function
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
\}
mode_views<-modes(videos\$views)
- Sample size - the difference between the maximum and minimum value of the sample. To find the maximum and minimum, use the built-in methods $\max ()$ and $\min ()$:
range_views<-max(videos\$views)-min(videos\$views)
- Standard deviation - the amount of spread relative to the arithmetic mean. To find, we will use the built-in method sd(): standart_deviation<-sd(videos\$views)
- Coefficient of variation - an indicator that determines the percentage ratio of the average deviation to the average value:

```
variation_coef<-sd(videos$views)*100/mean(videos$views, na.rm = FALSE)
```

- Asymmetry reflects the skewness of the distribution relative to the mode. Let's use the built-in skewness() method: skewness_views<-skewness(videos\$views)
- The kurtosis coefficient characterizes the "steepness", that is, the steepness of the rise of the distribution curve compared to the normal curve. Let's use the kurtosis() method:

kurtosis_views<-kurtosis(videos\$views)

- Standard error is the deviation of the sample from the actual mean. To find it, we will use the formula for calculating the standard error and the $\operatorname{sd}()$ method for calculating the standard deviation:
standart_error<-sd(videos\$views)/sqrt(nrow(videos))
To find the number of intervals, we will use Sturges' formula, and to find the width of the interval Scott's formula. Cumulative - a continuous curve is displayed graphically, which gives a more accurate result compared to a histogram. For construction, we will use the ecdf() function.

Finding the number of intervals and the interval width for the views attribute:
k<-1+log2(nrow(videos)) \#Number of intervals
h<-3.5*sd(videos\$views)*(nrow(videos))^(-1/3) \#Interval width
Construction of a histogram:
hist(videos\$views, breaks = k, xlab = "Views", main = "Histogram of views")
Construction of cumulata:
plot(ecdf(videos\$views),xlim=c(0,2*10^7), main="Cumulate", xlab="Views", ylab = "Frequency", verticals = FALSE)
Finding the number of intervals and the interval width for the likes attribute:
k<-1+log2(nrow(videos)) \#Number of intervals
h<-3.5*sd(videos\$likes)*(nrow(videos))^(-1/3) \#Interval width
Construction of a histogram:
hist(videos\$likes, breaks = k, xlab = "likes", main = "Histogram of likes", xlim = c(0, $\left.8^{*} 10^{\wedge} 5\right)$)
Construction of cumulata:
plot(ecdf(videos\$likes), xlim=c(0, $\left.8^{*} 10^{\wedge} 5\right)$, main="Cumulate", xlab="Likes", ylab = "Frequency", verticals = FALSE)
Finding the number of intervals and the interval width for the dislikes attribute:
k<-1+log2(nrow(videos)) \#Number of intervals
h<-3.5*sd(videos\$dislikes)*(nrow(videos))^(-1/3) \#Interval width
Construction of a histogram:
hist(videos\$likes, breaks = k, xlab = "Dislikes", main = "Histogram of likes", xlim = c(0,8*10^5))
Construction of cumulata:
plot(ecdf(videos\$likes), xlim=c(0, $\left.8^{*} 10^{\wedge} 5\right)$, main="Cumulate", xlab="Dislikes", ylab = "Frequency", verticals = FALSE)
Finding the number of intervals and the interval width for the category_id attribute:
k<-1+log2(nrow(videos)) \#Number of intervals
h<-3.5*sd(videos\$category_id)*(nrow(videos))^(-1/3) \#Interval width
Construction of a histogram:
hist(videos\$category_id, breaks = k, xlab = "Category", main = "Histogram of categories", xlim $\left.=c\left(0,8^{*} 10^{\wedge} 5\right)\right)$
Construction of cumulata:
plot(ecdf(videos\$category_id), main="Cumulate", xlab="Category", ylab = "Frequency")
Let's present the dataset in the form of a table:

Figure 4: The selected dataset in the form of a table
Number of likes and dislikes depending on video categories:

Figure 5: Graph of the number of likes and dislikes in the Cartesian and polar coordinate systems depending on the video category

Let's find the statistical parameters for the views attribute (Table 1).

Table 1
Statistical parameters for the views attribute

Name	Value
Sample size	7998
Selective average	939101.6
Median	308611.5
Mode	0
Sample size	41500672
Standard deviation	2147691
Coefficient of variation	228.10
Asymmetry coefficient	8.056
Kurtosis	99.265
Standard error	24014.92

After executing the code, we have histograms and corresponding cumulates:

Figure 6: Histogram of data and cumulation of the number of videos of the corresponding category

Figure 7: Histogram of data and cumulation of the number of videos of the corresponding category

Figure 8: Histogram of data and cumulation of the number of videos of the corresponding category

Figure 9: Histogram of data and cumulation of the number of videos of the corresponding category

Smoothing methods are used to reduce the influence of the random component (random fluctuations) in time series. They make it possible to obtain more "pure" values, which consist only of deterministic components. Some of the methods are aimed at highlighting some components, for example, a trend.

Smoothing methods can be conventionally divided into two classes based on different approaches: analytical and algorithmic. The simplest method of forecasting is considered to be an approach that determines the forecast estimate from the actually achieved level using the average level, average growth, average growth rate. Extrapolation based on the average level of the series.

The resulting confidence interval takes into account the uncertainty hidden in the estimate of the average value. However, the assumption remains that the predicted indicator is equal to the sample mean, that is, this approach does not take into account the fact that individual values of the indicator have fluctuated around the average in the past, and this will happen in the future.

Analytical smoothing methods include regression analysis together with the method of least squares and its modifications. To identify the main trend by analytical method means to give the studied process the same development throughout the entire observation period. Therefore, for four of these methods, it is important to choose the optimal function of the deterministic trend (growth curve), which smoothes a number of observations.

Forecasting methods based on regression methods are used for short- and medium-term forecasting. They do not allow for adaptation: with the receipt of new data, the forecast construction procedure must be repeated from the beginning. The optimal length of the lead-up period is determined separately for each economic process, taking into account its statistical instability.

The most widely used are the methods of smoothing time series using moving averages.
For moving average smoothing, we will use Kendel's formulas to calculate the lost levels at the beginning and end of the smoothed series. Let's prepare the data for using smoothing methods:
dates<-seq(as.Date("2021-09-13"), as.Date("2021-10-22"), by="days")
str1<-c("13/09/2021", "14/09/2021", "15/09/2021", "16/09/2021", "17/09/2021", "18/09/2021",
"19/09/2021","20/09/2021","21/09/2021","22/09/2021","23/09/2021", "24/09/2021",
"25/09/2021","26/09/2021","27/09/2021","28/09/2021","29/09/2021","30/09/2021",
"07/10/2021", "08/10/2021", "09/10/2021", "10/10/2021"," "11/10/2021", "12/10/2021",
"13/10/2021"," "14/10/2021"," "15/10/2021"," "16/10/2021", "17/10/2021", "18/10/2021",
"19/10/2021","20/10/2021", "21/10/2021", "22/10/2021")
sums <-1:40
k<-1
sum<-0
for(i in 1:7998)
\{
$f($ videos\$date[i]==str1[k]) videos\$date[i]<-str1[k]
sum<-sum+videos\$views[i]
\}else if(videos\$date[i]==str1[k+1])\{
sums $[k]$ <-sum
sum<-0
$k<-k+1$
\}
\}
sums[40]<-sum
views<-sums
k<-1
sum<-0
for(i in 1:7998)\{
if(videos\$date[i]==str1[k])\{
videos\$date[i]<-str1[k]
sum<-sum+videos $\$$ likes[i]
\}else if (videos\$date[i]==str1[k+1])\{
sums[k]<-sum
sum<-0
$k<-k+1$
\}
\}
sums [40]<-sum
likes<-sums
$\mathrm{k}<-1$
sum<-0
for(i in 1:7998)\{
if(videos\$date[i]==str1[k])\{
videos\$date[i]<-str1[k]
sum<-sum+videos\$dislikes[i]
\}else if(videos\$date[i]==str1[k+1])\{ sums [k]<-sum
sum<-0
$k<-k+1$
\}\}
sums[40]<-sum
dislikes<-sums
viewh<-data.frame(dates, views,likes,dislikes)
Let's visualize:

viewh \%>\%

gather(metric, views, likes:dislikes) \%>\%
ggplot(aes(dates, views, color $=$ metric)) +
geom_line(size=1)

The method of smoothing according to Kendel's formulas:

ma <- viewh \%>\%

mutate(ma1 = rollmean(sums, $k=3$, fill = NA), ma2 = rollmean(sums, $k=5$, fill = NA), ma3 = rollmean(sums, $k=7$, fill = NA), ma4 $=$ rollmean(sums, $k=9, f i l l=N A)$, ma5 $=$ rollmean(sums, $k=11, f i l l=N A)$, ma6 $=$ rollmean (sums, $k=13, f i l l=N A)$, ma7 $=$ rollmean(sums, $k=15$, fill = NA))
ma <- viewh \%>\%
select(dates, views) \%>\%
mutate (ma1 = rollmean(views, $k=3$, fill = NA), ma2 = rollmean(views, $k=5$, fill = NA), ma3 = rollmean(views, $k=7$, fill = NA), ma4 $=$ rollmean(views, $k=9$, fill =NA), ma5 = rollmean(views, $k=11$, fill =NA), ma6 = rollmean(views, $k=13$, fill $=$ NA $),$ ma7 $=$ rollmean(views, $k=15$, fill $=N A)$)
sums<-views
ma\$ma1[1]<-(5*sums [1] $+2 *$ sums $[2]-$ sums $[3]) / 6$
ma\$ma1[40]<-(-sums [38]+2*sums [39]+5*sums [40])/6
na\$ma2[1]<-(3*sums $[1]+2 *$ sums [2]+sums [3]-sums $[5]) / 5$
ma\$ma2[2]< 39$]<-(4 *$ sums $[40]+3 *$ sums $[39]+2 *$ sums $[38]+$ sums $[37]) / 10$
ma\$ma2[40]<-(-sums [36]+sums [38]+2*sums [39] 3^{*} sums [40]) $/ 5$
ma\$ma3[1]<-(13*sums [1] ${ }^{2}+10 *$ sums [2] $]+7$ sums [3]+4*sums [4]+1*sums [5]-2*sums[6]-5*sums [7])/28
ma\$ma3[2]<-(5*sums [1]+4*sums[2]+3* sums [3]+2* sums [4] 3 +1*sums $[5]+0^{*}$ sums $[6]-1 *$ sums $\left.[7]\right) / 14$
ma\$ma3[3]<-(7*sums [1]+6*sums[2]+5*sums [3]+4*sums[4]+3*sums [5]+2*sums[6]+sums [7])/28
ma\$ma3[38]<-(7*sums [34]+6*sums[35]+5*sums [36] $+4 *$ sums $[37]+3 *$ sums $[38]+2 *$ sums $[39]+$ sums $[40]) / 28$
ma\$ma3 $[39]<-(5 *$ sums $[40]+4 *$ sums $[39]+3 *$ sums $[38]+2 *$ sums $[37]+1 *$ sums $[36]+0 *$ sums $[35]+1 *$ sums $[34]) / 14$
$\operatorname{ma\$ ma3}[40]<-(13 *$ sums $[40]+10 *$ sums $[39]+7 *$ sums $[38]+4 *$ sums $[37]+$ sums $[36]-2 *$ sums $[35]-5 *$ sums $[34]) / 28$
$\operatorname{madma4}[1]<-\left(17 *\right.$ sums $[1]+14 *$ sums $[2]+11 *$ sums $[3]+8^{*}$ sums $[4]+5 *$ sums $[5]+2 *$ sums $[6]-1 *$ sums $[7]-4^{*}$ sums $[8]$
asma4 $]<-(56 * s i]$
ma\$ma4 $[2]<-\left(56 *\right.$ sums $[1]+47 *$ sums $[2]+38 *$ sums $[3]+29 *$ sums $[4]+20^{*}$ sums $[5]+11 *$ sums $[6]+2 *$ sums $[7]-7 *$ sums $[8]-16 *$ sums $\left.[9]\right) / 180$
ma\$ma4 $[3]<-(22 *$ sums $[1]+19 *$ sums $[2]+16 *$ sums $[3]+13 *$ sums $[4]+10 *$ sums $[5]+7 *$ sums $[6]+4 *$ sums $[7]+$ sums $[8]-2 *$ sums $[9]) / 90$
ma\$ma4[4]<-(32*sums $[1]+29 *$ sums $[2]+26^{*}$ sums $[3]+23^{*}$ sums $[4]+20^{*}$ sums $[5]+17^{*}$ sums $[6]+14^{*}$ sums $[7]+11^{*}$ sums $[8]+8^{*}$ sums $\left.[9]\right) / 180$
ma\$ma4[37]<-(32*sums [40]+29*sums [39]+26*sums [38]+23*sums [37] $+20 *$ sums $[36]+17 *$ sums $[35]+14 *$ sums $[34]+11 *$ sums $[33]+8^{*}$ sums $\left.[32]\right) / 180$
ma\$ma4[38]<-(22*sums [40]+19*sums [39]+16* sums [38]+13*sums [37]+10*sums [36]+7*sums[35]+4*sums [34]+sums[33]-2*sums[32])/90
$\operatorname{ma\$ ma4}[39]<-(56 *$ sums $[40]+47 *$ sums $[39]+38 *$ sums $[38]+29 *$ sums $[37]+20 *$ sums $[36]+11 *$ sums $[35]+2 *$ sums $[34]-7 *$ sums $[33]-16 *$ sums $[32]) / 180$
ma\$ma4[40]<-(17*sums $[40]+14 *$ sums $[39]+11^{*}$ sums $[38]+8 *$ sums $[37]+5 *$ sums $[36]+2 *$ sums $[35]-1 *$ sums $[34]-4 *$ sums $[33]-7 *$ sums $\left.[32]\right) / 45$
ma\$ma5[1]<-(7*sums [1]+6*sums[2]+5*sums[3]+4*sums[4]+3*sums[5]+2*sums[6]+1*sums[7]+0*sums[8]-1*sums[9]-2*sums[10]-3*sums[11])/22
ma\$ma5[3]<-(25*sums [1]+22*sums [2]+19*sums [3]+16*sums[4]+13*sums [5]+10*sums [6]+7*sums[7]+4*sums [8]+sums [9]-2*sums [10]-5*sums [11])/11
ma\$ma5[4]<-(10*sums [1]+9*sums [2]+8*sums [3]+7*sums $[4]+6 *$ sums $[5]+5^{*}$ sums $[6]+4^{*}$ sums $[7]+3^{*}$ sums $[8]+2^{*}$ sums $[9]+1^{*}$ sums $[10]+0^{*}$ sums $\left.[11]\right) / 55$

ma\$ma5[36]<-(15*sums [40]+14*sums [39] $+13 *$ sums [38] $+12 *$ sums [37] $+11^{*}$ sums [37] $+10 *$ sums [36] $+9 *$ sums [35] $+8 *$ sums [34$]+7 *$ sums [33$]+6 *$ sums [32$]+5 *$ sums [31]) $/ 110$
$\operatorname{ma\$ ma5}[37]<-(10 *$ sums $[40]+9 *$ sums $[39]+8 *$ sums [38$]+7 *$ sums $[37]+6 *$ sums $[37]+5 *$ sums $[36]+4 *$ sums $[35]+3 *$ sums $[34]+2 *$ sums $[33]+1 *$ sums $[32]+0 *$ sums $[31]) / 55$
$\operatorname{ma\$ ma5}[38]<-\left(25 *\right.$ sums $[40]+22^{*}$ sums $[39]+19 *$ sums $[38]+16 *$ sums $[37]+13 *$ sums [37] $+10^{*}$ sums $[36]+7 *$ sums $[35]+4 *$ sums $[34]+$ sums [33] $-2 *$ sums [32]-5*sums [31])/110
nałma5[39]<-(15*sums [40]+13*sums [39]+11*sums [38]+9*sums [37]+7*sums [37]+5*sums[36]+3*sums[35]+1*sums[34]-1*sums[33]-3*sums[32]-5*sums[31])/55
$\operatorname{ma\$ ma5}[40]<-\left(7 *\right.$ sums $[40]+6 *$ sums $[39]+5^{*}$ sums $[38]+4 *$ sums $[37]+3 *$ sums $[37]+2^{*}$ sums $[36]+1^{*}$ sums $[35]+$ o * sums $[34]-1 *$ sums $[33]-2^{*}$ sums $[32]-3^{*}$ sums $\left.[31]\right) / 22$
ma\$ma6[1]<-(25*sums [1]+22*sums [2]+19*sums [3]+16*sums [4]+13*sums [5]+10*sums [6]+7*sums [7]+4*sums [8]+1*sums[9]-2*sums [10]-5*sums [11]-8*sums [12]-11*sums[13])/91 ma\$ma6[3$]<-\left(19 *\right.$ sums $[1]+17^{*}$ sums $[2]+15^{*}$ sums $[3]+13^{*}$ sums $[4]+11^{*}$ sums $[5]+9 *$ sums $[6]+7^{*}$ sums $[7]+5 *$ sums $[8]+3 *$ sums $[9]+1^{*}$ sums $[10]-1 *$ sums $[11]-3^{*}$ sums $[12]-5 *$ sums $\left.\left.[13]\right) / 91\right)$ ma\$ma6[4]<-(32*sums $[1]+29 *$ sums [2] $]+26 *$ sums $[3]+23^{*}$ sums $[4]+20 *$ sums $[5]+17 *$ sums $[6]+14 *$ sums $[7]+11 *$ sums $[8]+8 *$ sums $[9]+5 *$ sums $[10]+2 *$ sums $[11]-1 *$ sums $[12]-4 *$ sums $\left.[13]\right) / 18$ ma\$ma6 $[5]<-(13 *$ sums $[1]+12 *$ sums $[2]+11 *$ sums $[3]+10 *$ sums $[4]+9 *$ sums $[5]+8 *$ sums $[6]+7 *$ sums $[7]+6 *$ sums $[8]+5 *$ sums $[9]+4 *$ sums $[10]+3 *$ sums $[11]+2 *$ sums $[12]+1 *$ sums $[13]) / 91$ ma\$ma6[6]<-(20*sums[1]+19*sums[2]+18*sums[3]+17*sums[4]+16*sums[5]+15*sums [6]+14*sums [7]+13*sums [8]+12*sums [9]+11*sums [10]+10*sums [11]+9*sums [12] $+8 *$ sums [13] $) / 182$ ma\$ma6[40]<-(25*sums [40]+22*sums [39] $+19^{*}$ sums [38] $+16 *$ sums [37] $+13^{*}$ sums [36] $+10 *$ sums [35] + 7 * sums [34] $+4 *$ sums [33] $+1^{*}$ sums[32]-2*sums[31]-5*sums[30]-8*sums[29]11*sums [28])/91
ma\$ma6[39]<-(44*sums [40]+39*sums [39] +34*sums [38]+29*sums [37] $+24 *$ sums [36]+19*sums [35]+14*sums [34]+9*sums [33]+4*sums [32] -1*sums [31]-6*sums [30]-11*sums [29]
ma\$ma6[38]<-(19*sums [40]+17*sums [39]+15*sums [38] $+13 *$ sums [37] $+11 *$ sums [36] $+9 *$ sums [35] $+7 *$ sums [34] $+5 *$ sums [33] $+3 *$ sums [32] $+1 *$ sums [31] $-1 *$ sums [30]-3*sums [29]-5*s ma\$ma6[37]<-(32*sums [40]+29*s
ma\$ma6[36]<-(13*sums [40]+12*sums [39] $+11 *$ sums [38]+10*sums [37]+9*sums [36] $+8 *$ sums [35]+7*sums [34] $+6 *$ sums [33]+5*sums[32]+4*sums[31]+3*sums[30] $+2 *$ sums [29] $+1 *$ sums [28]) $/ 91$ ma\$ma6[35]<-
($20 *$ sums $[40]+19 *$ sums $[39]+18 *$ sums $[38]+17 *$ sums $[37]+16 *$ sums $[36]+15 *$ sums $[35]+14 *$ sums $[34]+13 *$ sums $[33]+12 *$ sums $[32]+11 *$ sums $[31]+10 *$ sums $[30]+9 *$ sums $[29]+8 *$ sums $[28]) / 182$ ma\$ma7[1]<-(29*sums [1]+26*sums [2]+23*sums [3] $+20 *$ sums [4] $+17 *$ sums [5] $+14 *$ sums [6] $+11 *$ sums $[7]+8 *$ sums $[8]+5 *$ sums $[9]+2 *$ sums $[10]-1 *$ sums $[11]-4 *$ sums $[12]-7 *$ sums $[13]-$ 10*sums [14]-13* ${ }^{*}$ sums [15])/120
 ma\$ma7[3]<-(161*sums [1] $]+146 *$ s

$\operatorname{ma\$ ma7}[4]<-(35 *$ sums [1] $+32 *$ sums [2] $+29 *$ sums [3] $+26 *$ sums[4] $+23 *$ sums [5] $+20 *$ sums [6] $+17 *$ sums [7] $+14 *$ sums [8] $+11 *$ sums [9] $+8 *$ sums[10] $+5 *$ sums [11] $+2 *$ sums[12] $-1 *$ sums [13]-
4*sums [14]-7*sums [15])/210
ma\$ma7[5]<-
 7*sums[15])/840
($49 *$ sums $[1]+46$
 ma\$ma7[7]<-
($77 *$ sums [1] $+74 *$ sums [2$]+71 *$ sums [3] $]+68 *$ sums [4] $+65 *$ sums [5] $+62 *$ sums [6] $+59 *$ sums [7] $+56 *$ sums [8] $+53 *$ sums [9$]+52 *$ sums [10] $+49 *$ sums [11] $]+46 *$ sums [12] $+43 *$ sums [13] $+40 *$ sums [14] $+37 *$ s ums [15])/840
 10 *sums [14]-13*sums [15])/120
ma\$ma7[39]<-(91*sums [40]+82*sums [39] $+73 *$ sums [38]+64*sums [37] $+55 *$ sums [36] $+46 *$ sums [35] $+37 *$ sums [34] $+28 *$ sums [33] $+19 *$ sums [32]+10*sums [31] $+1 *$ sums [30]-8*sums [29]$7 *$ sums [28]-26*sums [27$]-35 *$ sums [26$]$] $/ 420$

31*sums [38] $+116^{*}$ sums [37] $+101 *$ sums [36]+86*sums [35] $+71^{*}$ sums [34]+56*sums [33] $+41 *$ sums [32]+26*sums [31] $+11^{*}$ sums [30]-4*sums [29]-
19*sums [28]-34*sums [27]-49*sums [26])/840

1*sums[28]-4*sums[27]-7*sums[26])/210
(119*sums [40] $+110 *$ sums [39] $+101 *$ sums [38] $+92 *$ sums [37] $+83 *$ sums [36$]+74 *$ sums [35] $+65 *$ sums [34$]+56 *$ sums [33] $+47 *$ sums [32] $+38 *$ sums [31] $+29 *$ sums [30] $+20 *$ sums [29] $+11 *$ sums [28] $+2 *$ su
ms[27]-7*sums[26])/840
ma\$ma7[35]<-
$(49 *$ sums [40] $+46 *$ sums [39] $+43 *$ sums [38] $+40 *$ sums [37$]+37 *$ sums [36] $+34 *$ sums [35$]+33 *$ sums [34] $+30 *$ sums [33] $+27 *$ sums [32] $+24 *$ sums [31] $+21 *$ sums [30]+18*sums [29]+15*sums [28]+12*sums 27] $+9 *$ sums [26])/420
[27]+34*sums[26])/840
Data visualization:
ma \%>\%
gather(metric, sums, ma1:ma7) \%>\%
ggplot(aes(dates,sums, color $=$ metric)) +
geom_line(size=1)
Visualization of the moving average at $\mathrm{k}=5$:
ggplot(viewh, mapping= aes(x=dates)) + geom_line(mapping= aes (y=likes, col="Real"),lwd=1.5) +
geom_line(mapping= aes(y=ma\$ma2, col="ma2"), lwd=1.5)+scale_color_manual(values=
c("Real"="blue", "ma2"="red")) + theme(legend.title = element_blank()) + labs(x="",y="Likes")
Finding turning points:
tp1 <- turnpoints(ma\$ma1)
summary (tp1)
tp2 <- turnpoints(ma\$ma2)

```
summary(tp2)
tp3 <- turnpoints(ma$ma3)
summary(tp3)
tp4 <- turnpoints(ma$ma4)
summary(tp4)
tp5 <- turnpoints(ma$ma5)
summary(tp5)
tp6 <- turnpoints(ma$ma6)
summary(tp6)
tp7 <- turnpoints(ma$ma7)
summary(tp7)
    Visualization of turning points:
plot(ma$ma2, type = "l")
lines(tp2)
We are looking for the correlation coefficients of the smoothed values with the original ones, taking into account the fact that with each smoothing we subtract rows:
cor(viewh\$views, ma\$ma1)
cor(viewh\$views, ma\$ma2)
cor(viewh\$views, ma\$ma3)
cor(viewh\$views, ma\$ma4)
cor(viewh\$views, ma\$ma5)
cor(viewh\$views, ma\$ma6)
cor(viewh\$views, ma\$ma7)
Similarly, we do research for likes and dislikes. To implement Pollard's formula, we will use the built-in method wma():
```

```
wma <- viewh %>%
```

wma <- viewh %>%
select(dates, views) %>%
select(dates, views) %>%
mutate(wma1 = WMA(views, n = 3, wts = 1:3), wma2 = WMA(views, n = 5, wts = 1:5),
mutate(wma1 = WMA(views, n = 3, wts = 1:3), wma2 = WMA(views, n = 5, wts = 1:5),
wma3 = WMA(views, n = 7, wts = 1:7), wma4 = WMA(views, n = 9, wts = 1:9),
wma3 = WMA(views, n = 7, wts = 1:7), wma4 = WMA(views, n = 9, wts = 1:9),
wma5 = WMA(views, n = 11, wts = 1:11), wma6 = WMA(views, n = 13, wts = 1:13),
wma5 = WMA(views, n = 11, wts = 1:11), wma6 = WMA(views, n = 13, wts = 1:13),
wma7 = WMA(views, n = 15, wts = 1:15))

```
    wma7 = WMA(views, n = 15, wts = 1:15))
```


Using Kendel's formulas:

```
sums<-views
```

sums<-views
wma$wma1[1]<-(5*sums [1]+2*sums[2]-sums[3])/6
wma$wma1[1]<-(5*sums [1]+2*sums[2]-sums[3])/6
wma$wma1[2]<-(-sums[38]+2*sums[39]+5*sums[40])/6
wma$wma1[2]<-(-sums[38]+2*sums[39]+5*sums[40])/6
wma$wma2[1]<-(3*sums [1]+2*sums [2]+sums [3]-sums[5])/5
wma$wma2[1]<-(3*sums [1]+2*sums [2]+sums [3]-sums[5])/5
wma$wma2[3]<-(4*sums [40]+3*sums [39]+2*sums[38]+\mathrm{ sums [37])}
wma$wma2[3]<-(4*sums [40]+3*sums [39]+2*sums[38]+\mathrm{ sums [37])}
wma$wma2[3]<-(4*sums[40]+3*}\mathrm{ sums [39]+2*sums[38]+sums [37])/10
wma$wma2[3]<-(4*sums[40]+3*}\mathrm{ sums [39]+2*sums[38]+sums [37])/10
wma$wma3[1]<-(13*sums[1]+10*sums[2]+7*sums[3]+4*sums[4]+1*sums[5]-2*sums[6]-5*sums[7])/28
wma$wma3[1]<-(13*sums[1]+10*sums[2]+7*sums[3]+4*sums[4]+1*sums[5]-2*sums[6]-5*sums[7])/28
wma$wma3[2]<-(5*}\mathrm{ sums [1]+4*sums[2]+3*}\mathrm{ sums [3]+2*sums [4]+1*sums [5]+0*sums [6]-1*sums [7])/14
wma$wma3[2]<-(5*}\mathrm{ sums [1]+4*sums[2]+3*}\mathrm{ sums [3]+2*sums [4]+1*sums [5]+0*sums [6]-1*sums [7])/14
wma$wma3[4]<-(7*sums[34]+6*sums[35]+5*sums[36]+4*sums[37]+3*sums[38]+2*sums[39]+sums[40])
wma$wma3[4]<-(7*sums[34]+6*sums[35]+5*sums[36]+4*sums[37]+3*sums[38]+2*sums[39]+sums[40])
wma$wma3[5]<-(5*sums[40]+4*sums[39]+3*sums[38]+2*sums[37]+1*sums[36]+0*sums[35]+1*sums[34])/14
wma$wma3[5]<-(5*sums[40]+4*sums[39]+3*sums[38]+2*sums[37]+1*sums[36]+0*sums[35]+1*sums[34])/14
wma$wma3[6]<-(13*sums[40]+10*sums[39]+7*sums[38]+4*sums[37]+sums [36]-2*sums[35]-5*sums[34])/28
wma$wma3[6]<-(13*sums[40]+10*sums[39]+7*sums[38]+4*sums[37]+sums [36]-2*sums[35]-5*sums[34])/28
ma\&wma4[1]<-(156*)
ma\&wma4[1]<-(156*)
wma$wma4[2]<-(56*sums[1]+47*sums[2]+38*sums [3]+29*sums [4]+20*sums [5]+11*sums [6]+2*sums [7]-7*sums [8]-16*sums [9])/180
wma$wma4[2]<-(56*sums[1]+47*sums[2]+38*sums [3]+29*sums [4]+20*sums [5]+11*sums [6]+2*sums [7]-7*sums [8]-16*sums [9])/180
wma\&wma4[3]<-(22*sums[1]+19*sums [2]+16*sums [3]+13*sums [4]+10*sums [5]+7*sums [6]+4*sums [7]+sums [8]-2*sums [9])/90
wma\&wma4[3]<-(22*sums[1]+19*sums [2]+16*sums [3]+13*sums [4]+10*sums [5]+7*sums [6]+4*sums [7]+sums [8]-2*sums [9])/90
wma$wma4[5]<-(32*sums[40]+29*sums[39]+26*sums [38]+23*sums[37]+20*sums [36]+17*sums[35]+14*sums[34]+11*sums[33]+8*sums[32])/180
wma$wma4[5]<-(32*sums[40]+29*sums[39]+26*sums [38]+23*sums[37]+20*sums [36]+17*sums[35]+14*sums[34]+11*sums[33]+8*sums[32])/180
wma$wma4[6]<-(22*sums[40]+19*sums[39]+16*sums [38]+13*sums[37]+10*sums [36]+7*sums [35]+4*sums[34]+\mathrm{ sums [33]-2*sums[32])/90}
wma$wma4[6]<-(22*sums[40]+19*sums[39]+16*sums [38]+13*sums[37]+10*sums [36]+7*sums [35]+4*sums[34]+\mathrm{ sums [33]-2*sums[32])/90}
wma$wma4[7]<-(56*sums[40]+47*sums[39]+38*sums [38]+29*sums[37]+20*sums [36]+11*sums[35]+2*sums[34]-7*sums[33]-16*sums[32])/180
wma$wma4[7]<-(56*sums[40]+47*sums[39]+38*sums [38]+29*sums[37]+20*sums [36]+11*sums[35]+2*sums[34]-7*sums[33]-16*sums[32])/180
wma$wma4[8]<-(17*sums [40]+14*sums [39]+11*sums [38]+8*sums [37]+5*sums [36]+2* sums [35]-1*sums [34]-4*sums[33]-7*sums [32])//*5
wma$wma4[8]<-(17*sums [40]+14*sums [39]+11*sums [38]+8*sums [37]+5*sums [36]+2* sums [35]-1*sums [34]-4*sums[33]-7*sums [32])//*5
wma$wma5[1]<-(7*sums [1]+6*sums[2]+5*sums[3]+4*sums[4]+3*
wma$wma5[1]<-(7*sums [1]+6*sums[2]+5*sums[3]+4*sums[4]+3*
wma$wma5[2]<-(15*sums[1]+13*sums [2]+11*sums [3]+9*sums [4]+7*sums[5]+5*sums [6]+3*sums [7]+1*sums[8]-1*sums [9]-3*sums [10]-5*sums[11])/55
wma$wma5[2]<-(15*sums[1]+13*sums [2]+11*sums [3]+9*sums [4]+7*sums[5]+5*sums [6]+3*sums [7]+1*sums[8]-1*sums [9]-3*sums [10]-5*sums[11])/55
vma$wma5[3]<-(25*sums[1]+22*sums [2]+19*sums [3]+16*sums [4]+13*sums [5]+10*sums [6]+7*sums[7]+4*sums [8]+sums [9]-2*sums [10]-5*sums [11])/110
vma$wma5[3]<-(25*sums[1]+22*sums [2]+19*sums [3]+16*sums [4]+13*sums [5]+10*sums [6]+7*sums[7]+4*sums [8]+sums [9]-2*sums [10]-5*sums [11])/110
wma$wma5[5]<-(15*sums[1]+14*sums[2]+13*sums[3]+12*sums[4]+11*sums[5]+10*sums[6]+9*sums[7]+8*sums[8]+7*sums[9]+6*sums[10]+5*sums[11])/110
wma$wma5[5]<-(15*sums[1]+14*sums[2]+13*sums[3]+12*sums[4]+11*sums[5]+10*sums[6]+9*sums[7]+8*sums[8]+7*sums[9]+6*sums[10]+5*sums[11])/110
wma$wma5[[6]<-(15*sums[40]+14*sums[39]+13*sums[38]+12*sums[37]+11*sums [37]+10*sums[36]+9*sums [35]+8*sums [34]+7*sums [33]+6*sums [32]+5*sums [31])/110
wma$wma5[[6]<-(15*sums[40]+14*sums[39]+13*sums[38]+12*sums[37]+11*sums [37]+10*sums[36]+9*sums [35]+8*sums [34]+7*sums [33]+6*sums [32]+5*sums [31])/110
wma$wma5[7]<-(10*sums [40]+9*sums[39]+8*sums [38]+7*sums [37] +6*sums[37]+5*sums[36]+4*sums[35]+3*sums[34]+2*sums[33]+1*sums[32]+0*sums[31])/55
wma$wma5[7]<-(10*sums [40]+9*sums[39]+8*sums [38]+7*sums [37] +6*sums[37]+5*sums[36]+4*sums[35]+3*sums[34]+2*sums[33]+1*sums[32]+0*sums[31])/55
wma$wmas[8]<-(25*sums[40]+22*sums[39]+19*sums [[38]+16*sums[37]+13*sums [37]+10*sums[36]+7*sums[35]+4*sums[34]+sums[33]-2*sums [32]-5*sums [31])/110
wma$wmas[8]<-(25*sums[40]+22*sums[39]+19*sums [[38]+16*sums[37]+13*sums [37]+10*sums[36]+7*sums[35]+4*sums[34]+sums[33]-2*sums [32]-5*sums [31])/110
wma$wma5[9]<-(15*sums [40]+13*sums[39]+11*sums [38]+9*sums[37]+7*sums[37]+5*sums[36]+3*sums[35]+1*sums[34]-1*sums[33]-3*sums[32]-5*sums[31])/55
wma$wma5[9]<-(15*sums [40]+13*sums[39]+11*sums [38]+9*sums[37]+7*sums[37]+5*sums[36]+3*sums[35]+1*sums[34]-1*sums[33]-3*sums[32]-5*sums[31])/55
wma$wma5[10]<-(7*sums [40]+6*sums [39]+5*sums [38]+4*sums [37]+3*sums [37]+2*sums [36]+1*sums [35]+0*sums [34]-1*sums [33]-2*sums [32]-3*sums [31])/22
wma$wma5[10]<-(7*sums [40]+6*sums [39]+5*sums [38]+4*sums [37]+3*sums [37]+2*sums [36]+1*sums [35]+0*sums [34]-1*sums [33]-2*sums [32]-3*sums [31])/22
*)
*)
wma$wma6[2]<-(44*sums[1]+39*sums [2]+34*sums [3]+29*sums [4]+24*sums[5]+19*sums [6]+14*sums [7]+9*sums [8]+4*sums [9]-1*sums [10]-6*sums[11]-11*sums [12]-15*sums[13])/182
wma$wma6[2]<-(44*sums[1]+39*sums [2]+34*sums [3]+29*sums [4]+24*sums[5]+19*sums [6]+14*sums [7]+9*sums [8]+4*sums [9]-1*sums [10]-6*sums[11]-11*sums [12]-15*sums[13])/182
vma$wma6[3]<-(19*sums[1]+17*sums [2]+15*sums [3]+13*sums [4]+11*sums [5]+9*sums [6]+7*sums [7]+5*sums [8]+3*sums [9]+1*sums [10]-1*sums [11]-3*sums[12]-5*sums [13])/91
vma$wma6[3]<-(19*sums[1]+17*sums [2]+15*sums [3]+13*sums [4]+11*sums [5]+9*sums [6]+7*sums [7]+5*sums [8]+3*sums [9]+1*sums [10]-1*sums [11]-3*sums[12]-5*sums [13])/91
wma$wma6[5]<-(13*sums[1]+12*sums[2]+11*sums[3]+1\mp@subsup{0}{}{*}\mathrm{ sums [4]+9*sums[5]+8*sums[6]+7*sums[7]+6*sums[8]+5*sums[9]+4*sums [10]+3*sums[11]+2*sums [12]+1*sums[13])/91}
wma$wma6[5]<-(13*sums[1]+12*sums[2]+11*sums[3]+1\mp@subsup{0}{}{*}\mathrm{ sums [4]+9*sums[5]+8*sums[6]+7*sums[7]+6*sums[8]+5*sums[9]+4*sums [10]+3*sums[11]+2*sums [12]+1*sums[13])/91}
wma$wma6[6]<-(20*sums[1]+19*sums [2]+18*sums [3]+17*sums [4]+16*sums [5]+15*sums[6]+14*sums [7]+13*sums [8]+12*sums [9]+11*sums[10]+10*sums [11]+9*sums [12]+8*sums [13])/182
wma$wma6[6]<-(20*sums[1]+19*sums [2]+18*sums [3]+17*sums [4]+16*sums [5]+15*sums[6]+14*sums [7]+13*sums [8]+12*sums [9]+11*sums[10]+10*sums [11]+9*sums [12]+8*sums [13])/182
wma$wma6[7]<-(25*sums[40]+22*sums[39]+19*sums [38]+16*sums[37]+13*sums [36]+10*sums[35]+7*sums [34]+4*sums [33]+1*sums [32]-2*sums[31]-5*
wma$wma6[7]<-(25*sums[40]+22*sums[39]+19*sums [38]+16*sums[37]+13*sums [36]+10*sums[35]+7*sums [34]+4*sums [33]+1*sums [32]-2*sums[31]-5*
11*sums[28])/91
11*sums[28])/91
va$wma6[8]<-(44*sums[40]+39*sums[39]+34*sums [38]+29*sums[37]+24*sums [36]+19*sums[35]+14*sums[34]+9*sums[33]+4*sums[32]-1*sums[31]-6*sums[30]-11*sums[29]-
va$wma6[8]<-(44*sums[40]+39*sums[39]+34*sums [38]+29*sums[37]+24*sums [36]+19*sums[35]+14*sums[34]+9*sums[33]+4*sums[32]-1*sums[31]-6*sums[30]-11*sums[29]-
15*sums[28])/182
15*sums[28])/182
wma$wma6[9]<-(19*sums[40]+17*sums[39]+15*sums[38]+13*sums[37]+11*sums[36]+9*sums[35]+7*sums[34]+5*sums[33]+3*sums[32]+1*sums[31]-1*sums[30]-3*sums[29]-
wma$wma6[9]<-(19*sums[40]+17*sums[39]+15*sums[38]+13*sums[37]+11*sums[36]+9*sums[35]+7*sums[34]+5*sums[33]+3*sums[32]+1*sums[31]-1*sums[30]-3*sums[29]-
wma$wma6[10]<-(32*sums[40]+29*sums[39]+26*sums[38]+23*sums[37]+20*sums[36]+17*sums[35]+14*sums[34]+11*sums[33]+8*sums[32]+5*sums[31]+2*sums[30]-1*sums[29]-
wma$wma6[10]<-(32*sums[40]+29*sums[39]+26*sums[38]+23*sums[37]+20*sums[36]+17*sums[35]+14*sums[34]+11*sums[33]+8*sums[32]+5*sums[31]+2*sums[30]-1*sums[29]-
4*sums[28])/182
4*sums[28])/182
wma$wma6[11]<-
wma$wma6[11]<-
(13*sums[40]+12*sums [39]+11*sums [38]+10*sums [37]+9*sums[36]+8*sums [35]+7*sums[34]+6*sums[33]+5*sums[32]+4*sums[31]+3*sums [30]+2*sums [29]+1*sums [28])/91
(13*sums[40]+12*sums [39]+11*sums [38]+10*sums [37]+9*sums[36]+8*sums [35]+7*sums[34]+6*sums[33]+5*sums[32]+4*sums[31]+3*sums [30]+2*sums [29]+1*sums [28])/91
wma$wma6[12]<-
wma$wma6[12]<-
(20*sums[40]+19*sums [39]+18*sums[38]+17*sums[37]+16*sums[36]+15*sums[35]+14*sums[34]+13*sums[33]+12*sums[32]+11*sums[31]+10*sums[[0]]+9*sums[29]+8*sums[28])/182
(20*sums[40]+19*sums [39]+18*sums[38]+17*sums[37]+16*sums[36]+15*sums[35]+14*sums[34]+13*sums[33]+12*sums[32]+11*sums[31]+10*sums[[0]]+9*sums[29]+8*sums[28])/182
wma$wma7[1]<-(29*sums[1]+26*sums[2]+23*sums[3]+20*sums [4]+17*sums[5]+14*sums [6]+11*sums [7]+8*sums[8]+5*sums [9]+2*sums[10]-1*sums[11]-4*sums[12]-7*sums[13]-
wma$wma7[1]<-(29*sums[1]+26*sums[2]+23*sums[3]+20*sums [4]+17*sums[5]+14*sums [6]+11*sums [7]+8*sums[8]+5*sums [9]+2*sums[10]-1*sums[11]-4*sums[12]-7*sums[13]-
10*sums [14]-13*sums [15])/120
10*sums [14]-13*sums [15])/120
26*sums[14]-35*sums[15])/420
26*sums[14]-35*sums[15])/420
19*sums[13]-34*sums[14]-49*sums[15])/840
19*sums[13]-34*sums[14]-49*sums[15])/840
wma$wma7[4]<-(35*sums[1]+32*sums[2]+29*sums[3]+26*sums [4]+23*sums [5]+20*sums[6]+17*sums [7]+14*sums [8]+11*sums [9]+8*sums[10]+5*sums[11]+2*sums[12]-1*sums[13]-
wma$wma7[4]<-(35*sums[1]+32*sums[2]+29*sums[3]+26*sums [4]+23*sums [5]+20*sums[6]+17*sums [7]+14*sums [8]+11*sums [9]+8*sums[10]+5*sums[11]+2*sums[12]-1*sums[13]-
4*sums[14]-7*sums[15])/210
4*sums[14]-7*sums[15])/210
wma$wma7[5]<-
wma$wma7[5]<-
119*sums [1]+110*sums[2]+101*sums[3]+92*sums[4]+83*sums[5]+74*sums[6]+65*sums[7]+56*sums[8]+47*sums[9]+38*sums[10]+29*sums[11]+20*sums [12]+11*sums[13]+2*sums[14]-
119*sums [1]+110*sums[2]+101*sums[3]+92*sums[4]+83*sums[5]+74*sums[6]+65*sums[7]+56*sums[8]+47*sums[9]+38*sums[10]+29*sums[11]+20*sums [12]+11*sums[13]+2*sums[14]-
7*sums[15])/840
7*sums[15])/840
(49*sums[1]+46*sums[2]+43*sums[3]+40*sums [4]+37*sums[5]+34*sums[6]+31*sums [7]+28*sums [8]+25*sums [9]+22*sums [10]+19*sums[11]+16*sums[12]+13*sums [13]+10*sums[14]+7*su
(49*sums[1]+46*sums[2]+43*sums[3]+40*sums [4]+37*sums[5]+34*sums[6]+31*sums [7]+28*sums [8]+25*sums [9]+22*sums [10]+19*sums[11]+16*sums[12]+13*sums [13]+10*sums[14]+7*su
ms[15])/420

```
ms[15])/420
```

wma\$wma7[7]<-
(77*sums [1] $+74 *$ sums [2] $+71 *$ sums[3]+68*sums [4] $+65 *$ sums [5$]+62 *$ sums [6] $+59 *$ sums [7] $+56 *$ sums [8] $+53 *$ sums [9$]+52 *$ sums [10] $+49 *$ sums [11] $+46 *$ sums [12] $+43 *$ sums [13] $+40 *$ sums [14] $+37 *$ s ums [15])/840
 $10 *$ sums [14]-13*sums [15] $) / 120$
wma\$wma7[9]<-(91*sums [40]+82*sums [39]+73*sums [38]+64*sums [37]+55*sums [36]+46*sums [35]+37*sums [34] $+28 *$ sums [33] $+19 *$ sums [32] $+10 *$ sums [31] $]+1 *$ sums [30]-8*sums [29]
[27]-35*sums[26])/420

wma\$wma7[11]<- (35*sums [40]+32*sums [39]+29*sums [38]+26*sums [37]+23*sums [36]+20*sums [35]+17*sums [34]+14*sums[33]+11*sums [32]+8*sums [31]+5*sums [30]+2*sums [29]
1*sums[28]-4*sums[27]-7*sums[26])/210
wma\$wma7[12]<-
119*sums [40]+110*sums[39]+101*sums[38]+92*sums [37] $+83 *$ sums[36]+74*sums [35]+65*sums[34] $+56 *$ sums[33]+47*sums [32] $+38 *$ sums[31] $+29 *$ sums [30]+20*sums [29]+11*sums[28]+2*su
ms[27]-7* sums [26])/840
wma\$wma7[13]<-
(49*sums [40]+46*sums [
保 ma\$wma7[14]<-
 27]+34*sums [26])/840

Visualization of all graphs:
wma \%>\%
gather(metric, views, views:wma7) \%>\%
ggplot(aes(dates, views, color = metric)) + geom_line(size=1)
Graph visualization of real data and weighted data:
ggplot(viewh, mapping= aes(x=dates)) + geom_line(mapping= aes(y=views, col="Real"),lwd=1.5) + geom_line(mapping= aes(y=wma\$wma2, col="ma2"), lwd=1.5)+ scale_color_manual(values= c("Real"="blue", "ma2"="red"))+ theme(legend.title = element_blank()) + labs(x="", y="Likes")
Turning points:
tp1 <- turnpoints(wma\$wma1)
summary (tp1)
tp2 <- turnpoints(wma\$wma2)
summary (tp2)
tp3 <- turnpoints(wma\$wma3)
summary (tp3)
tp4 <- turnpoints(wma\$wma4)
summary (tp4)
tp5 <- turnpoints(wma\$wma5)
summary (tp5)
tp6 <- turnpoints(wma\$wma6)
summary (tp6)
tp7 <- turnpoints(wma\$wma7)
summary (tp7)
Visualization of turning points:
plot(wma\$wma1, type = "1")
lines(tp1)
Correlation coefficients of weighted smoothed data with the original:
cor(wma\$views,wma\$wma1)
cor(wma\$views, wma\$wma2)
cor(wma\$views, wma\$wma3)
cor(wma\$views,wma\$wma4)
cor(wma\$views, wma\$wma5)
cor(wma\$views,wma\$wma6)
cor(wma\$views, wma\$wma7)
Exponential smoothing:

alpha<-0.1

sums<-views
exp_smooth<-1:40
exp_smooth[1]<-sums[1]
for(i in 2:40)\{

```
    exp_smooth[i]<-sums[i]*alpha +(1-alpha)*exp_smooth[i-1]
```

\}
viewh<-data.frame(dates,sums,exp_smooth) \#save date into structure

Visualization:

ggplot(viewh,mapping= aes(x=dates)) + geom_line(mapping= aes(y=sums, col="Real"),lwd=1.5) +
geom_line(mapping= aes(y=exp_smooth, col="es"), lwd=1.5)+
scale_color_manual(values= c("Real"="blue", "es"="red"))+ labs(x="",y="Views",title ="alpha = 0.3")+ theme(legend.title $=$ element_blank(), plot.title $=$ element_text(hjust $=0.5)$)
Turning points:
tp_es<-turnpoints(exp_smooth)
summary (tp_es)
Visualization of turning points:
plot(views, type = "l")
lines(tp_es)
Correlation coefficient of smoothed and real values: cor(views, exp_smooth)
Median filtering

```
med_fil<-1:40
med_fil[1]<-(5*sums[1]+2*sums[2]-sums[3])/6
med_fil[40]<-(-sums[38]+2*sums[39]+5*sums[40])/6
for(i in 2:39){med_fil[i]<-max(min(sums[i-1],sums[i]),min(sums[i],sums[i+1]),min(sums[i-1],sums[i+1]))}
viewh<-data.frame(dates,views,med_fil)
    Visualization:
ggplot(viewh,mapping= aes(x=dates)) + geom_line(mapping= aes(y=views, col="Real"),lwd=1.5) +
    geom_line(mapping= aes(y=med_fil, col="Median"),lwd=1.5)+
    scale_color_manual(values= c("Real"="blue","Median"="red"))+
    labs(\overline{x}="",y="Views",title ="Median filter")+
    theme(legend.title = element_blank(),plot.title = element_text(hjust = 0.5))
    Turning points:
tp_mf<-turnpoints(med_fil)
summary(tp_mf)
    Visualization of turning points:
plot(views, type = "l")
lines(tp_mf)
    Correlation coefficient: cor(views,med_fil)
    In general, correlation can be described as any statistical relationship of data. Correlation allows us
to see the trends of changes in the average values of the functions depending on the parameter changes.
Correlation can be positive or negative. Negative correlation is a correlation in which an increase in one
variable is associated with a decrease in another, and the correlation coefficient is negative. Positive
correlation is a correlation in which an increase in one variable is associated with an increase in another,
and the correlation coefficient is positive.
    Construction of the correlation field (plot)
        plot(dt$likes, dt$dislikes, main="Correlation field",xlab="Likes", ylab="Dislikes")
    Correlation coefficient: cor(dt$views, dt$dislikes)
    Correlation relation:
ggscatter(dt, x = 'likes', y = 'dislikes', add = "reg.line", conf.int = TRUE,
        cor.coef = TRUE, cor.method = "pearson", xlab = "Likes", ylab = "Dislikes")
    Construction of graphs of autocorrelation functions:
data <- cbind(dt$likes, dt$dislikes)
colnames(data) <- c("Likes", "Dislikes")
autocorelation <- acf(data, lag.max = 1,type = c("correlation"), plot = TRUE,
                    xlab="Likes", ylab="Dislikes")
```

Separation of data into 3 parts:
part1 <- dt\$likes[1:2666]
part2 <- dt\$likes[2667:5332]
part3 <- dt\$likes[5333:7998]
A correlation matrix was constructed for the parts (rcorr):

```
                                    mydata.rcorr = rcorr(as.matrix(cbind(part1, part2, part3)))
```

Finding multiple correlation coefficients:
numericData <- cbind(dt\$id, dt\$views, dt\$likes, dt\$dislikes, dt\$category_id, dt\$comment_total) chart.Correlation(numericData, histogram=TRUE, pch=19)

Cluster analysis itself is not a separate algorithm, but a general task that needs to be solved. Therefore, this general task consists in grouping objects in such a way that the grouped objects are more similar to each other compared to other grouped objects, and the given groups are called clusters, and to conduct an analysis of these clusters through experiments. This analysis can be carried out with the help of different algorithms, although the concept of a "cluster" and how to find it can differ greatly between these algorithms, it is the understanding of the cluster model of this or that algorithm that is the key stage to a successful research analysis. Construction of a graphical representation of clustering:
library (ggplot2)
library (factoextra)
ggplot(dt, aes(likes, views, col=dislikes)) + geom_point()
K-means clustering and clustering matrix:
set.seed(55)
cluster <- kmeans(cbind(dt\$channel_title, dt\$dislikes), 4, nstart = 20)
cluster
table(cluster\$cluster, dt\$category_id)
Construction of a dendrogram:
rdata <- cbind(dt\$category_id)
rdata <- na.omit(rdata)
data.hclust = hclust(dist(rdata), method = "single")
plot(data.hclust, labels = FALSE, hang = -1)

5. Results

Display likes and dislikes on a graph over time:

Figure 10: Graph of likes and dislikes over time and Graphs of smoothed data at $k=3,5,7,9,11,13,15$
From the graph, you can already see a slight dependence between the number of likes and dislikes. Using Kendel's formulas, we obtained initial and final values that were lost in the calculation of averages, depending on the average by which we calculate the data. It can be noted that ma4, ma5, ma6, ma7 are not very suitable for identifying trends, since we do not have a large date interval, only 40 days. For more accurate detection of trends, it is advisable to take ma1, ma2 or ma3.

$$
\begin{array}{llllllll}
\text { dates } & \text { views } & \text { ma1 } & \text { ma2 } & \text { ma3 } & \text { ma4 } & \text { ma5 } & \text { ma6 }
\end{array}
$$

2021-09-13 239818781227850762210111512206392385205597607210517670216760117211578721 2 2021-09-14 180704846 204640884208302773207230618206748773210192594215606497210634805 2021-09-15 193399025189647963206494034208068852207899939209867517212390940209690889 2021-09-16 194840017203982180201652314208907085209051106209542441210206351208746973 2021-09-17 223707499211385900208365193204637884210202272209217365208021762207803057 2021-09-18 215610185217862308211672263210185260210553690208892288205837174206859141 2021-09-19 214269241213271267216611556217268477208587949201820779203652585208731294 2021-09-20 209934374214580032220466365212721786205102744202450907201268056204971308 2021-09-21 219536480224150800209946964203911025204302326203852806204157384202106140 2021-09-22 242981546208510401199499550199914750202648150205982451204422171200617011 2021-09-23 163013177189342299195039927199136274202943252203540065201616625198186548 2021-09-24 162032174170893869192896613200326522201006809198336222196480824195663034 2021-09-25 187636257186162781187953526197084347195277203193124662191971371192089864 2021-09-26 208819913204907427194719141184996686188322270188311292188574503189751709 2021-09-27 218266110207975759193986291184129387178767353183817971186313232187435221 2021-09-28 196841253191158428187847455183408690179555885178141272183235190181462293 $\begin{array}{llllllllllll}2021-09-29 & 158367921 & 170717085 & 177480932 & 180904933 & 181612071 & 179642067 & 173801259 & 173800830\end{array}$ 2021-09-30 156942080157432432167849702176864639180710479175851910169309056165182869 2021-10-01 156987296161346445164589021171329755170879427168304482165592130163094180 2021-10-02 170109959169211702168819823160401069158251475159658320161288021162046068 2021-10-03 180537851176723246161499496152722015149014906151787113156479604160759139 2021-10-04 179521927160133408151024945146546307146049897147193408152638544158877972 2021-10-05 120340446134825639139745379142931385144868609148099263151389401156993859 2021-10-06 104614544112889039129974378139531461146129168150250201153822978155181411 2021-10-07 113712128116669838123332090137787815147294995153251758154800859158354746 2021-10-08 131682843130568486132930467137942168148346837153210356158568601159466665 2021-10-09 146310488148775220148128037147894165147250460155522182158838671162653067 $82021-10-10168332330165081739163386497157185592156764625154985723160703707165882991$ 9 2021-10-11 180602398179646384170980835170364994164431995162662347163706545168870468 $02021-10-12190004425180087119182912325176356141174551017173020918171784203169772323$ $12021-10-13169654534188542299183970034184709403184203903183169816178586912173726098$ 2021-10-14 205967937183081116188806218191884616192986071188748626183658830178492093 $2021-10-15173620876194790710194517097198277130195732452191779224187075879184660754$ 2021-10-16 204783318198987672205656191198712178195626304192485782191685998186136454 $2021-10-17218558821216230713203072556200139682194081865194816659193430102199353669$ 2021-10-18 225350001212319528204277792195873473198147143195389744195174206195478990 2021-10-19 1930497621993489411985420241200533639197026570195685981196918310199085069 8 2021-10-20 179647060182933766196078667 205042049 195905997195982218198662414202691148 39 2021-10-21 1761044751873311911905625462207715791947854241962784551201331421206297227 40 2021-10-22 206242037200628679185046424187008410193664851196574692202150622194730665
Figure 11: Smoothed data according to Kendel's formulas

Figure 12: Graph of real data and smoothed data at $k=5$ and Turning points at smoothing $k=5$

This graph clearly shows when we have a trend change. The correlation coefficients are quite large and positive, which is logical, since they directly depend on the data.

Figure 13: Visualization of turning points and Correlation coefficients of smoothed data and actual

Figure 14: Smoothed data according to Kendel's formulas

Using Kendel's formulas, we obtained the initial and final values that were lost in the calculation of the averages, depending on the average from which we calculate the data.

Figure 15: Graphs of structured data at $k=3,5,7,9,11,13,15$
It can be noted that ma4, ma5, ma6, ma7 are not very suitable for identifying trends, since we do not have a large date interval, only 40 days. For more accurate detection of trends, it is advisable to take ma1, ma 2 or ma3.

Figure 16: Graph of real data and smoothed data at $\mathrm{k}=5$ and Turning points at smoothing $\mathrm{k}=5$

Figure 17: Visualization of turning points and correlation coefficients of smoothed and actual data

						4			
1	2021-09-13	322647	317815.2	269396.6	244568.1	267702.4	345538.3	408902	. 6
2	2021-09-1	303191	312854.	313362.3	306140	318360	369907.1	416776	429
3	2021-09-1	312726	307	357328.0	367	369018	394275.	420818	4307
4	2021-09-1	308010	386934	409610.8	429285	419675	41864	426775	432085
5	2021-09-1	540066	477379	475831.8	467705.	470333.8	443013.	432733	433427
6	2021-09-1	584061	586141	531604.2	515309	508584	467382.	438691	434768
7	2021-09-1	634296	603315	597286	565906	501707	464453.	444648	441655
8	2021-09-2	591588	620767	622654.0	556376	499230.	468599.	450416	4374
9	2021-09-2	636419	631637	554101	52071	503762	476317.	456611	439838.
10	2021-09-2	666906	514873	485328	48710	487935.	483201.	460128	430125.
11	2021-09-23	241296	399545.3	436769.	453294.	465676.	466689.	448549	420155.
12	2021-09-2	290434	293507.7	389011.0	423600.	435025.	427910.5	419557.	412492
13	2021-09-25	348793	345617.7	332375.6	383889.1	38679	385081.2	389481.	3907
14	2021-09-26	397626	376716.0	355804	311115.3	334209	348852.	357093	367082.
15	2021-09-27	383729	379931.7	329215.4	299954	281560.	310382.6	329258	339404
16	2021-09-28	358440	299886.0	292091.4	28604	27844	270639	297158	31142
17	2021-09-29	157489	226367.3	251179.8	26668	271	26862	259081.	278540.4
18	2021-09-30	163173	171243.3	217085.0	242698.0	257292.2	257847.9	251531.	243445.
19	2021-10-01	193068	189832.0	19134	21918	23221	23915	23999	238008.
20	2021-10-02	213255	212018.3	203669.2	192534.	205480.2	215776.	225453.	231285.
21	2021-10-03	229732	220701.7	205415.4	190484.7	181263.	195412.	209450.	2239
22	2021-10-04	219118	206918.0	195430.4	187244.1	181512	180062.	19828	2165
23	2021-10-05	171904	178055.0	180877.2	18248	18444	18743	192828	211
24	2021-10-06	143143	151845.3	166876.2	179100.4	18950	19873	20417	204
25	2021-10-07	140489	147786.3	160970.6	18036	197	208914	21153	224
26	2021-10-08	159727	163268.7	174306.0	190133.6	206119.	213052.	23134	241
27	2021-10-09	189590	195966.0	203177.6	209150.3	210525.7	233134.	24727	2607
28	2021-10-10	238581	238557.3	236084.0	225669.1	241495.	251433.4	266793	282598.
29	2021-10-11	287501	277034.3	255893.6	269974.9	272302.2	279754.	291548	3051
30	2021-10-12	305021	283765.7	308101.4	307214.9	310407.2	315917.0	321977.	315861.
31	2021-10-13	258775	338141.7	344466.6	349192.6	352763.4	354734.5	340221.	331406.
32	2021-10-14	450629	376603.7	383653.2	392385.7	394751.3	374787.8	360574.	341912.
33	2021-10-15	420407	451490.0	430835.6	432382.9	410499.4	394376.8	371421.	355067.
34	2021-10-16	483434	481591.3	492576.8	443139.0	423562.6	400027.9	382822.	367174
35	2021-10-17	540933	530616.0	478513.8	464038.1	423087.2	404600.7	392605.	400524.8
36	2021-10-18	567481	496242.7	475446.2	442625.9	431868.0	405833.9	402389.	403298.
37	2021-10-19	380314	450954.7	438908.0	430825.1	413073.8	400222.2	412172.	419376.2
38	2021-10-20	405069	362042.0	398281.8	469385.4	394279.7	394610.6	421955.	4354
39	2021-10-21	300743	347871.3	344388.9	422766.6	375485.5	388998.	433050.	451
	2021-10-22	337	31423	04	315144.3	3566			

Figure 18: Smoothed data according to Kendel's formulas
Using Kendel's formulas, we obtained the initial and final values that were lost in the calculation of the averages, depending on the average from which we calculate the data.

Figure 19: Graphs of structured data at $k=3,5,7,9,11,13,15$
It can be noted that ma4, ma5, ma6, ma7 are not very suitable for identifying trends, since we do not have a large date interval, only 40 days. For more accurate detection of trends, it is advisable to take ma1, ma2 or ma3.

- Real $n b r$ observations $: 40$
- ma2 nbr ex-aequos
nbr turning points:
nbr turning points: 7 (first point is a peak)
$E(p)=25.33333 \operatorname{Var}(p)=6.788889$ (theoretical)
point type proba info
8 peak 2.967711e-07 21.684146
13 pit 5.952381e-03 7.392317
14 peak $2.380952 \mathrm{e}-03 \quad 8.714246$
19 pit $1.736111 \mathrm{e}-03 \quad 9.169925$
21 peak $5.952381 \mathrm{e}-03 \quad 7.392317$
25 pit $1.640317 \mathrm{e}-08 \quad 25.861450$
Figure 20: Plot of real data and smoothed data at $\mathrm{k}=5$ and turning points at $\mathrm{k}=5$ smoothing

Figure 21: Visualization of turning points and correlation coefficients between smoothed data and actual data

Abstract

$\begin{array}{lrrrrrrrrrr} & \text { dates } & \text { views } & \text { wma1 } & \text { wma2 } & \text { wma3 } & \text { wma4 } & \text { wma5 } & \text { wma6 } & \text { wma7 } & \text { wman } \\ 1 & 2021-09-13 & 239818781 & 227850762 & 210111512 & 206392385 & 205597607 & 210517670 & 216760117 & 211578721\end{array}$ 2021-09-14 180704846 200628679208302773207230618206748773210192594215606497210634805 2021-09-15 193399025196904258190562546208068852207899939209867517212390940209690889 4 2021-09-16 194840017192003825185046424205042049209051106209542441210206351208746973 $5 \quad 2021-09-17 \quad 223707499209033593205288207220771579197026570209217365208021762207803057$ 6 2021-09-18 215610185214847595208326925187008410195905997195389744205837174206859141 $7 \quad 2021-09-19214269241216289265212532567209745318194785424195685981202150622208731294$ $8 \quad 2021-09-20209934374212325298213055627210002140193664851195982218201331421194730665$ $\begin{array}{llllllllllll}9 & 2021-09-21 & 219536480 & 215457905 & 215677033 & 213726789 & 211737160 & 196278455 & 198662414 & 206297227 \\ 10 & 2021-09-22 & 242981546 & 229658662 & 224467029 & 221925861 & 218293015 & 196574692 & 196918310 & 202691148\end{array}$ 10 2021-09-22 242981546229658662224467029221925861218293015196574692196918310202691148 $\begin{array}{llllllllllllllllll}12 & 2021-09-24 & 162032174 & 175850737 & 189344370 & 195689633 & 199473758 & 200540475 & 195174206 & 199085069\end{array}$ 13 2021-09-25 18763625717499771618538993919162094119598046019817638819928340719935366 $\begin{array}{lllllllllllll}14 & 2021-09-26 & 188819913 & 193960738 & 189983268 & 193847232 & 196883978 & 199237889 & 200021597 & 186136454\end{array}$ $\begin{array}{lllllllllllll}14 & 2021-09-26 & 208819913 & 193960738 & 189983268 & 193847232 & 196883978 & 199237889 & 200021597 & 186136454 \\ 15 & 2021-09-27 & 218266110 & 210012402 & 198439767 & 198629690 & 200007570 & 201640107 & 202449890 & 202768837\end{array}$ $\begin{array}{llllllllllll}15 & 2021-09-27 & 218266110 & 210012402 & 198439767 & 198629690 & 200007570 & 201640107 & 202449890 & 202768837 \\ 16 & 2021-09-28 & 196841253 & 205979315 & 201402342 & 197758373 & 198787170 & 200116574 & 201404729 & 201752580\end{array}$ $\begin{array}{llllllllllll}16 & 2021-09-28 & 196841253 & 205979315 & 201402342 & 197758373 & 198787170 & 200116574 & 201404729 & 201752580 \\ 17 & 2021-09-29 & 158367921 & 181175397 & 189285269 & 188079267 & 190259392 & 192587883 & 194825550 & 196285303\end{array}$ $\begin{array}{llllllllllllllllll}18 & 2021-09-30 & 156942080 & 164067223 & 176937198 & 181065615 & 182592367 & 185688860 & 188443472 & 190825937\end{array}$ 19 2021-10-01 156987296157202328166650479174280092176325373179665965182801540185676030 20 2021-10-02 170109959163541092164193488170955409174593894176632410179678481182481896 21 2021-10-03 180537851173136795168422871170863639174790287176085723178530388181037894 22 2021-10-04 179521927178291907173400506171527961174372258176315832177560201179759171 $\begin{array}{llllllllllll}23 & 2021-10-05 & 120340446 & 150100507 & 157240714 & 158780634 & 162298252 & 166432229 & 168575238 & 171372325\end{array}$ $\begin{array}{lllllllllll}24 & 2021-10-06 & 104614544 & 122341075 & 138279063 & 144834003 & 149045275 & 154559334 & 158691421 & 161766356\end{array}$ $\begin{array}{llllllllll}25 & 2021-10-07 & 113712128 & 111784320 & 125841457 & 135081531 & 140137406 & 145460609 & 150749003 & 154255268\end{array}$ $\begin{array}{llllllllll}26 & 2021-10-08 & 131682843 & 121181222 & 123153945 & 131365665 & 136670993 & 140798029 & 145904819 & 150067765 \\ 27 & 2021-10-09 & 146310488 & 136001546 & 128599315 & 132210440 & 136723111 & 139885258 & 143765172 & 147969803\end{array}$ $\begin{array}{lllllllllll}27 & 2021-10-09 & 146310488 & 136001546 & 128599315 & 132210440 & 136723111 & 139885258 & 143765172 & 147969803 \\ 28 & 2021-10-10 & 168332330 & 154883468 & 143599395 & 139410658 & 141415855 & 143408412 & 145458418 & 148755586\end{array}$ $\begin{array}{llllllllllll}28 & 2021-10-10 & 168332330 & 154883468 & 143599395 & 139410658 & 141415855 & 143408412145458418 & 148755586\end{array}$ $302021-10-12190004425183258400173448835163129868156852387155451305154969687155126800$ $\begin{array}{llllllllllllllllllllll}31 & 2021-10-13 & 169654534 & 178262475 & 175538181 & 168569960 & 161113927 & 158185101 & 157231338 & 156709385\end{array}$ $\begin{array}{llllllllllllllllllllll}31 & 2021-10-13 & 169654534 & 178262475 & 175538181 & 168569960 & 161113927 & 158185101 & 157231338 & 156709385\end{array}$ $\begin{array}{llllllllllllllllll}33 & 2021-10-15 & 173620876 & 183742173 & 184103399 & 181579517 & 176228672 & 169994480 & 166691245 & 164965966\end{array}$ $\begin{array}{lllllllllll}34 & 2021-10-16 & 204783318 & 194593274 & 191041160 & 188686311 & 184298937 & 178294080 & 173254766 & 170630548\end{array}$ $\begin{array}{lllllllllllllllllll}35 & 2021-10-17 & 218558821 & 206477329 & 200958694 & 197148665 & 193100498 & 187610159 & 181519782 & 177618767\end{array}$ 36 2021-10-18 225350001219658494211236329205515012201329717196331672190325990185052144 37 2021-10-19 193049762208068018207034186204208170201342456197978330193363927188074555 38 2021-10-20 179647060191731784199225687199441890198125377196461402193515377189308897 39 2021-10-21 176104475180109551189834582193433088194221011193848944192436183189606195 40 2021-10-22 206242037191763687192401253196025229196653046196141653195174206193074938

Figure 22: Smoothed data according to formulas from Pollard

The number of turning points allows better analysis of trends. As we can see, the trends of the views attribute are best viewed. This is due to the peculiarity of the data. Correlation coefficients are close to 1 and decrease as the step increases, as less and less data will affect the average. As in the case of a
simple moving average, for our data it is better not to use averages with a step greater than 7 to get more accurate information. We can notice a noticeable difference between the graphs of the simple moving average and the weighted moving average. This is due to the fact that the weighted moving average reacts to changes more quickly than the simple moving average. This may allow us to predict, although the results will be quite imprecise, as smoothing methods are not designed to predict.

Figure 23: Display of real and structured data

Figure 24: Display of real and smoothed data at $w=5$ and Pivot points at $w=5$
Compared to a simple moving average chart, we can say that the weighted moving average is more suitable for spotting trends in a time series.

$$
\begin{aligned}
& >\text { cor(wma\$views,wma\$wma1) } \\
& \text { [1] } 0.9177515 \\
& \text { > cor(wma\$views, wma\$wma2) } \\
& \text { [1] } 0.8169842 \\
& >\text { cor (wma\$vi ews, wma\$wma3) } \\
& \text { [1] } 0.7533848 \\
& >\text { cor (wma\$views,wma\$wma4) } \\
& \text { [1] } 0.6916134 \\
& \text { cor (wma\$vi ews, wma\$wma5) } \\
& \text { [1] } 0.6161428 \\
& >\text { cor (wma\$vi ews, wma\$wma6) } \\
& \text { [1] } 0.6050743 \\
& >\text { cor (wma\$views, wma\$wma7) } \\
& \text { [1] } 0.5634467
\end{aligned}
$$

Figure 25: Visualization of turning points and correlation coefficients of real and smoothed data
As the step increases, the correlation coefficient decreases, since the values have less influence on the average. Exponential smoothing directly depends on the latest data, i.e. how the weighted average will react quickly to changes.

Figure 26: Exponentially smoothed data and visualization of smoothed data at alpha $=0.1 \backslash$

Figure 27: Visualization of smoothed data at alpha $=0.15$ and alpha $=0.2$

Figure 28: Visualization of smoothed data at alpha $=0.25$ and alpha $=0.3$

Figure 29: Turning points and visualization of turning points with exponential smoothing, alpha $=0.1$

```
> cor(views, exp_smooth)
[1] 0.8010819
```

Figure 30: Correlation coefficients of real data and exponentially smoothed data at alpha $=0.1$
Median smoothing completely removes single extreme or anomalous values of levels that are separated from each other by at least half of the smoothing interval; preserves sharp changes in the trend (moving average and exponential smoothing smooth them); effectively removes single levels with very large or very small values that are random in nature and stand out sharply from other levels.

Figure 31: Median filtering and visualization of median filtering
As can be seen from fig. 31-33, median filtering eliminated random levels that are random in nature. As a result, we have a more stable schedule.

```
nor observations : 40 
    point type proba info
        3 pit 0.250000000 2.0000000
        6 peak 0.250000000 2.0000000
        8 pit 0.666666667 0.5849625
        10 peak 0.666666667 0.5849625
        1 2 ~ p i t ~ 0 . 2 5 0 0 0 0 0 0 0 ~ 2 . 0 0 0 0 0 0 0
        15 peak 0.027777778 5.1699250
        * peak 0.027777778 5.1699250
        peak 0.100000000 3.3219281
        25 pit 0.001041667 9.9068906
        31 peak 0.005952381 7.3923174
        3 2 ~ p i t ~ 0 . 2 5 0 0 0 0 0 0 0 ~ 2 . 0 0 0 0 0 0 0
        3 6 \text { peak 0.100000000 3.3219281}
        3 9 \text { pit 0.250000000 2.0000000}
```


Figure 32: Turning points and visualization of turning points in median filtering

```
> cor(views,med_fi1)
[1] 0.9556164
```

Figure 33: Correlation coefficient
Note that the correlation is high, because the median filtering does not calculate, does not generalize, but shows the median on a certain interval. That is why median filtering is very effective when studying time series.

Figure 34: Correlation field of Likes and Dislikes indicators

$$
\begin{aligned}
& >\text { cor (dt\$views, dt\$dislikes) } \\
& {[1] 0.5419003}
\end{aligned}
$$

Figure 35: Correlation coefficient
This value shows us a rather obvious influence of the number of views on the number of dislikes of videos on the YouTube platform.

Figure 36: Correlation relation
Thanks to this correlation graph, we can observe that with a rapid increase in the number of likes, the number of dislikes also increases, albeit slightly.

Figure 37: Graphs of autocorrelation functions and Correlation matrix
From this visualization, it is possible to conclude that our board is stationary, and since the data on any interval are not equal to zero, their regularity follows. We can conclude that the attribute by which the matrix is built is quite homogeneous, which is logical, because this attribute is likes.

Figure 38: Multiple correlation coefficients and autocorrelation result
From this visualization, we can see that there are quite strong relationships between attributes, but there are also negative correlation coefficient results.

Figure 39: Graphic representation of cluster analysis
Again, as it was proven before, as the number of likes increases, the number of views increases. Although the clusters on the visualization are quite difficult to distinguish, it is possible to generally
identify two clusters, namely, light blue spots - the relationship of a high number of views and likes, dark blue spots - a small number of these attributes.

Figure 40: Clustering matrix using the k-means method

According to this matrix, it is difficult to determine which cluster is built and according to which parameter, that is, there are no clear boundaries.

Figure 41: Dendrogram

The dendrogram was constructed without labels, in order to facilitate the understanding of the number of levels of clustering between categories of video content on the YouTube platform, sacrificing, unfortunately, the hierarchical relationship between objects.

6. Discussion

For a better analysis of the categories, let's find out the names of the categories that correspond to the identifiers: 1 - movies and cartoons, 10 - music, 15 - pets and animals, 17 - sports, 19 - travel, $20-$ games, 22 - people and blogs, 23 - humor, 24 - entertainment, 25 - news and politics, 26 - style, 27 education, 28 - science and technology, 29 - non-profit and activism.

Figure 42: Histogram of category_id attribute data and visualization of turning points with simple smoothing

It can be seen from the histogram that the most popular categories are categories with identifiers 24 , $10,22,28$, that is, people are most interested in watching thoughtful videos or other people.

This graph clearly shows when we have a change in the viewing trend. A simple moving average got rid of the noise, but you have to take into account that the platform must be in trend.

A simple moving average is suitable for identifying trends in the past, which will help us predict the future with less error. However, for such a large and popular platform as YouTube, it is necessary to analyze the latest events. For this, they need methods that quickly respond to the latest data. When working on such methods, we used the weighted moving average smoothing method and exponential smoothing.

Another method is median smoothing with the size of the smoothing interval $\mathrm{w}=3$.

Figure 43: Visualization of turning points during median filtering
We can note that the general trends in the above graphs (Figs. 42-44) are practically identical, which makes both methods suitable for working with the selected dataset.

Thanks to the correlation relationship, we can observe that with a rapid increase in the number of likes, the number of dislikes also increases, albeit slightly. Analyzing other graphs, we can conclude that when the number of views increases, the number of likes increases, and therefore the number of dislikes increases.

Figure 44: Correlation relation
Thanks to this correlation graph, we can observe that with a rapid increase in the number of likes, the number of dislikes also increases, albeit slightly.

Figure 45: Graphic representation of cluster analysis
Again, as it was proven before, as the number of likes increases, the number of views increases. Although the clusters on the visualization are quite difficult to distinguish, it is possible to generally identify two clusters, namely, light blue spots - the relationship of a high number of views and likes, dark blue spots - a small number of these attributes.

7. Conclusions

A simple moving average is suitable for identifying trends in the past, which will help us predict the future with less error. However, for such a large and popular platform as YouTube, it is necessary to analyse the latest events. To do this, they need methods that quickly respond to the latest data. During the calculation and graphic work on such methods, we studied the weighted moving average smoothing method and exponential smoothing. Analysing this dataset, we learned that people like to watch videos from the categories "Music", "Entertainment" or "People and blogs" the most. These categories account for the largest number of likes and views. At the same time, the most dislikes fell on the "People and blogs" category. This can be explained by the fact that people often differ in their opinions and they simply do not agree with what was said in the video. It is also worth noting that the relationship between the number of likes, dislikes and the number of views was investigated. There is a direct relationship between them, so when one of these attributes increases, the others will also increase. It turned out to be an interesting fact that topics related to science and technology have recently become more and more popular. However, the difference between likes and dislikes is significantly in favour of likes, which means that people are mostly happy when they consume YouTube content.

8. References

[1] Most popular social networks worldwide as of 2023, ranked by number of monthly active users: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
[2] M. Mohsin. 10 YouTube Stats Every Marketer Should Know In 2022 [Infographic]. URL: https://www.oberlo.com/blog/youtube-statistics
[3] B. Dean. How Many People Use YouTube in 2023? [New Data]. URL: https://backlinko.com/youtube-users\#youtube-statistics
[4] R. F. Alhujaili, W. M.Yafooz, (). Sentiment analysis for youtube videos with user comments. In 2021 International Conference on Artificial Intelligence and Smart Systems, 2021, pp. 814-820.
[5] How YouTube changed the world. URL: https://s.telegraph.co.uk/graphics/projects/youtube/
[6] S. Kumar, M. Yadava, P. P. Roy, Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction. Information Fusion, 52 (2019) 41-52.
[7] V.V. Hnatushenko, P. I. Kogut, M. V. Uvarov, On Optimal 2-D Domain Segmentation Problem via Piecewise Smooth Approximation of Selective Target Mappings. Journal of Optimization, Differential Equations and Their Applications 27(2) (2019). 60-95. DOI: 10.15421/141908.
[8] Hnatushenko V., Kogut P., Uvarov M. On Satellite Image Segmentation via Piecewise Constant Approximation of Selective Smoothed Target Mapping, Applied Mathematic
[9] L. P. Morency, R. Mihalcea, P. Doshi, Towards multimodal sentiment analysis: Harvesting opinions from the web. In Proceedings of the 13th international conference on multimodal interfaces, 2011, pp. 169-176.
[10] V. Vysotska, O. Markiv, S. Teslia, Y. Romanova, I. Pihulechko, Correlation Analysis of Text Author Identification Results Based on N-Grams Frequency Distribution in Ukrainian Scientific and Technical Articles, CEUR Workshop Proceedings, Vol-3171 (2022) 277-314.
[11] N. Romanyshyn, Algorithm for Disclosing Artistic Concepts in the Correlation of Explicitness and Implicitness of Their Textual Manifestation, CEUR Workshop Proceedings 2870 (2021) 719-730.
[12] Y. Yusyn, T. Zabolotnia, Methods of Acceleration of Term Correlation Matrix Calculation in the Island Text Clustering Method, CEUR workshop proceedings, Vol-2604 (2020) 140-150.
[13] B. Rusyn, V. Ostap, O. Ostap, A correlation method for fingerprint image recognition using spectral features, in: Proceedings of the International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science, TCSET, 2002, pp. 219-220.
[14] S. Voloshyn, O. Markiv, V. Vysotska, I. Dyyak, L. Chyrun, V. Panasyuk, Emotion Recognition System Project of English Newspapers to Regional E-Business Adaptation, in: IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022, pp. 392-397, doi: 10.1109/CSIT56902.2022.10000527.
[15] N. Kholodna, V. Vysotska, S. Albota, A Machine Learning Model for Automatic Emotion Detection from Speech, CEUR Workshop Proceedings, Vol-2917 (2021) 699-713.
[16] M. Hryntus, M. Dilai, Translating emotion metaphors from English into Ukrainian: based on the parallel corpus of fiction, CEUR Workshop Proceedings, Vol-3171 (2022) 737-750.
[17] O. Bisikalo, V. Kovenko, I. Bogach, O. Chorna, Explaining Emotional Attitude Through the Task of Image-captioning, CEUR Workshop Proceedings, Vol-3171 (2022) 1056-1065.
[18] K. Smelyakov, O. Bohomolov, M. Kizitskyi, A. Chupryna, Identification of Modern Facial Emotion Recognition Models, CEUR Workshop Proceedings, Vol-3171 (2022) 1267-1281.
[19] D. Nazarenko, I. Afanasieva, N. Golian, V. Golian, Investigation of the Deep Learning Approaches to Classify Emotions in Texts, CEUR Workshop Proceedings, Vol-2870 (2021) 206-224.
[20] I. Bekhta, N. Hrytsiv, Computational Linguistics Tools in Mapping Emotional Dislocation of Translated Fiction, CEUR Workshop Proceedings, Vol-2870 (2021) 685-699.
[21] I. Spivak, S. Krepych, O. Fedorov, S. Spivak, Approach to Recognizing of Visualized Human Emotions for Marketing Decision Making Systems, CEUR Workshop Proceedings, Vol-2870 (2021) 1292-1301.
[22] P.C. Thoumelin, N. Grabar, Subjectivity in the medical discourse: On uncertainty and emotional markers, Revue des Nouvelles Technologies de l'Information, E. 26 (2014) 455-466.
[23] N. Grabar, L.O. Dumonet, Automatic computing of global emotional polarity in French health forum messages, Lecture Notes in Computer Science 9105 (2015) 243-248.

[^0]: COLINS-2023: 7th International Conference on Computational Linguistics and Intelligent Systems, April 20-21, 2023, Kharkiv, Ukraine EMAIL: volodymyr.motyka@lpnu.ua (V. Motyka), yaroslav.stepaniak@lpnu.ua (Y. Stepaniak), mariia.nasalska@lpnu.ua (M. Nasalska), victoria.a.vysotska@1pnu.ua (V. Vysotska)
 ORCID 0009-0009-8086-7619 (V. Motyka), 0009-0007-3074-1132 (Y. Stepaniak), 0009-0008-1089-039X (M. Nasalska), 0000-0001-64173689 (V. Vysotska)

