
Programming the Formation of Difference Color Models for
Lossless Image Compression

Alexander Shportko
,1

, Andrii Bomba
,2

 and Veronika Postolatii
,3

1
 Academician Stepan Demianchuk International University of Economics and Humanities, 4, Acad. S.

Demianchuk Str, 33000, Rivne, Ukraine
2
 National University of Water and Environmental Engineering, 11, Soborna Str, 33028, Rivne, Ukraine

3
 National University “Lviv Polytechnic”, 12, St. Bandera Str, 79000, Lviv, Ukraine

Abstract
The method and corresponding algorithm for selecting adaptive difference color models with

integer coefficients for improving the efficiency of progressive lossless image compression

was proposed. The necessity was reasoned and the displacement of the median differences of

the basic components of the R, G, B color model to the middle of the range of possible values

was implemented. Fragments of programs in the C++ language for implementing the

algorithm for choosing a difference color model from 49 alternatives and the algorithm for

determining the median component in linear time by the counting method are given. On the

well-known ACT test set, it is shown that the use of difference color models with integer

coefficients makes it possible to reduce the compression coefficients of photorealistic images

by an average of 0.58 bpb.

Keywords1
Progressive image compression, lossless compression, differential color models with integer

coefficients.

1. Introduction

As you know, images significantly facilitate and accelerate the perception of information by a

person. That is why today they are an integral part of multimedia information, which is most often

transmitted by communication channels or stored on electromagnetic media. Therefore, the problem

of increasing the efficiency of image compression is relevant today and will be relevant in the nearest

future.

All graphic formats and methods used in them are divided into two main classes based on the

principle of image data compression: lossy (for example, JPEG) and lossless (for example, PNG) [1].

And if for the vast majority of lossy image compression algorithms it is possible to provide the

required compression ratio (the ratio of compressed to uncompressed image file sizes, expressed in

bpb, hereinafter – CR) at the expense of quality degradation, then the level of lossless image

compression actually depends only on the differences of the colors of their pixels and the compression

algorithm itself. It is not adjustable by software and averages only 30-70% [1]. Therefore, the

development of alternative graphic formats, such as HBF-LS [2], is an urgent task today.

2. Related works

Any data compression is possible due to reduction or elimination of redundancies [3]. Three main

types of redundancies are distinguished in images [4]: visual (consisting in the presence of

COLINS-2023: 7th International Conference on Computational Linguistics and Intelligent Systems, April 20–21, 2023, Kharkiv, Ukraine

EMAIL: ITShportko@gmail.com (A. V. Shportko); abomba@ukr.net (A. Ya. Bomba); VeronikaShportko@gmail.com (V. A. Postolatii)

ORCID: 0000-0002-4013-3057 (A. V. Shportko); 0000-0001-5528-4192 (A. Ya. Bomba); 0000-0002-9460-0781 (V. A. Postolatii)

 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:abomba@ukr.net

information that is not perceived by the human visual system), inter-element or spatial (manifested in

the correlation of brightness's of adjacent pixels) and coded (revealed when using codes of the same

length for elements with different probabilities). It is common knowledge that the more types of

redundancies of each type are processed by the graphic format, the more effective the compression is.

But in the process of lossless compression, information is not lost, that is why the first type of

redundancy is not reduced. Therefore, lossless image compression in archivers and graphic formats

most often occurs in a maximum of four stages: firstly, context-dependent coding reduces

redundancies between the same fragments or fragments with the same structure (reduces inter-element

redundancy). At the second stage, the transition to an alternative color model is performed [5]. On the

third – the brightness of the pixel components are transformed using predictors [6] (the second and

third stages do not compress the image, but increase the unevenness of the brightness distribution and

therefore increase the efficiency of the fourth stage). At the fourth stage, context-independent coding

forms element codes with lengths dependent on their probabilities (processes code redundancy, for

example, with Huffman codes or arithmetic codes [1; 3; 4; 7; 8; 9; 10; 11]). Context-independent

coding can even be used instead of context-sensitive codes for individual pixel luminance, if this

further reduces CS. For example, in the Deflate format, Huffman codes can be used instead of

individual substitutions of the same luminance of the LZ77 dictionary algorithm [7].

Processing of image pixels luminance in popular graphic formats that perform lossless

compression is most often carried out sequentially in rows from top to bottom, and in each row –

consecutively from left to right. As a result, output of the compressed image in these formats is

possible only after decoding is complete. Decompressing pictures or images with millions of pixels

with this bypass method can take several seconds regardless of the size of the area or the resolution of

the output device. We are developing the HBF-LS [2] format for progressive hierarchical lossless

image compression, which will allow you to quickly obtain reduced copies of the image without

decoding the entire file.

In the HBF-LS format, a hierarchical scheme is proposed as an alternative to sequential pixel

traversal [5; 6], according to which on the first layer the pixels of the image are processed

sequentially, starting with the first one in the upper left corner, in rows from top to bottom, and in

each row – a sub-row from left to right with a step
kh 21  , where k is determined from the condition

  















 


15

116;_;_minmax
log2

colimagerowimage
k , image_row – the number of rows,

image_col – the number of columns of image pixels (Figure 1a). This step ensures processing on the

first layer at least 16 pixels along each of the axes, if the image is at least as large.

 a) b) c)

Figure 1: The sequence of pixel bypass in the process of progressive hierarchical processing:
a) pixels of the first layer; b) pixels the first passage regular layer; c) pixels the second passage
regular layer

In the following layers (1,2  kl), the intermediate pixels of the image are processed in two passes:

in the first, those of them that are located at the intersection of the diagonals of the squares with the

vertices in the adjacent pixels of the previous layers are sequentially processed in steps
lk

lh  22

both by rows and by columns (see Figure 1b), and on the second, the unprocessed pixels are

sequentially bypassed between the adjacent pixels of the previous layers and the pixels of the first

pass with the same step in the columns and with a halved step in the rows (see Figure 1c). In Figure 1

the symbol F indicates the pixels of the first layer, the symbol P indicates the pixels of the previous

layers, the number 1 – the pixels of the first pass of the next layer, the number 2 – the pixels of the

second pass of the next layer. Pixels that were processed earlier and therefore are not processed on the

next pass of the layer are highlighted in italics.

In this article, we propose a method and a corresponding algorithm for increasing code redundancy

by reducing inter-element redundancy using adaptive difference color models with integer

coefficients in the process of progressive lossless image compression.

3. Usage of non-adaptive difference color models in graphic formats

Difference color models [5], as well as predictors [6] are used to reduce the compression ratio of

context-independent coding. The basic principle of such coding can be formulated as follows: the

length of the code of an arbitrary element with a higher probability should not exceed the length

of the code of any element with a lower probability. With regard to images, this principle is based

on the fundamental position of information theory, according to which to minimize the length of the

sequence code, each value of the element i (brightness of a separate component brightness (for a

separate component of each pixel of images True Color 255,0 brightness) or the value of a context-

dependent code) with the probability of occurrence ip it is advisable to code with ii pl 2log bits

[10], where li is the length of the entropy code element i (here and everywhere else in the work, the

logarithm is taken to the base 2). Therefore, the average code length of a block element after applying

any context-independent algorithm, according to the formula of Shannon [4], cannot be less than the

entropy of the source

 .log 
i

i i ppH (1)

As it is known, the entropy of the source decreases with increasing unevenness of the distribution

of probabilities (frequencies) between elements [6].

Since the average length of a context-independent code is close to entropy (1) [3], the total length

of a block of such codes for a sequence of elements is approximately equal to the sum of the lengths

of their entropy codes, that is, the length of the entropy code of the sequence [11]. Let each of the

values i occur in times in the sequence of length 
i

inN . According to the statistical definition of

probability, Nnp ii / . Therefore, the length of the entropy code of the element, to which the length

of the arithmetic code is close, is
i

ii
n

N
pl loglog  , and the total length of the entropy code of the

sequence, taking into account (1), approaches the value

    
i

ii nnNNHNL loglog . (2)

We will use this formula to estimate the lengths of the alternative blocks of entropy codes.

To increase the efficiency of context-independent coding in the process of lossless image

compression the help of predictors is used, which during the round predict the value of the brightness

of each component of the next pixel (for the most common 24-bit images, these are the brightness of

the red, green and blue components, written as integers in separate bytes), using the brightness of the

values of the same components of previously processed adjacent pixels [6], since the brightness data

have the highest level of correlation between them. In the process of using predictors, deviations uv

of the value of the brightness of the next pixel component uvbrightness from the value predicted by

the selected predictor uvpredict , are calculated and further coded. So,

 uvuvuv predictbrightness  (3)

(u and v run through all the rows and columns of the pixel components of the image, respectively).

Adjacent pixels of the images often have similar colors (close values of the brightness of the

corresponding components), so the forecast value often coincides with the brightness value of the next

component. It is often close to this value and rarely differs significantly from it. That is why, most of

the values uv are close to zero. Thus, the use of predictors most often increases the unevenness of

the probability distribution of brightness values and, as a result, reduces entropy (1).

Different color models are also used to reduce entropy. The fact is that, firstly, the color of each

pixel in the three-component color model can be represented in the form of coordinates by three

linearly independent vectors of any basic colors [5]. Secondly, different image components display

sufficiently similar geometrically spatial structure objects (as, for example, in Figure 2).

Figure 2: Layout of the Monarch.bmp image from the ACT test set by components of the RGB color
model

It is clear that the correlation coefficients between pairs of components in the RGB color model for

different images can differ significantly from each other, and one of the components of a such

arbitrary pair with a strong correlation can be replaced by the difference with another component [5],

if this will reduce the entropy (1) in the further process of context-independent coding. Using

component differences instead of components luminance of the RGB color model performs inter-

component decorrelation, just as predictors (3) implement decorrelation between adjacent pixels

luminance. But today, modern archivers and image compression formats process the brightness of

pixels mainly in a fixed color model (for example, the PNG format – in the R, G, B model; the BMP

format – in the B, G, R model; the JPEG format [12; 13] – in the Y, Cb, Cr; the RAR archiver format

is in the model R – G, G, B – G) and do not use the ability to choose an effective color model for each

image that reduces entropy the most effectively due to intercomponent decorrelation. For

example, in the popular YCbCr color model, the differences of R, G, and B components are applied to

all images in the two chromatic components Cb and Cr:

128.+
256

21
-

256

110
-

256

131
=

128;+
256

131
+

256

87
-

256

44
-=

;
256

29

256

150

256

77

BGRCr

BGRCb

BGRY















































































 (4)

Predictors perform decorrelation of the brightness of individual components of the color model, so

the transition to alternative difference color models in the process of lossless image compression is

performed before the use of predictors [6]. In addition, graphic file formats for lossless image

compression must provide both fast encoding and fast decoding, so it is advisable to use difference

color models with integer coefficients [5]. Therefore, the purpose of this article is to substantiate the

options and algorithm for choosing an adaptive color model for each image to reduce their CR in the

process of lossless compression and to provide a software implementation of this algorithm.

4. Formation of adaptive difference color models based on the data of
individual components

As it will be shown below, in order to ensure unambiguous decoding in the image, it is possible to

perform a maximum of two replacements of the values of different components by differences with

other components. Therefore, considering this limitation, in the process of coding for each image

during preprocessing, the problem of choosing one difference color model among alternatives so as to

reduce the CR as much as possible appears. In fact, in the compression process, it is necessary to

evaluate the expediency of replacing the R component values with one of the RG, GR, RB or BR

differences, the G component values with GR, RG, BG or GB differences, and the B component

values with BR, RB, BG or GB differences for each pixel and among these possible differences,

choose a maximum of two that will maximally reduce the predicted length of the entropy code

(2). To solve this problem, in [5] the investigated entropy lengths of individual components were

recorded in the form of the analysis matrix A:

        
        
         









































BLGBLRBL

BGLGLRGL

BRLGRLRL

aaa

aaa

aaa

A

222120

121110

020100

, (5)

where the operator  indicates the calculation of the predictor values (3) of the corresponding

component of each pixel, and L indicates the length of the entropy code (2) of these values. Since for

linear static predictors nmmn aa  , then to determine the matrix A it was enough to calculate six

values of the coefficients of its upper triangle, including the main diagonal. Accordingly, the task of

choosing a difference color model was reduced to determining at most two non-diagonal elements of

different rows of the matrix A, which, among the elements smaller than the diagonal elements of their

rows, deviate the most from them (ensuring the maximum reduction of the total length of the entropy

code). If there are such elements, the row index of each of them defines the reduced component, and

the column index defines the component that is subtracted from it (for example, the selection of the

element a02 indicates that in the alternative color model, for each pixel of the image, the value of the R

component must be reduced by components B).

The proposed procedure for calculating the coefficients of matrix A is, in our opinion, effective in

simulating the process of lossless image compression. Firstly, the transition to the difference color

model is performed, then predictors are applied, and their results are encoded by a context-

independent algorithm. But this approach is focused on the use of linear static predictors. It does not

take into account the impact on the compression process of the context-dependent algorithm (which is

especially relevant for discrete-tone images) and the cross-correlation of components in the difference

color model. It also does not justify the choice of predictor for prediction and does not determine

which precisely from two opposite differences (for example, R – G or G – R), which have the same

entropy code length after applying the linear predictor should be chosen. In addition, the matrix A

allows you to form a difference color model for the entire image but does not indicate ways to

fragment it and determine the difference color models for individual fragments. Therefore, we will

deal with the elimination of these shortcomings.

5. Formation of adaptive difference color models considering cross-
correlation of components

Difference color models are used to maximize entropy reduction (1) due to inter-component

decorrelation. Therefore, they increase the efficiency of the application of the context-independent

algorithm, although they do not directly perform data compression. Let's first set the maximum

number of differences in the difference color model.

Note that difference color models with integer coefficients can contain no more than two

component differences.

To justify this fact, we will use the method of proof from the opposite and the requirement of

linear independence of vectors of basic colors of any alternative color model. Let there be a difference

color model with three component differences. Firstly, each component must enter at least one

difference to ensure a fallback to the RGB color model. Secondly, no difference can contain the same

component in the decrement and in the subtractor, because then it will turn to zero, which will violate

the requirement of linear independence of the components. Thirdly, any of two differences can not

contain two same or opposite components, because then they will be linearly dependent. Fourth, none

of the components can be included in all three differences, because otherwise at least two differences

of the same or opposite sign will be generated, which will contradict the previous statement (for

example, if all differences include the component R, then the components G and B must complement

two of these differences, and the third difference must again contain G or B and will contain the same

components as one of the other two differences). And, finally, each of the components cannot be

included in two differences, because then a linear combination with the sum or subtraction of these

differences, which excludes this component, will be linearly dependent with the third difference (for

example, if the component R is included in the first difference as the minus, and the second as the

minus, then the sum of these differences will create a difference G – B or B – G, which will be the

same or opposite in sign to the third difference, which will contradict the requirement of linear

independence of the basic color vectors). It turns out that each of the three components must enter the

difference color model only once, which makes it impossible to create three differences. 

As already mentioned above, in the process of compressing images, a context-dependent algorithm

is first performed, and for pixels not processed by this algorithm, a transition to the difference color

model is performed, then predictors are applied, and the results of their use and the context-dependent

algorithm are coded with a context-independent algorithm. That is, the difference color models

increase the efficiency, first of all, of the context-independent algorithm. That is why they are

effective primarily for photorealistic images [5]. Among the main symmetric hierarchical predictors

for such images, ProgresPredict1 provides the smallest CR [6], therefore, we use this predictor to

select a difference color model. In C++, this predictor is written like this:

ubyte ProgresPredict1(ubyte a, ubyte b, ubyte c, ubyte d)
{ubyte pa, pb;
 if (a>=c) pa=a-c;
 else pa=c-a;
 if (b>=d) pb=b-d;
 else pb=d-b;
 if (pa<pb) return (a+c)/2;
 if (pb<pa) return (b+d)/2;
 return (a+b+c+d)/4; }

This predictor returns the arithmetic mean of those two opposite elements from the nearest four (a, b,

c, d) that differ the least. If the deviations of the opposite elements are the same, then ProgresPredict1

returns the arithmetic mean of all four values.

If each component of the difference color model were coded into separate Deflate blocks [7] (that

is, there would be no cross-correlation of the components) and the length of the entropy code (2) of

the difference of the components after applying ProgresPredict1 (the operator  from (3)) would be

equal to the length of the entropy code from the opposite component differences (that is, the relations

     RGLGRL  ,      RBLBRL  ,      GBLBGL ) would be

fulfilled, then, taking into account the statement proved above, the following differential color models

with integer coefficients would be alternative in the process of progressive hierarchical compression:

1'. R, G, B;

2'. R, G, B – R;

3'. R, G, B – G;

4'. R, G – R, B;

5'. R, G – B, B;

6'. R – G, G, B;

7'. R – B, G, B;

8'. R, G – R, B – R;

9'. R, G – R, B – G; (6)

10'. R, G – B, B – R;

11'. R – G, G, B – G;

12'. R – G, G, B – R;

13'. R – B, G, B – G;

14'. R – B, G – R, B;

15'. R – G, G – B, B;

16'. R – B; G – B, B.

This list of alternative integer-difference color models is constructed from variants of all possible

models by discarding opposite-difference models and component-permutation models so that the

reduced ones retain the input RGB components. We also classified the RGB color model as

differential with having zero subtractors.

We also note that, firstly, the difference color models increase the efficiency of using only the

context-independent algorithm. Therefore, we will not consider the brightness of the pixels that are

completely included in the replacement of the modified LZ77 algorithm by the adjacent previously

processed pixels when determining the parameters of these models.

Secondly, the length of the entropy code (2) of the component difference after applying nonlinear

hierarchical predictors in general and ProgresPredict1 in particular is usually not equal to the length

of the entropy code from the opposite component difference. Therefore, due to the introduction of

opposite differences, the number of difference color models with one difference doubles (from 6 to

12), with two differences – four times (from 9 to 36) and the total number of alternative difference of

color models increases from 16 to 49.

Thirdly, when calculating the differences in the luminance of the components in cases where the

luminance values of the subtractor insignificantly exceed the luminance values of the reduced one,

negative values of the differences are obtained, which, when stored in unsigned 8-bit components of

the color model, due to overflow, are transformed into values close to 256. And when the luminance

values of the subtractor are slightly smaller than the luminance values of the reduced one, values close

to zero are obtained in the differences. This dispersion of color model difference values negatively

affects the accuracy of ProgresPredict1 prediction and, as a consequence, increases entropy (1). To

avoid such dispersion of the values of the differences of close luminances, it is customary to shift

them to the middle of the range of possible component values. For example, for the most common 8-

bit sampling, the difference values are shifted to 128, as in the YCbCr color model (4). We will shift

up to 128 median differences of the components of the RGB color model, assuming that most of the

luminance of these components are centered around their medians. We denote the medians of the R,

G, B components for pixels that are not processed by the context-dependent algorithm by medR,

medG, and medB respectively.

Taking into account the above remarks, in the process of progressive hierarchical compression of

lossless images, the following difference color models with integer coefficients can be alternatives:

1. R, G, B;

2. R, G, (R – medR) – (B – medB) + 128;

3. R, G, (G – medG) – (B – medB) + 128;

4. R, (R – medR) – (G – medG) + 128, B;

5. R, (B – medB) – (G – medG) + 128, B;

6. (G – medG) – (R – medR) + 128, G, B;

7. (B – medB) – (R – medR) + 128, G, B;

8. R, G, (B – medB) – (R – medR) + 128;

9. R, G, (B – medB) – (G – medG) + 128;

10. R, (G – medG) – (R – medR) + 128, B;

11. R, (G – medG) – (B – medB) + 128, B;

12. (R – medR) – (G – medG) + 128, G, B;

13. (R – medR) – (B – medB) + 128, G, B;

14. R, (R – medR) – (G – medG) + 128, (R – medR) – (B – medB) + 128;

15. R, (G – medG) – (R – medR) + 128, (G – medG) – (B – medB) + 128;

16. R, (B – medB) – (G – medG) + 128, (B – medB) – (R – medR) + 128;

17. R, (G – medG) – (R – medR) + 128, (B – medB) – (R – medR) + 128;

18. R, (R – medR) – (G – medG) + 128, (B – medB) – (G – medG) + 128;

19. R, (G – medG) – (B – medB) + 128, (R – medR) – (B – medB) + 128;

20. (R – medR) – (G – medG) + 128, G, (R – medR) – (B – medB) + 128;

21. (G – medG) – (R – medR) + 128, G, (G – medG) – (B – medB) + 128;

22. (B – medB) – (R – medR) + 128, G, (B – medB) – (G – medG) + 128;

23. (G – medG) – (R – medR) + 128, G, (B – medB) – (R – medR) + 128;

24. (R – medR) – (G – medG) + 128, G, (B – medB) – (G – medG) + 128;

25. (R – medR) – (B – medB) + 128, G, (G – medG) – (B – medB) + 128; (7)

26. (R – medR) – (B – medB) + 128, (R – medR) – (G – medG) + 128, B;

27. (G – medG) – (R – medR) + 128, (G – medG) – (B – medB) + 128, B;

28. (B – medB) – (R – medR) + 128, (B – medB) – (G – medG) + 128, B;

29. (B – medB) – (R – medR) + 128, (G – medG) – (R – medR) + 128, B;

30. (R – medR) – (G – medG) + 128, (B – medB) – (G – medG) + 128, B;

31. (R – medR) – (B – medB) + 128, (G – medG) – (B – medB) + 128, B;

32. R, (G – medG) – (R – medR) + 128, (R – medR) – (B – medB) + 128;

33. R, (R – medR) – (G – medG) + 128, (G – medG) – (B – medB) + 128;

34. R, (G – medG) – (B – medB) + 128, (B – medB) – (R – medR) + 128;

35. R, (R – medR) – (G – medG) + 128, (B – medB) – (R – medR) + 128;

36. R, (G – medG) – (R – medR) + 128, (B – medB) – (G – medG) + 128;

37. R, (B – medB) – (G – medG) + 128, (R – medR) – (B – medB) + 128;

38. (G – medG) – (R – medR) + 128, G, (R – medR) – (B – medB) + 128;

39. (R – medR) – (G – medG) + 128, G, (G – medG) – (B – medB) + 128;

40. (R – medR) – (B – medB) + 128, G, (B – medB) – (G – medG) + 128;

41. (R – medR) – (G – medG) + 128, G, (B – medB) – (R – medR) + 128;

42. (G – medG) – (R – medR) + 128, G, (B – medB) – (G – medG) + 128;

43. (B – medB) – (R – medR) + 128, G, (G – medG) – (B – medB) + 128;

44. (B – medB) – (R – medR) + 128, (R – medR) – (G – medG) + 128, B;

45. (R – medR) – (G – medG) + 128, (G – medG) – (B – medB) + 128, B;

46. (R – medR) – (B – medB) + 128, (B – medB) – (G – medG) + 128, B;

47. (R – medR) – (B – medB) + 128, (G – medG) – (R – medR) + 128, B;

48. (G – medG) – (R – medR) + 128, (B – medB) – (G – medG) + 128, B;

49. (B – medB) – (R – medR) + 128, (G – medG) – (B – medB) + 128, B.

We denote these difference color models by DCMi, 49,1i (abbreviation of different color models).

Firstly, the components of difference color models in which R, G or B are included with the same

signs are better correlated with each other than when these signs are opposite. Therefore, such color

models are likely to provide smaller CR. Therefore, with strict limitations on the coding time, the

color model can be chosen not among the 49 alternatives, but only among the first 31, and this will

slightly affect the CR and reduce the compression time. In addition, as it will be shown later, single-

difference color models are effective mainly for discrete-tone images. Therefore, if it is known that

photorealistic images are compressed, then alternative difference color models 2-13 from set (7) can

also not be analyzed. And, secondly, the use of such difference color models with integer coefficients

significantly speeds up decoding compared to difference color models with real coefficients [5] due to

performing operations on integers instead of operations on floating-point numbers.

It is also obvious that among these 49 alternative color models, only one should be chosen

(determine its numberDCM) which will provide the smallest size of the compressed image, that is, the

smallest predicted length of the entropy code (2):

      j
j

numberDCM DCMLDCML 
 49,1
min . (8)

The length of the entropy code (2) does not depend on individual elements, but on the frequencies

of these elements. In turn, the frequencies of the elements obtained as a result of the application of the

difference color model and the ProgresPredict1 predictor consist of the sum of the frequencies of the

individual components, since the transformed luminance of the pixel components are included in the

compressed Deflate-blocks in sequence. Therefore, if the first components of the difference color

models the index 0 are assigned, the second – 1, the third – 2, as was done in [5] (then, for example,

from (7) we have that 128 +) - (-) - (2
8 medRRmedBBDCM  , RDCM 0

8), then

       210

jjjj DCM

i

DCM

i

DCM

i

DCM

i nnnn


 , 49,1j , 255,0i , (9)

where in is the luminance frequency i.

The selection of the difference color model according to formulas (8), (9) requires the

determination of 84 component differences (36 models with two differences and 12 models with one

difference) and the application of predictors to them on all pixels of the image. But if we take into

account that the same component differences are included in difference color models (for example,

the difference (R – medR) – (B – medB) + 128 is included in color models № 2, 13, 14, 19, 20, 25, 26,

31, 32, 37, 38, 40, 46, 47), then to determine the effective color model of the next image, it is enough

to calculate the frequencies after applying the predictors for six component differences and for the

three input components R, G and B, and then analyze 49 entropy lengths (8) of combinations of sums

of these frequencies (9). To do this, we will write down these 9 sets of frequencies in the form of a

matrix of freqComponent frequency arrays:

              
              
               













































B
i

medGGmedBB
i

medRRmedBB
i

medBBmedGG
i

G
i

medRRmedGG
i

medBBmedRR
i

medGGmedRR
i

R
i

nnn

nnn

nnn

entfreqComponentfreqComponentfreqCompon

entfreqComponentfreqComponentfreqCompon

entfreqComponentfreqComponentfreqCompon

entfreqCompon

128128

128128

128128

222120

121110

020100

, 255,0i .(10)

Then each combination of sums of frequencies that specifies one of the color models (7) must include

the frequencies of at least one carrier component, that is, at least one array of frequencies from the

diagonal of the freqComponent matrix, and no more than two component differences, that is, arrays of

frequencies of off-diagonal elements of this matrix, which must be asymmetrical among themselves.

After selecting arrays of component frequencies due to the application of the next color model and

ProgresPredict1, it is necessary to calculate their element-by-element sums according to (9),

determine the predicted length of the entropy code from the received frequencies (2) and choose

among all color models the one that provides the best predicted compression according to (8).

Frequency arrays freqComponent (10) is similar to the analysis matrix A (5), because they are both

used to select a color model, the row number of off-diagonal elements in them determines the

decreasing component, and the column number is the denominator. But the matrix A contains the

predicted lengths of possible individual components and does not take into account their cross-

correlation, and the matrix freqComponent – frequencies of these components and determining the

entropy length from combinations of the sums of these frequencies (9) makes it possible to take into

account their cross-correlation.

6. Software implementation of the selection of the difference color model

To select the difference color model of the entire image, first let’s determine the medians of its

components medR, medG, and medB. Since the median is a value located within a series of sorted

values, then, of course, to determine these medians, it would be possible to sort by increasing values

of the pixel components that are not included in the long substitutions of the modified LZ77

algorithm, and then choose the average values from the sorted arrays. But the complexity of such an

approach would then be   image_colimage_rowimage_colimage_rowO  log . We implement an

algorithm with linear computational complexity relative to the number of pixels, using the idea of the

method of sorting by counting [14, p. 223-226]: for each component, we first count the frequencies of

each brightness in , 255,0i , after which, using these frequencies, we determine the brightness

relative to which the brightness of at least half of the elements is smaller. If the number of pixels for

which the median is determined in this way is odd, then this median will be equal to the average value

of the sorted array. If it is even, then it will be equal to the value from which the second half of the

sorted array begins (the so-called "upper median").

The frequency array, which is additionally created and processed for such determination of

medians, contains only 256 elements, which in general is much less than the number of image pixels

and indicates the feasibility of applying the idea of the method of sorting by counting. A fragment of a

C++ program for determining median components with frequency counts of individual luminances

can look like this:

step=1; // calculate the brightness frequencies of the components
for (l=countShar; l>=2; l--) // loop through all layers except the first
 {step*=2;
 // process the pixels of the second pass of the layer
 startColumn=0;
 for (j=0; j<image_row; j+=step/2) // cycle by rows
 {if (startColumn==0) startColumn=step/2; // the first pixel of the first lines
 else startColumn=0; // the first pixel of the second rows
 for (i=startColumn; i<image_col; i+=step) // cycle through the columns
 // if the LZ-decomposition on the nearest processed pixels is not performed
 // or the next pixel is not included in a long replacement (from six elements)
 if (!LZReplaceAdjacent || !longAdjacentReplace[j*image_col+i])
 {// read the components of the next pixel in the BGR color model
 b=image[j][i*3]; g=image[j][i*3+1]; r=image[j][i*3+2];
 // increase the number of processed pixels and accumulate frequencies
 countPixelDCM++;
 freqR[r]++; freqG[g]++; freqB[b]++; }}
 // similarly process the pixels of the first layer pass
 for (j=step/2; j<image_row; j+=step)
 for (i=step/2; i<image_col; i+=step)
 if (!LZReplaceAdjacent || !longAdjacentReplace[j*image_col+i])
 {b=image[j][i*3]; g=image[j][i*3+1]; r=image[j][i*3+2];
 countPixelDCM++;
 freqR[r]++; freqG[g]++; freqB[b]++; }}
UBYTE4 halfPixelCM=countPixelCM/2; // half of processed pixels
UBYTE4 sumFreq=0; medR=0;
// increase the median R until we process half of the frequencies of the elements
while (sumFreq<halfPixelCM)
 sumFreq+=freqR[medR++];
sumFreq=0; medG=0;
while (sumFreq<halfPixelCM)
 sumFreq+=freqG[medG++]; // similarly determine the median of G
sumFreq=0; medB=0;
while (sumFreq<halfPixelCM)
 sumFreq+=freqB[medB++]; // similarly determine the median B
UBYTE1 medComponent[3];
// store the calculated medians for further complex use

medComponent[0]=medR; medComponent[1]=medG; medComponent[2]=medB;

Defined medians of individual components make it possible to accumulate freqComponent (10)

arrays in the matrix of frequencies due to the application of ProgresPredict1 to individual

components and component differences. To speed up the calculation of the displacement, we enter the

constant component differences in the intermediate variable alfa. For example, calculating the

differences of R and G components for each pixel that is not included in the long substitutions of the

LZ algorithm, we simplify the expression     128 medGGmedRR to alfaGR  , where

128 medGmedRalfa .

The function for determining the predicted length of the entropy code (2) based on element

frequencies is given as follows:

double sizeEntropiCode(UBYTE4 *masFreq, unsigned int countAllFreq=256)
{UBYTE4 count=0, i;
 double size=0;
 for (i=0; i<countAllFreq; i++)
 {count+=masFreq[i];
 if (masFreq[i]>1)
 size+=masFreq[i]*log(masFreq[i]); }
 if (count) size=(count*log(count)-size)/log(2);
 return size; }

To save the differences of the color model, we will use the following variables with the numbers

of its components from 0 to 2: cm1 – number of the component of the result of the first difference,

cm11 – number of the component of the reduced first difference, cm12 – number of the component of

the subtractor of the first difference, cm2, cm21, cm22 – similar variables for the second color model

difference. If the denominator of the first or second difference is equal to its denominator, then this

difference is not applied. Having formed the frequency array matrix freqComponent and the

implementation of the function sizeEntropiCode, we now present a fragment of the program for

determining the color model that provides the smallest predicted length of the entropy code (8):

cm11=0, cm12=0, cm21=0, cm22=0; // parameters of RGB models without differences
for (l=0; l<256; l++) // sum of frequencies of components (9) for RGB models
 freq[l]=freqComponent[0][0][l]+freqComponent[1][1][l]+freqComponent[2][2][l];
// definition of predicted length of the entropy code after application of
// predictors to pixels in the color room RGB models
lenRGB = minLenDCM =(UBYTE4) sizeEntropyCode(freq);
// sort through the possible differences color models
UBYTE1 c11, c12, c21, c22;
for (c11=0; c11<=2; c11++) // index of the first component of the first differences
 for (c12=0; c12<=2; c12++) // index of the second component of the first differences
 if (c11!=c12) // components differences have to differ

 {// sum of frequencies components (9) for models with one difference:

 // from the first component of the first differences second component is subtracted

 for (l=0; l<256; l++)

 {freq [l]= freqComponent[c11][c12][l]; // difference of the first component with the second

 if (c11!=0) freq[l]+= freqComponent[0][0][l]; // other two components without changes

 if (c11!=1) freq[l]+= freqComponent[1][1][l];

 if (c11!=2) freq[l]+= freqComponent[2][2][l]; }

 lenDCM =(UBYTE4) sizeEntropyCode (freq);

 if (lenDCM < minLenDCM) // found more effective color model

 {minLenDCM = lenDCM; // remember her parameters

 cm1=cm11=c11; // in the model alone the difference in which from the first component

 cm12=c12; // the second one is subtracted

 cm21=cm22=0; }
 for (c21=c11+1; c21<=2; c21++) // index the first component the second differences

 for (c22=0; c22<=2; c22++) // index of the second component of the second differences
 if (c21!=c22 && // components of the second difference are different
 (c21 != c12 || c22!=c11)) // and no symmetrical to the first differences
 {// sum of the frequencies of the components (9) for models with two differences

 // in two differences from the first components are subtracted from the second
 for (l=0; l<256; l++)
 freq[l]=freqComponent[c11][c12][l]+ // frequency of the first differences
 freqComponent[c21][c22][l]+ // frequency of the second differences
 freqComponent[3-c11-c21][3-c11-c21][l]; // frequency carrier
 lenDCM =(UBYTE4) sizeEntropyCode (freq);
 if (lenDCM < minLenDCM)
 {minLenDCM = lenDCM;
 cm1=cm11=c11; // result and reduced of the first differences
 cm12=c12; // subtractor of the first differences
 cm2=cm21=c21; // result and reduced of the second differences
 cm22=c22; } // subtractor of the second differences
 // in the first difference from the first component the second one is subtracted
 // in the the second difference from the second component the first one is subtracted
 for (l=0; l<256; l++)
 freq[l]=freqComponent[c11][c12][l]+ // frequency of the first difference
 freqComponent[c22][c21][l]+ // frequency of the second difference
 freqComponent[3-c11-c21][3-c11-c21][l]; // frequency carrier
 lenDCM =(UBYTE4) sizeEntropyCode (freq);
 if (lenDCM < minLenDCM)
 {minLenDCM = lenDCM;
 cm1=cm11=c11; // result and reduced of the first differences
 cm12=c12; // subtractor of the first differences
 cm2=cm22=c21; // result and reduced of the second differences
 cm21=c22; }} // subtractor of the second differences
 //further vertical differences are processed similarly

Without lines marked with ' ', this program fragment selects alternative difference color models to

the RGB model only among models with two differences, that is, it analyzes the effectiveness of using

not 49, but 37 color models.

The use of a difference color model as an alternative to RGB, leads to the need to apply its

differences to all image pixels that have not been processed by a context-sensitive algorithm, both

during encoding and each time during the decoding process. That’s why, it slows down these two

processes. Although, on the other hand, reducing the size of the compressed image due to the use of

difference color models accelerates decoding, as it leads to the processing of compressed data of a

smaller volume. Therefore, after determining the differences of the integer color model that provides

the minimum predicted entropy code length, we arranged to fall back to the RGB color model if this

predicted length decreased by less than 1%. Let's set the indices of the reducible cm11 and the

denominator cm12 of the first difference and the indices of the reducible cm21 and the denominator

cm22 of the second difference equal to zero:

if (lenRGB-minLenDCM<lenRGB/100)
 {cm11=cm12=cm21=cm22=0;
 requiredDCM=false;
 return; } .

Alternative color model differences must be applied to the input components R, G, or B in

sequence. Therefore, at the end of choosing a difference color model with integer coefficients, we

implement a change in the order of subtraction of components, if the result of the first difference is

used in the second difference:

// if the second difference is defined and uses the result of the first difference
if (cm21!=cm22 && (cm1==cm21 || cm1==cm22))

 {i=cm1; cm1=cm2; cm2=i; // change order differences
 i=cm11; cm11=cm21; cm21=i;
 i=cm12; cm12=cm22; cm22=i; }

To speed up the application of the differences of the specified color model, we calculate the

coefficients alfa1 and alfa2 for the first and second differences:

if (cm11!=cm12) alfa1=-medComponent[cm11]+medComponent[cm12]+128;
if (cm21!=cm22) alfa2=-medComponent[cm21]+medComponent[cm22]+128;

Then the procedure for applying the differences of the specified color model to any pixel of the

image will be written as follows:

void codeDCM (int row, int col, UBYTE1 *pixel)
 {if (cm11!=cm12) // the first subtraction is required
 pixel[cm1]=pixel[cm11]-pixel[cm12]+alfa1;
 if (cm21!=cm22) // the second subtraction is required
 pixel[cm2]=pixel[cm21]-pixel[cm22]+alfa2; }

We return to the RGB color model in the decoder in the reverse order: first we cancel the

application of the second, and then the first difference. Therefore, the procedure for returning from the

specified color model to the RGB model for each pixel in the decoding process is implemented as

follows:

void decodeDCM (UBYTE2 row, UBYTE2 col, UBYTE1 * decodeBytePixel)
 {// if determined, the second subtraction and to DCM components are applied
 if (cm21!=cm22 && appliedDCMBytePixel[cm2])
 if (cm2==cm21) decodeBytePixel[cm2]+=decodeBytePixel[cm22]-alfa2;
 else decodeBytePixel[cm2]=decodeBytePixel[cm21]-decodeBytePixel[cm2]+alfa2;
 // if defined, the first subtraction and to DCM components are applied
 if (cm11!=cm12 && appliedDCMBytePixel [cm1])
 if (cm1==cm11) decodeBytePixel[cm1]+=decodeBytePixel[cm12]-alfa1;
 else decodeBytePixel[cm1]=decodeBytePixel[cm11]-decodeBytePixel[cm1]+alfa1; } .

7. Analysis of the results of the application of difference color models for the
compression of whole images

Let us analyze the results of applying selected from alternative difference color models with

integer coefficients to test images of the ACT set [15] (Table 1, 3, 4). We can see that on average for

this set due to the use of difference color models with integer coefficients the CR is decreased by 0.36

bpb (second row of Table 1). Moreover, about 19% of this decrease occurred due to the shift of the

median difference to the middle of the range of possible values (that is, due to the consideration of

alpha, the third line of Table 1).

For different images, the smallest predicted length of the entropy code is provided by different

difference color models (Table 2). But the effectiveness of difference color models differs, first of all,

for different types of images. If for photorealistic images the CR is decreased by an average of 0.58

bpb, then for discrete-tone images – only by 0.01 bpb, since they have a low level of correlation

between components. For image #1, there was even a fallback to the RGB color model, as alternative

difference color models reduced the predicted entropy code length by less than 1%.

The choice of difference color models not from the 49th, but from the first 31st with the same

minuends or subtrahends forms models with opposite components in 25% of the images, which

insignificantly increases their compression ratio. On the other hand, this does not lead to a drastic

acceleration of compression, because most of the time in the process of choosing difference color

models is spent on forming a matrix of component frequency arrays and their differences

freqComponent (10).

If we choose a difference color model from only 16 alternatives (6) according to the symmetric

analysis matrix A (5), which contains the entropy lengths of the 3 components and 3 of their

differences [5], taking into account the shifts of the medians after using ProgresPredict1 and does not

take into account the cross-correlation between the components, then we get models with opposite

components for 75% of the images (fourth line of Table 2), deterioration of CR for three images, and

on average for the set – increase of CR by 0.01 bpb (fourth line of Table 1). Compression compared

to the analysis of all alternative color models (7) will speed up by only 2%. If we take into account the

asymmetries of the differences of matrix A (49 alternative color models without taking into account

cross-correlation), then the CR will also deteriorate, but already for 2 pictures (fifth line of Table 1).

Therefore, to ensure the smallest CR, a difference color model with integer coefficients should be

chosen from all 49 alternatives (7).

Table 1
Image compression ratios of the ACT set after applying various options for formation of difference
color models, bpb

Color model
Image Number Average

CR 1 2 3 4 5 6 7 8

RGB 1.34 0.58 4.65 3.81 4.14 5.16 0.61 4.32 3.07

Difference CM from the 49th or 31st alternative 1.34 0.57 4.45 3.25 3.69 4.06 0.59 3.71 2.71

Difference CM from 49 alternatives without alpha 1.34 0.57 4.62 3.27 3.81 4.21 0.59 3.82 2.78

Difference CM from 16 alternative analysis matrix A 1.34 0.57 4.45 3.27 3.69 4.07 0.59 3.76 2.72

Difference CM from 49 alternative analysis matrix A 1.34 0.57 4.45 3.27 3.69 4.06 0.59 3.73 2.71

Table 2
Difference color models (without specifying alpha) generated for images of the ACT set by different
variants of their formation

Color model
Image Number

1 2 3 4

Difference CM from 49 alternatives RGB (R, R-G, B) B-R, G-B, B R, R-G, G-B R, B-G, B-R

Difference CM from 49 alternatives
without alpha

RGB (R, R-G, B) B-R, G-B, B R, R-G, G-B R, R-G, R-B

Difference CM from the first 31st
alternative

RGB (R, R-G, B) B-R, B-G, B R, G-R, G-B R, B-G, B-R

Difference CM from 16 alternatives
according to A

RGB (R, R-G, B) R-B, G-B, B R, G-R, B-G R, G-B, B-R

Difference CM from 49 alternatives
according to A

RGB (R, R-G, B) B-R, G-B, B R, R-G, G-B R, G-B, R-B

Continuation of Table 2

Color model
Image Number

5 6 7 8

Difference CM from 49 alternatives G-R, G, G-B G-R, G, G-B R-G, B-G, B R, R-G, B-G

Difference CM from 49 alternatives
without alpha

G-R, G, G-B G-R, G, G-B R-G, B-G, B R, R-G, B-G

Difference CM from the first 31st
alternative

G-R, G, G-B G-R, G, G-B R-G, B-G, B R, R-G, B-G

Difference CM from 16 alternatives
according to A

R-G, G, B-G R-G, G, B-G R-G, G-B, B R, G-R, B-G

Difference CM from 49 alternatives
according to A

G-R, G, G-B G-R, G, G-B R-G, B-G, B R, G-R, G-B

Table 3
The time of encoding image files of the ACT set using different variants of the formation of
difference color models, s

Color model
Image Number Average

time 1 2 3 4 5 6 7 8

RGB 2.19 3.05 1.06 1.93 1.16 2.04 1.25 1.87 1.82

Difference CM from the 49th or 31st alternative 2.62 3.53 1.29 2.17 1.41 2.20 1.50 2.05 2.10

Difference CM from 16 alternatives 2.52 3.52 1.25 2.11 1.36 2.14 1.49 1.99 2.06

Table 4
Decoding time of ACT set image files encoded using different difference color models, s

Color model
Image Number Average

time 1 2 3 4 5 6 7 8

RGB 0.58 1.21 0.30 0.54 0.32 0.49 0.49 0.42 0.54

Different from 49th, 31st or 16th alternative 0.58 1.27 0.32 0.60 0.31 0.61 0.50 0.50 0.59

In general, the use of difference color models significantly (on average by more than 13%

according to Table 3) slows down encoding not only due to the need to choose such a model from

among alternatives, but also due to the orientation to a context-independent algorithm that encodes

individual literals. However, the time of image decoding due to the use of these color models is

increased by only a tenth of a second (9.3%, second row of Table 4), which, together with a

significant reduction in CR, makes it possible to use them effectively in practice.

8. Discussions

In the future, with the aim of further reducing the file sizes of lossless compressed images in the

process of progressive hierarchical traversal and speeding up decoding, we plan to increase the

efficiency of using symmetric and asymmetric predictors [6] by applying difference color models

with integer coefficients to image fragments. We are working on an algorithm for dividing images

into large rectangular pieces with different adaptive difference color models by analyzing their

median differences.

9. Conclusions

1. It is possible to reduce the CR of images in three-component color models not only due to the

data decorrelation of individual components, but also with the help of inter-component

decorrelation by switching to difference color models. Inter-component decorrelation should be

performed in such a way as to enhance the properties of the image used by the algorithms of

prepressing and direct compression of the selected graphic format, for example, to minimize the

predicted length of the entropy code (2).

2. The use of difference color models with integer coefficients in the process of progressive

hierarchical compression of lossless images makes it possible to reduce the CR of photorealistic

images by an average of 0.58 bpb. To ensure the smallest CR, a difference color model with

integer coefficients should be chosen from all 49 alternatives (7).

3. In order to increase the efficiency of the application of difference color models with integer

difference coefficients, the median differences of the basic components R, G, B should be shifted

to the middle of the range of possible values (for example, in color models with a sampling rate of

8 bits – up to 128).

4. Integer difference color models provide significant improvements in the lossless compression

efficiency of three components photorealistic images in formats that use predictors, and may

therefore be implemented in future standards-level versions of these formats.

10. References

[1] J. Miano, Compressed Image File Format: JPEG, PNG, GIF, XBM, BMP, Addison Wesley, New

York, 1999, 264 p.

[2] A. Shportko, Author's certificate № 58216 of Ukraine. HBF-LS Graphics Format Specification.

Version 1.0, Kyiv, 2015, 14 p.

[3] D. Selomon, A Guide to Data Compression Methods, Springer, New York, 2002, 295 p.

[4] R. Gonzalez, R. Woods, Digital Image Processing, 4
th
 ed., Pearson, London, 2017, 1192 p.

[5] A. Shportko, The use of differences of colors models for compression of RGB-images without

losses, Selection and treatment of information 31 (2009) 90-97.

[6] A. Shportko, V. Postolatii, Development of Predictors to Increase the Efficiency of Progressive

Hierarchic Context-Independent Compression of Images Without Losses, Computational

Linguistics and Intelligent Systems (COLINS 2021) : Proceedings of the 5th International

Conference (Kharkiv, Ukraine, 22-23 April 2021), Kharkiv, Vol. 1. (2021) 1026-1038. URL:

http://ceur-ws.org/Vol-2870/paper77.pdf.

[7] A. Shportko, A. Bomba, V. Postolatii, Rejection of the Inefficient Replacements while Forming

the Schedule of the Modified Algorithm LZ77 in the Process of Progressive Hierarchical

Compression of Images without Losses, Computational Linguistics and Intelligent Systems

(COLINS 2022) : Proceedings of the 6th International Conference (Glivice, Poland, 12-13 May

2022), Glivice, Vol. 3171 (2022) 1594-1605. URL: http://ceur-ws.org/Vol-3171/paper113.pdf.

[8] B. Rusyn, O. Lutsyk, Y. Lysak, A. Lukenyuk, L. Pohreliuk, Lossless image compression in the

remote sensing applications, 2016 IEEE First International Conference on Data Stream Mining &

Processing (DSMP), Lviv, Ukraine (2016) 195-198. doi: 10.1109/DSMP.2016.7583539.

[9] C. Raghavendra, S. Sivasubramanian, A. Kumaravel, Improved image compression using

effective lossless compression technique, Cluster Computing 22 (2019) 3911–3916. URL:

https://doi.org/10.1007/s10586-018-2508-1.

[10] R. K. Pathria, P. Beale, Statistical Mechanics, Third Edition, Academic Press, 2011, p. 51.

[11] A. Shportko, A. Bomba, L. Shportko, Features of Application of Arithmetic Encoding in the

Process of Progressing Hierarchical Compression of Images without Losses, Proceedings of the

National University "Lviv Polytechnic". Series: Information Systems and Networks, 783 (2014)

12-22.

[12] G. Wallace, The JPEG still picture compression standard, Communication of ACM, 34 (1991)

30-44.

[13] O. Shehata, Unraveling the JPEG, Parametric Press, 1 (2019). URL:

https://parametric.press/issue-01/unraveling-the-jpeg/.

[14] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, Third Edition, Vol. 1,

Dialektika, Kiyv, 2020, 648 p.

[15] ACT – Test Files, 2002. URL: http://www.compression.ca/act/act-files.html.

http://ceur-ws.org/Vol-2870/paper77.pdf
http://ceur-ws.org/Vol-3171/paper113.pdf
https://doi.org/10.1007/s10586-018-2508-1
http://www.compression.ca/act/act-files.html

