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Abstract  
The method and corresponding algorithm for selecting adaptive difference color models with 

integer coefficients for improving the efficiency of progressive lossless image compression 

was proposed. The necessity was reasoned and the displacement of the median differences of 

the basic components of the R, G, B color model to the middle of the range of possible values 

was implemented. Fragments of programs in the C++ language for implementing the 

algorithm for choosing a difference color model from 49 alternatives and the algorithm for 

determining the median component in linear time by the counting method are given. On the 

well-known ACT test set, it is shown that the use of difference color models with integer 

coefficients makes it possible to reduce the compression coefficients of photorealistic images 

by an average of 0.58 bpb. 

 

Keywords1 
Progressive image compression, lossless compression, differential color models with integer 

coefficients. 

1. Introduction 

As you know, images significantly facilitate and accelerate the perception of information by a 

person. That is why today they are an integral part of multimedia information, which is most often 

transmitted by communication channels or stored on electromagnetic media. Therefore, the problem 

of increasing the efficiency of image compression is relevant today and will be relevant in the nearest 

future. 

All graphic formats and methods used in them are divided into two main classes based on the 

principle of image data compression: lossy (for example, JPEG) and lossless (for example, PNG) [1]. 

And if for the vast majority of lossy image compression algorithms it is possible to provide the 

required compression ratio (the ratio of compressed to uncompressed image file sizes, expressed in 

bpb, hereinafter – CR) at the expense of quality degradation, then the level of lossless image 

compression actually depends only on the differences of the colors of their pixels and the compression 

algorithm itself. It is not adjustable by software and averages only 30-70% [1]. Therefore, the 

development of alternative graphic formats, such as HBF-LS [2], is an urgent task today. 

2. Related works 

Any data compression is possible due to reduction or elimination of redundancies [3]. Three main 

types of redundancies are distinguished in images [4]: visual (consisting in the presence of 
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information that is not perceived by the human visual system), inter-element or spatial (manifested in 

the correlation of brightness's of adjacent pixels) and coded (revealed when using codes of the same 

length for elements with different probabilities). It is common knowledge that the more types of 

redundancies of each type are processed by the graphic format, the more effective the compression is. 

But in the process of lossless compression, information is not lost, that is why the first type of 

redundancy is not reduced. Therefore, lossless image compression in archivers and graphic formats 

most often occurs in a maximum of four stages: firstly, context-dependent coding reduces 

redundancies between the same fragments or fragments with the same structure (reduces inter-element 

redundancy). At the second stage, the transition to an alternative color model is performed [5]. On the 

third – the brightness of the pixel components are transformed using predictors [6] (the second and 

third stages do not compress the image, but increase the unevenness of the brightness distribution and 

therefore increase the efficiency of the fourth stage). At the fourth stage, context-independent coding 

forms element codes with lengths dependent on their probabilities (processes code redundancy, for 

example, with Huffman codes or arithmetic codes [1; 3; 4; 7; 8; 9; 10; 11]). Context-independent 

coding can even be used instead of context-sensitive codes for individual pixel luminance, if this 

further reduces CS. For example, in the Deflate format, Huffman codes can be used instead of 

individual substitutions of the same luminance of the LZ77 dictionary algorithm [7]. 

Processing of image pixels luminance in popular graphic formats that perform lossless 

compression is most often carried out sequentially in rows from top to bottom, and in each row – 

consecutively from left to right. As a result, output of the compressed image in these formats is 

possible only after decoding is complete. Decompressing pictures or images with millions of pixels 

with this bypass method can take several seconds regardless of the size of the area or the resolution of 

the output device. We are developing the HBF-LS [2] format for progressive hierarchical lossless 

image compression, which will allow you to quickly obtain reduced copies of the image without 

decoding the entire file. 

In the HBF-LS format, a hierarchical scheme is proposed as an alternative to sequential pixel 

traversal [5; 6], according to which on the first layer the pixels of the image are processed 

sequentially, starting with the first one in the upper left corner, in rows from top to bottom, and in 

each row – a sub-row from left to right with a step 
kh 21  , where k is determined from the condition 
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k , image_row – the number of rows, 

image_col – the number of columns of image pixels (Figure 1a). This step ensures processing on the 

first layer at least 16 pixels along each of the axes, if the image is at least as large. 
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Figure 1: The sequence of pixel bypass in the process of progressive hierarchical processing:  
a) pixels of the first layer; b) pixels the first passage regular layer; c) pixels the second passage 
regular layer 
 

In the following layers ( 1,2  kl ), the intermediate pixels of the image are processed in two passes: 

in the first, those of them that are located at the intersection of the diagonals of the squares with the 



vertices in the adjacent pixels of the previous layers are sequentially processed in steps 
lk

lh  22  

both by rows and by columns (see Figure 1b), and on the second, the unprocessed pixels are 

sequentially bypassed between the adjacent pixels of the previous layers and the pixels of the first 

pass with the same step in the columns and with a halved step in the rows (see Figure 1c). In Figure 1 

the symbol F indicates the pixels of the first layer, the symbol P indicates the pixels of the previous 

layers, the number 1 – the pixels of the first pass of the next layer, the number 2 – the pixels of the 

second pass of the next layer. Pixels that were processed earlier and therefore are not processed on the 

next pass of the layer are highlighted in italics. 

In this article, we propose a method and a corresponding algorithm for increasing code redundancy 

by reducing inter-element redundancy using adaptive difference color models with integer 

coefficients in the process of progressive lossless image compression. 

3. Usage of non-adaptive difference color models in graphic formats 

Difference color models [5], as well as predictors [6] are used to reduce the compression ratio of 

context-independent coding. The basic principle of such coding can be formulated as follows: the 

length of the code of an arbitrary element with a higher probability should not exceed the length 

of the code of any element with a lower probability. With regard to images, this principle is based 

on the fundamental position of information theory, according to which to minimize the length of the 

sequence code, each value of the element i (brightness of a separate component brightness (for a 

separate component of each pixel of images True Color 255,0 brightness ) or the value of a context-

dependent code) with the probability of occurrence ip  it is advisable to code with ii pl 2log  bits 

[10], where li is the length of the entropy code element i (here and everywhere else in the work, the 

logarithm is taken to the base 2). Therefore, the average code length of a block element after applying 

any context-independent algorithm, according to the formula of Shannon [4], cannot be less than the 

entropy of the source 

 .log 
i 

i i ppH  (1) 

As it is known, the entropy of the source decreases with increasing unevenness of the distribution 

of probabilities (frequencies) between elements [6]. 

Since the average length of a context-independent code is close to entropy (1) [3], the total length 

of a block of such codes for a sequence of elements is approximately equal to the sum of the lengths 

of their entropy codes, that is, the length of the entropy code of the sequence [11]. Let each of the 

values i occur in  times in the sequence of length 
i

inN . According to the statistical definition of 

probability, Nnp ii / . Therefore, the length of the entropy code of the element, to which the length 

of the arithmetic code is close, is 
i

ii
n

N
pl loglog  , and the total length of the entropy code of the 

sequence, taking into account (1), approaches the value 
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We will use this formula to estimate the lengths of the alternative blocks of entropy codes. 

To increase the efficiency of context-independent coding in the process of lossless image 

compression the help of predictors is used, which during the round predict the value of the brightness 

of each component of the next pixel (for the most common 24-bit images, these are the brightness of 

the red, green and blue components, written as integers in separate bytes), using the brightness of the 

values of the same components of previously processed adjacent pixels [6], since the brightness data 

have the highest level of correlation between them. In the process of using predictors, deviations uv  

of the value of the brightness of the next pixel component uvbrightness from the value predicted by 

the selected predictor uvpredict , are calculated and further coded. So, 

 uvuvuv predictbrightness   (3) 



(u and v run through all the rows and columns of the pixel components of the image, respectively). 

Adjacent pixels of the images often have similar colors (close values of the brightness of the 

corresponding components), so the forecast value often coincides with the brightness value of the next 

component. It is often close to this value and rarely differs significantly from it. That is why, most of 

the values uv  are close to zero. Thus, the use of predictors most often increases the unevenness of 

the probability distribution of brightness values and, as a result, reduces entropy (1). 

Different color models are also used to reduce entropy. The fact is that, firstly, the color of each 

pixel in the three-component color model can be represented in the form of coordinates by three 

linearly independent vectors of any basic colors [5]. Secondly, different image components display 

sufficiently similar geometrically spatial structure objects (as, for example, in Figure 2). 

 

 
Figure 2: Layout of the Monarch.bmp image from the ACT test set by components of the RGB color 
model 

 

It is clear that the correlation coefficients between pairs of components in the RGB color model for 

different images can differ significantly from each other, and one of the components of a such  

arbitrary pair with a strong correlation can be replaced by the difference with another component [5], 

if this will reduce the entropy (1) in the further process of context-independent coding. Using 

component differences instead of components luminance of the RGB color model performs inter-

component decorrelation, just as predictors (3) implement decorrelation between adjacent pixels 

luminance. But today, modern archivers and image compression formats process the brightness of 

pixels mainly in a fixed color model (for example, the PNG format – in the R, G, B model; the BMP 

format – in the B, G, R model; the JPEG format [12; 13] – in the Y, Cb, Cr; the RAR archiver format 

is in the model R – G, G, B – G) and do not use the ability to choose an effective color model for each 

image that reduces entropy the most effectively due to intercomponent decorrelation. For 

example, in the popular YCbCr color model, the differences of R, G, and B components are applied to 

all images in the two chromatic components Cb and Cr: 
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Predictors perform decorrelation of the brightness of individual components of the color model, so 

the transition to alternative difference color models in the process of lossless image compression is 

performed before the use of predictors [6]. In addition, graphic file formats for lossless image 

compression must provide both fast encoding and fast decoding, so it is advisable to use difference 

color models with integer coefficients [5]. Therefore, the purpose of this article is to substantiate the 

options and algorithm for choosing an adaptive color model for each image to reduce their CR in the 

process of lossless compression and to provide a software implementation of this algorithm. 

4. Formation of adaptive difference color models based on the data of 
individual components 

As it will be shown below, in order to ensure unambiguous decoding in the image, it is possible to 

perform a maximum of two replacements of the values of different components by differences with 

other components. Therefore, considering this limitation, in the process of coding for each image 

during preprocessing, the problem of choosing one difference color model among alternatives so as to 

reduce the CR as much as possible appears. In fact, in the compression process, it is necessary to 

evaluate the expediency of replacing the R component values with one of the RG, GR, RB or BR 

differences, the G component values with GR, RG, BG or GB differences, and the B component 

values with BR, RB, BG or GB differences for each pixel and among these possible differences, 

choose a maximum of two that will maximally reduce the predicted length of the entropy code 

(2). To solve this problem, in [5] the investigated entropy lengths of individual components were 

recorded in the form of the analysis matrix A: 
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where the operator   indicates the calculation of the predictor values (3) of the corresponding 

component of each pixel, and L indicates the length of the entropy code (2) of these values. Since for 

linear static predictors nmmn aa  , then to determine the matrix A it was enough to calculate six 

values of the coefficients of its upper triangle, including the main diagonal. Accordingly, the task of 

choosing a difference color model was reduced to determining at most two non-diagonal elements of 

different rows of the matrix A, which, among the elements smaller than the diagonal elements of their 

rows, deviate the most from them (ensuring the maximum reduction of the total length of the entropy 

code). If there are such elements, the row index of each of them defines the reduced component, and 

the column index defines the component that is subtracted from it (for example, the selection of the 

element a02 indicates that in the alternative color model, for each pixel of the image, the value of the R 

component must be reduced by components B). 

The proposed procedure for calculating the coefficients of matrix A is, in our opinion, effective in 

simulating the process of lossless image compression. Firstly, the transition to the difference color 

model is performed, then predictors are applied, and their results are encoded by a context-

independent algorithm. But this approach is focused on the use of linear static predictors. It does not 

take into account the impact on the compression process of the context-dependent algorithm (which is 

especially relevant for discrete-tone images) and the cross-correlation of components in the difference 

color model. It also does not justify the choice of predictor for prediction and does not determine 

which precisely from two opposite differences (for example, R – G or G – R), which have the same 

entropy code length after applying the linear predictor should be chosen. In addition, the matrix A 

allows you to form a difference color model for the entire image but does not indicate ways to 

fragment it and determine the difference color models for individual fragments. Therefore, we will 

deal with the elimination of these shortcomings. 



5. Formation of adaptive difference color models considering cross-
correlation of components 

Difference color models are used to maximize entropy reduction (1) due to inter-component 

decorrelation. Therefore, they increase the efficiency of the application of the context-independent 

algorithm, although they do not directly perform data compression. Let's first set the maximum 

number of differences in the difference color model. 

Note that difference color models with integer coefficients can contain no more than two 

component differences. 

To justify this fact, we will use the method of proof from the opposite and the requirement of 

linear independence of vectors of basic colors of any alternative color model. Let there be a difference 

color model with three component differences. Firstly, each component must enter at least one 

difference to ensure a fallback to the RGB color model. Secondly, no difference can contain the same 

component in the decrement and in the subtractor, because then it will turn to zero, which will violate 

the requirement of linear independence of the components. Thirdly, any of two differences can not 

contain two same or opposite components, because then they will be linearly dependent. Fourth, none 

of the components can be included in all three differences, because otherwise at least two differences 

of the same or opposite sign will be generated, which will contradict the previous statement (for 

example, if all differences include the component R, then the components G and B must complement 

two of these differences, and the third difference must again contain G or B and will contain the same 

components as one of the other two differences). And, finally, each of the components cannot be 

included in two differences, because then a linear combination with the sum or subtraction of these 

differences, which excludes this component, will be linearly dependent with the third difference (for 

example, if the component R is included in the first difference as the minus, and the second as the 

minus, then the sum of these differences will create a difference G – B or B – G, which will be the 

same or opposite in sign to the third difference, which will contradict the requirement of linear 

independence of the basic color vectors). It turns out that each of the three components must enter the 

difference color model only once, which makes it impossible to create three differences.  

As already mentioned above, in the process of compressing images, a context-dependent algorithm 

is first performed, and for pixels not processed by this algorithm, a transition to the difference color 

model is performed, then predictors are applied, and the results of their use and the context-dependent 

algorithm are coded with a context-independent algorithm. That is, the difference color models 

increase the efficiency, first of all, of the context-independent algorithm. That is why they are 

effective primarily for photorealistic images [5]. Among the main symmetric hierarchical predictors 

for such images, ProgresPredict1 provides the smallest CR [6], therefore, we use this predictor to 

select a difference color model. In C++, this predictor is written like this: 

ubyte ProgresPredict1(ubyte a, ubyte b, ubyte c, ubyte d) 
{ubyte pa, pb; 
  if (a>=c)   pa=a-c; 
  else   pa=c-a; 
  if (b>=d)   pb=b-d; 
  else   pb=d-b; 
  if (pa<pb)   return (a+c)/2; 
  if (pb<pa)   return (b+d)/2; 
  return (a+b+c+d)/4; } 

This predictor returns the arithmetic mean of those two opposite elements from the nearest four (a, b, 

c, d) that differ the least. If the deviations of the opposite elements are the same, then ProgresPredict1 

returns the arithmetic mean of all four values. 

If each component of the difference color model were coded into separate Deflate blocks [7] (that 

is, there would be no cross-correlation of the components) and the length of the entropy code (2) of 

the difference of the components after applying ProgresPredict1 (the operator   from (3)) would be 

equal to the length of the entropy code from the opposite component differences (that is, the relations 

     RGLGRL  ,      RBLBRL  ,      GBLBGL  ) would be 



fulfilled, then, taking into account the statement proved above, the following differential color models 

with integer coefficients would be alternative in the process of progressive hierarchical compression: 

1'. R, G, B; 

2'. R, G, B – R; 

3'. R, G, B – G; 

4'. R, G – R, B; 

5'. R, G – B, B; 

6'. R – G, G, B; 

7'. R – B, G, B; 

8'. R, G – R, B – R; 

9'. R, G – R, B – G; (6) 

10'. R, G – B, B – R; 

11'. R – G, G, B – G; 

12'. R – G, G, B – R; 

13'. R – B, G, B – G; 

14'. R – B, G – R, B; 

15'. R – G, G – B, B; 

16'. R – B; G – B, B. 

This list of alternative integer-difference color models is constructed from variants of all possible 

models by discarding opposite-difference models and component-permutation models so that the 

reduced ones retain the input RGB components. We also classified the RGB color model as 

differential with having zero subtractors. 

We also note that, firstly, the difference color models increase the efficiency of using only the 

context-independent algorithm. Therefore, we will not consider the brightness of the pixels that are 

completely included in the replacement of the modified LZ77 algorithm by the adjacent previously 

processed pixels when determining the parameters of these models. 

Secondly, the length of the entropy code (2) of the component difference after applying nonlinear 

hierarchical predictors in general and ProgresPredict1 in particular is usually not equal to the length 

of the entropy code from the opposite component difference. Therefore, due to the introduction of 

opposite differences, the number of difference color models with one difference doubles (from 6 to 

12), with two differences – four times (from 9 to 36) and the total number of alternative difference of 

color models increases from 16 to 49. 

Thirdly, when calculating the differences in the luminance of the components in cases where the 

luminance values of the subtractor insignificantly exceed the luminance values of the reduced one, 

negative values of the differences are obtained, which, when stored in unsigned 8-bit components of 

the color model, due to overflow, are transformed into values close to 256. And when the luminance 

values of the subtractor are slightly smaller than the luminance values of the reduced one, values close 

to zero are obtained in the differences. This dispersion of color model difference values negatively 

affects the accuracy of ProgresPredict1 prediction and, as a consequence, increases entropy (1). To 

avoid such dispersion of the values of the differences of close luminances, it is customary to shift 

them to the middle of the range of possible component values. For example, for the most common 8-

bit sampling, the difference values are shifted to 128, as in the YCbCr color model (4). We will shift 

up to 128 median differences of the components of the RGB color model, assuming that most of the 

luminance of these components are centered around their medians. We denote the medians of the R, 

G, B components for pixels that are not processed by the context-dependent algorithm by medR, 

medG, and medB respectively. 

Taking into account the above remarks, in the process of progressive hierarchical compression of 

lossless images, the following difference color models with integer coefficients can be alternatives: 

1. R, G, B; 

2. R, G, (R – medR) – (B – medB) + 128; 

3. R, G, (G – medG) – (B – medB) + 128; 

4. R, (R – medR) – (G – medG) + 128, B; 

5. R, (B – medB) – (G – medG) + 128, B; 

6. (G – medG) – (R – medR) + 128, G, B; 

7. (B – medB) – (R – medR) + 128, G, B; 



8. R, G, (B – medB) – (R – medR) + 128; 

9. R, G, (B – medB) – (G – medG) + 128; 

10. R, (G – medG) – (R – medR) + 128, B; 

11. R, (G – medG) – (B – medB) + 128, B; 

12. (R – medR) – (G – medG) + 128, G, B; 

13. (R – medR) – (B – medB) + 128, G, B; 

14. R, (R – medR) – (G – medG) + 128, (R – medR) – (B – medB) + 128; 

15. R, (G – medG) – (R – medR) + 128, (G – medG) – (B – medB) + 128; 

16. R, (B – medB) – (G – medG) + 128, (B – medB) – (R – medR) + 128; 

17. R, (G – medG) – (R – medR) + 128, (B – medB) – (R – medR) + 128; 

18. R, (R – medR) – (G – medG) + 128, (B – medB) – (G – medG) + 128; 

19. R, (G – medG) – (B – medB) + 128, (R – medR) – (B – medB) + 128; 

20. (R – medR) – (G – medG) + 128, G, (R – medR) – (B – medB) + 128; 

21. (G – medG) – (R – medR) + 128, G, (G – medG) – (B – medB) + 128; 

22. (B – medB) – (R – medR) + 128, G, (B – medB) – (G – medG) + 128; 

23. (G – medG) – (R – medR) + 128, G, (B – medB) – (R – medR) + 128; 

24. (R – medR) – (G – medG) + 128, G, (B – medB) – (G – medG) + 128; 

25. (R – medR) – (B – medB) + 128, G, (G – medG) – (B – medB) + 128; (7) 

26. (R – medR) – (B – medB) + 128, (R – medR) – (G – medG) + 128, B; 

27. (G – medG) – (R – medR) + 128, (G – medG) – (B – medB) + 128, B; 

28. (B – medB) – (R – medR) + 128, (B – medB) – (G – medG) + 128, B; 

29. (B – medB) – (R – medR) + 128, (G – medG) – (R – medR) + 128, B; 

30. (R – medR) – (G – medG) + 128, (B – medB) – (G – medG) + 128, B; 

31. (R – medR) – (B – medB) + 128, (G – medG) – (B – medB) + 128, B; 

32. R, (G – medG) – (R – medR) + 128, (R – medR) – (B – medB) + 128; 

33. R, (R – medR) – (G – medG) + 128, (G – medG) – (B – medB) + 128; 

34. R, (G – medG) – (B – medB) + 128, (B – medB) – (R – medR) + 128; 

35. R, (R – medR) – (G – medG) + 128, (B – medB) – (R – medR) + 128; 

36. R, (G – medG) – (R – medR) + 128, (B – medB) – (G – medG) + 128; 

37. R, (B – medB) – (G – medG) + 128, (R – medR) – (B – medB) + 128; 

38. (G – medG) – (R – medR) + 128, G, (R – medR) – (B – medB) + 128; 

39. (R – medR) – (G – medG) + 128, G, (G – medG) – (B – medB) + 128; 

40. (R – medR) – (B – medB) + 128, G, (B – medB) – (G – medG) + 128; 

41. (R – medR) – (G – medG) + 128, G, (B – medB) – (R – medR) + 128; 

42. (G – medG) – (R – medR) + 128, G, (B – medB) – (G – medG) + 128; 

43. (B – medB) – (R – medR) + 128, G, (G – medG) – (B – medB) + 128; 

44. (B – medB) – (R – medR) + 128, (R – medR) – (G – medG) + 128, B; 

45. (R – medR) – (G – medG) + 128, (G – medG) – (B – medB) + 128, B; 

46. (R – medR) – (B – medB) + 128, (B – medB) – (G – medG) + 128, B; 

47. (R – medR) – (B – medB) + 128, (G – medG) – (R – medR) + 128, B; 

48. (G – medG) – (R – medR) + 128, (B – medB) – (G – medG) + 128, B; 

49. (B – medB) – (R – medR) + 128, (G – medG) – (B – medB) + 128, B. 

We denote these difference color models by DCMi, 49,1i  (abbreviation of different color models). 

Firstly, the components of difference color models in which R, G or B are included with the same 

signs are better correlated with each other than when these signs are opposite. Therefore, such color 

models are likely to provide smaller CR. Therefore, with strict limitations on the coding time, the 

color model can be chosen not among the 49 alternatives, but only among the first 31, and this will 

slightly affect the CR and reduce the compression time. In addition, as it will be shown later, single-

difference color models are effective mainly for discrete-tone images. Therefore, if it is known that 

photorealistic images are compressed, then alternative difference color models 2-13 from set (7) can 

also not be analyzed. And, secondly, the use of such difference color models with integer coefficients 

significantly speeds up decoding compared to difference color models with real coefficients [5] due to 

performing operations on integers instead of operations on floating-point numbers. 



It is also obvious that among these 49 alternative color models, only one should be chosen 

(determine its numberDCM) which will provide the smallest size of the compressed image, that is, the 

smallest predicted length of the entropy code (2): 

      j
j

numberDCM DCMLDCML 
 49,1
min . (8) 

The length of the entropy code (2) does not depend on individual elements, but on the frequencies 

of these elements. In turn, the frequencies of the elements obtained as a result of the application of the 

difference color model and the ProgresPredict1 predictor consist of the sum of the frequencies of the 

individual components, since the transformed luminance of the pixel components are included in the 

compressed Deflate-blocks in sequence. Therefore, if the first components of the difference color 

models the index 0 are assigned, the second – 1, the third – 2, as was done in [5] (then, for example, 

from (7) we have that 128 + ) - ( - ) - (2
8 medRRmedBBDCM  , RDCM 0

8 ), then 
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where in is the luminance frequency i. 

The selection of the difference color model according to formulas (8), (9) requires the 

determination of 84 component differences (36 models with two differences and 12 models with one 

difference) and the application of predictors to them on all pixels of the image. But if we take into 

account that the same component differences are included in difference color models (for example, 

the difference (R – medR) – (B – medB) + 128 is included in color models № 2, 13, 14, 19, 20, 25, 26, 

31, 32, 37, 38, 40, 46, 47), then to determine the effective color model of the next image, it is enough 

to calculate the frequencies after applying the predictors for six component differences and for the 

three input components R, G and B, and then analyze 49 entropy lengths (8) of combinations of sums 

of these frequencies (9). To do this, we will write down these 9 sets of frequencies in the form of a 

matrix of freqComponent frequency arrays: 
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Then each combination of sums of frequencies that specifies one of the color models (7) must include 

the frequencies of at least one carrier component, that is, at least one array of frequencies from the 

diagonal of the freqComponent matrix, and no more than two component differences, that is, arrays of 

frequencies of off-diagonal elements of this matrix, which must be asymmetrical among themselves. 

After selecting arrays of component frequencies due to the application of the next color model and 

ProgresPredict1, it is necessary to calculate their element-by-element sums according to (9), 

determine the predicted length of the entropy code from the received frequencies (2) and choose 

among all color models the one that provides the best predicted compression according to (8). 

Frequency arrays freqComponent (10) is similar to the analysis matrix A (5), because they are both 

used to select a color model, the row number of off-diagonal elements in them determines the 

decreasing component, and the column number is the denominator. But the matrix A contains the 

predicted lengths of possible individual components and does not take into account their cross-

correlation, and the matrix freqComponent – frequencies of these components and determining the 

entropy length from combinations of the sums of these frequencies (9) makes it possible to take into 

account their cross-correlation. 

6. Software implementation of the selection of the difference color model 

To select the difference color model of the entire image, first let’s determine the medians of its 

components medR, medG, and medB. Since the median is a value located within a series of sorted 



values, then, of course, to determine these medians, it would be possible to sort by increasing values 

of the pixel components that are not included in the long substitutions of the modified LZ77 

algorithm, and then choose the average values from the sorted arrays. But the complexity of such an 

approach would then be   image_colimage_rowimage_colimage_rowO  log . We implement an 

algorithm with linear computational complexity relative to the number of pixels, using the idea of the 

method of sorting by counting [14, p. 223-226]: for each component, we first count the frequencies of 

each brightness in , 255,0i , after which, using these frequencies, we determine the brightness 

relative to which the brightness of at least half of the elements is smaller. If the number of pixels for 

which the median is determined in this way is odd, then this median will be equal to the average value 

of the sorted array. If it is even, then it will be equal to the value from which the second half of the 

sorted array begins (the so-called "upper median"). 

The frequency array, which is additionally created and processed for such determination of 

medians, contains only 256 elements, which in general is much less than the number of image pixels 

and indicates the feasibility of applying the idea of the method of sorting by counting. A fragment of a 

C++ program for determining median components with frequency counts of individual luminances 

can look like this: 

step=1; // calculate the brightness frequencies of the components 
for (l=countShar; l>=2; l--) // loop through all layers except the first 
 {step*=2; 
  // process the pixels of the second pass of the layer 
  startColumn=0; 
  for (j=0; j<image_row; j+=step/2) // cycle by rows 
   {if (startColumn==0) startColumn=step/2; // the first pixel of the first lines 
    else startColumn=0; // the first pixel of the second rows 
    for (i=startColumn; i<image_col; i+=step) // cycle through the columns 
     // if the LZ-decomposition on the nearest processed pixels is not performed 
     // or the next pixel is not included in a long replacement (from six elements) 
     if (!LZReplaceAdjacent || !longAdjacentReplace[j*image_col+i]) 
      {// read the components of the next pixel in the BGR color model 
       b=image[j][i*3]; g=image[j][i*3+1]; r=image[j][i*3+2]; 
       // increase the number of processed pixels and accumulate frequencies 
       countPixelDCM++; 
       freqR[r]++; freqG[g]++; freqB[b]++; }} 
  // similarly process the pixels of the first layer pass 
  for (j=step/2; j<image_row; j+=step) 
   for (i=step/2; i<image_col; i+=step) 
    if (!LZReplaceAdjacent || !longAdjacentReplace[j*image_col+i]) 
     {b=image[j][i*3]; g=image[j][i*3+1]; r=image[j][i*3+2]; 
      countPixelDCM++; 
      freqR[r]++; freqG[g]++; freqB[b]++; }} 
UBYTE4 halfPixelCM=countPixelCM/2; // half of processed pixels 
UBYTE4 sumFreq=0; medR=0; 
// increase the median R until we process half of the frequencies of the elements 
while (sumFreq<halfPixelCM) 
 sumFreq+=freqR[medR++]; 
sumFreq=0; medG=0; 
while (sumFreq<halfPixelCM) 
 sumFreq+=freqG[medG++]; // similarly determine the median of G 
sumFreq=0; medB=0; 
while (sumFreq<halfPixelCM) 
 sumFreq+=freqB[medB++]; // similarly determine the median B 
UBYTE1 medComponent[3]; 
// store the calculated medians for further complex use 



medComponent[0]=medR; medComponent[1]=medG; medComponent[2]=medB; 

Defined medians of individual components make it possible to accumulate freqComponent (10) 

arrays in the matrix of frequencies due to the application of ProgresPredict1 to individual 

components and component differences. To speed up the calculation of the displacement, we enter the 

constant component differences in the intermediate variable alfa. For example, calculating the 

differences of R and G components for each pixel that is not included in the long substitutions of the 

LZ algorithm, we simplify the expression     128 medGGmedRR  to alfaGR  , where 

128 medGmedRalfa . 

The function for determining the predicted length of the entropy code (2) based on element 

frequencies is given as follows: 

double sizeEntropiCode(UBYTE4 *masFreq, unsigned int countAllFreq=256) 
{UBYTE4 count=0, i; 
 double size=0; 
 for (i=0; i<countAllFreq; i++) 
  {count+=masFreq[i]; 
   if (masFreq[i]>1) 
    size+=masFreq[i]*log(masFreq[i]); } 
 if (count)   size=(count*log(count)-size)/log(2); 
 return size; } 

To save the differences of the color model, we will use the following variables with the numbers 

of its components from 0 to 2: cm1 – number of the component of the result of the first difference, 

cm11 – number of the component of the reduced first difference, cm12 – number of the component of 

the subtractor of the first difference, cm2, cm21, cm22 – similar variables for the second color model 

difference. If the denominator of the first or second difference is equal to its denominator, then this 

difference is not applied. Having formed the frequency array matrix freqComponent and the 

implementation of the function sizeEntropiCode, we now present a fragment of the program for 

determining the color model that provides the smallest predicted length of the entropy code (8): 

cm11=0, cm12=0, cm21=0, cm22=0; // parameters of RGB models without differences 
for (l=0; l<256; l++) // sum of frequencies of components (9) for RGB models 
 freq[l]=freqComponent[0][0][l]+freqComponent[1][1][l]+freqComponent[2][2][l]; 
// definition of predicted length of the entropy code after application of 
// predictors to pixels in the color room RGB models 
lenRGB = minLenDCM =(UBYTE4) sizeEntropyCode(freq); 
// sort through the possible differences color models 
UBYTE1 c11, c12, c21, c22; 
for (c11=0; c11<=2; c11++) // index of the first component of the first differences 
 for (c12=0; c12<=2; c12++) // index of the second component of the first differences 
  if (c11!=c12) // components differences have to differ 

 {// sum of frequencies components (9) for models with one difference: 

  // from the first component of the first differences  second component is subtracted 

  for (l=0; l<256; l++) 

   {freq [l]= freqComponent[c11][c12][l]; // difference of the first component with the second 

    if (c11!=0) freq[l]+= freqComponent[0][0][l]; // other two components without changes 

    if (c11!=1) freq[l]+= freqComponent[1][1][l]; 

   if (c11!=2) freq[l]+= freqComponent[2][2][l]; } 

  lenDCM =(UBYTE4) sizeEntropyCode (freq); 

  if (lenDCM < minLenDCM) // found more effective color model 

   {minLenDCM = lenDCM; // remember her parameters 

    cm1=cm11=c11; // in the model alone the difference in which from the first component  

    cm12=c12; // the second one is subtracted 

    cm21=cm22=0; } 
    for (c21=c11+1; c21<=2; c21++) // index the first component the second differences 



     for (c22=0; c22<=2; c22++) // index of the second component of the second differences 
      if (c21!=c22 && // components of the second difference are different 
          (c21 != c12 || c22!=c11)) // and no symmetrical to the first differences 
       {// sum of the frequencies of the components (9) for models with two differences 

        // in two differences from the first components are subtracted  from the second 
        for (l=0; l<256; l++) 
         freq[l]=freqComponent[c11][c12][l]+ // frequency of the first differences 
                    freqComponent[c21][c22][l]+ // frequency of the second differences 
                    freqComponent[3-c11-c21][3-c11-c21][l]; // frequency carrier 
        lenDCM =(UBYTE4) sizeEntropyCode (freq); 
        if (lenDCM < minLenDCM) 
         {minLenDCM = lenDCM; 
          cm1=cm11=c11; // result and reduced of the first differences 
          cm12=c12; // subtractor of the first differences 
          cm2=cm21=c21; // result and reduced of the second differences 
          cm22=c22; } // subtractor of the second differences 
        // in the first difference from the first component the second one is subtracted 
        // in the  the second difference from the second component the first one is subtracted 
        for (l=0; l<256; l++) 
         freq[l]=freqComponent[c11][c12][l]+ // frequency of the first difference 
                    freqComponent[c22][c21][l]+ // frequency of the second difference 
                    freqComponent[3-c11-c21][3-c11-c21][l]; // frequency carrier 
        lenDCM =(UBYTE4) sizeEntropyCode (freq); 
        if (lenDCM < minLenDCM) 
         {minLenDCM = lenDCM; 
          cm1=cm11=c11; // result and reduced of the first differences 
          cm12=c12; // subtractor of the first differences 
          cm2=cm22=c21; // result and reduced of the second differences 
          cm21=c22; }} // subtractor of the second differences 
    //further vertical differences are processed similarly 

Without lines marked with ' ', this program fragment selects alternative difference color models to 

the RGB model only among models with two differences, that is, it analyzes the effectiveness of using 

not 49, but 37 color models. 

The use of a difference color model as an alternative to RGB, leads to the need to apply its 

differences to all image pixels that have not been processed by a context-sensitive algorithm, both 

during encoding and each time during the decoding process. That’s why, it slows down these two 

processes. Although, on the other hand, reducing the size of the compressed image due to the use of 

difference color models accelerates decoding, as it leads to the processing of compressed data of a 

smaller volume. Therefore, after determining the differences of the integer color model that provides 

the minimum predicted entropy code length, we arranged to fall back to the RGB color model if this 

predicted length decreased by less than 1%. Let's set the indices of the reducible cm11 and the 

denominator cm12 of the first difference and the indices of the reducible cm21 and the denominator 

cm22 of the second difference equal to zero: 

if (lenRGB-minLenDCM<lenRGB/100) 
 {cm11=cm12=cm21=cm22=0; 
  requiredDCM=false; 
  return; } . 

Alternative color model differences must be applied to the input components R, G, or B in 

sequence. Therefore, at the end of choosing a difference color model with integer coefficients, we 

implement a change in the order of subtraction of components, if the result of the first difference is 

used in the second difference: 

// if the second difference is defined and uses the result of the first difference 
if (cm21!=cm22 && (cm1==cm21 || cm1==cm22)) 



 {i=cm1; cm1=cm2; cm2=i; // change order differences 
  i=cm11; cm11=cm21; cm21=i; 
  i=cm12; cm12=cm22; cm22=i; } 

To speed up the application of the differences of the specified color model, we calculate the 

coefficients alfa1 and alfa2 for the first and second differences: 

if (cm11!=cm12) alfa1=-medComponent[cm11]+medComponent[cm12]+128; 
if (cm21!=cm22) alfa2=-medComponent[cm21]+medComponent[cm22]+128; 

Then the procedure for applying the differences of the specified color model to any pixel of the 

image will be written as follows: 

void codeDCM (int row, int col, UBYTE1 *pixel) 
 {if (cm11!=cm12) // the first subtraction is required 
   pixel[cm1]=pixel[cm11]-pixel[cm12]+alfa1; 
  if (cm21!=cm22) // the second subtraction is required 
   pixel[cm2]=pixel[cm21]-pixel[cm22]+alfa2; } 

We return to the RGB color model in the decoder in the reverse order: first we cancel the 

application of the second, and then the first difference. Therefore, the procedure for returning from the 

specified color model to the RGB model for each pixel in the decoding process is implemented as 

follows: 

void decodeDCM (UBYTE2 row, UBYTE2 col, UBYTE1 * decodeBytePixel) 
 {// if determined, the second subtraction and to DCM components are applied 
  if (cm21!=cm22 && appliedDCMBytePixel[cm2]) 
   if (cm2==cm21) decodeBytePixel[cm2]+=decodeBytePixel[cm22]-alfa2; 
   else decodeBytePixel[cm2]=decodeBytePixel[cm21]-decodeBytePixel[cm2]+alfa2; 
  // if defined, the first subtraction and to DCM components are applied 
  if (cm11!=cm12 && appliedDCMBytePixel [cm1]) 
   if (cm1==cm11) decodeBytePixel[cm1]+=decodeBytePixel[cm12]-alfa1; 
   else decodeBytePixel[cm1]=decodeBytePixel[cm11]-decodeBytePixel[cm1]+alfa1; }  . 

7. Analysis of the results of the application of difference color models for the 
compression of whole images 

Let us analyze the results of applying selected from alternative difference color models with 

integer coefficients to test images of the ACT set [15] (Table 1, 3, 4). We can see that on average for 

this set due to the use of difference color models with integer coefficients the CR is decreased by 0.36 

bpb (second row of Table 1). Moreover, about 19% of this decrease occurred due to the shift of the 

median difference to the middle of the range of possible values (that is, due to the consideration of 

alpha, the third line of Table 1). 

For different images, the smallest predicted length of the entropy code is provided by different 

difference color models (Table 2). But the effectiveness of difference color models differs, first of all, 

for different types of images. If for photorealistic images the CR is decreased by an average of 0.58 

bpb, then for discrete-tone images – only by 0.01 bpb, since they have a low level of correlation 

between components. For image #1, there was even a fallback to the RGB color model, as alternative 

difference color models reduced the predicted entropy code length by less than 1%. 

The choice of difference color models not from the 49th, but from the first 31st with the same 

minuends or subtrahends forms models with opposite components in 25% of the images, which 

insignificantly increases their compression ratio. On the other hand, this does not lead to a drastic 

acceleration of compression, because most of the time in the process of choosing difference color 

models is spent on forming a matrix of component frequency arrays and their differences 

freqComponent (10). 

If we choose a difference color model from only 16 alternatives (6) according to the symmetric 

analysis matrix A (5), which contains the entropy lengths of the 3 components and 3 of their 



differences [5], taking into account the shifts of the medians after using ProgresPredict1 and does not 

take into account the cross-correlation between the components, then we get models with opposite 

components for 75% of the images (fourth line of Table 2), deterioration of CR for three images, and 

on average for the set – increase of CR by 0.01 bpb (fourth line of Table 1). Compression compared 

to the analysis of all alternative color models (7) will speed up by only 2%. If we take into account the 

asymmetries of the differences of matrix A (49 alternative color models without taking into account 

cross-correlation), then the CR will also deteriorate, but already for 2 pictures (fifth line of Table 1). 

Therefore, to ensure the smallest CR, a difference color model with integer coefficients should be 

chosen from all 49 alternatives (7). 

 

Table 1 
Image compression ratios of the ACT set after applying various options for formation of difference 
color models, bpb 

Color model 
Image Number Average 

CR 1 2 3 4 5 6 7 8 

RGB 1.34 0.58 4.65 3.81 4.14 5.16 0.61 4.32 3.07 

Difference CM from the 49th or 31st alternative 1.34 0.57 4.45 3.25 3.69 4.06 0.59 3.71 2.71 

Difference CM from 49 alternatives without alpha 1.34 0.57 4.62 3.27 3.81 4.21 0.59 3.82 2.78 

Difference CM from 16 alternative analysis matrix A 1.34 0.57 4.45 3.27 3.69 4.07 0.59 3.76 2.72 

Difference CM from 49 alternative analysis matrix A 1.34 0.57 4.45 3.27 3.69 4.06 0.59 3.73 2.71 
 

Table 2 
Difference color models (without specifying alpha) generated for images of the ACT set by different 
variants of their formation 

Color model 
Image Number 

1 2 3 4 

Difference CM from 49 alternatives RGB (R, R-G, B) B-R, G-B, B R, R-G, G-B R, B-G, B-R 

Difference CM from 49 alternatives 
without alpha 

RGB (R, R-G, B) B-R, G-B, B R, R-G, G-B R, R-G, R-B 

Difference CM from the first 31st 
alternative 

RGB (R, R-G, B) B-R, B-G, B R, G-R, G-B R, B-G, B-R 

Difference CM from 16 alternatives 
according to A 

RGB (R, R-G, B) R-B, G-B, B R, G-R, B-G R, G-B, B-R 

Difference CM from 49 alternatives 
according to A 

RGB (R, R-G, B) B-R, G-B, B R, R-G, G-B R, G-B, R-B 

 
Continuation of Table 2 

Color model 
Image Number 

5 6 7 8 

Difference CM from 49 alternatives G-R, G, G-B G-R, G, G-B R-G, B-G, B R, R-G, B-G 

Difference CM from 49 alternatives 
without alpha 

G-R, G, G-B G-R, G, G-B R-G, B-G, B R, R-G, B-G 

Difference CM from the first 31st 
alternative 

G-R, G, G-B G-R, G, G-B R-G, B-G, B R, R-G, B-G 

Difference CM from 16 alternatives 
according to A 

R-G, G, B-G R-G, G, B-G R-G, G-B, B R, G-R, B-G 

Difference CM from 49 alternatives 
according to A 

G-R, G, G-B G-R, G, G-B R-G, B-G, B R, G-R, G-B 

 



Table 3 
The time of encoding image files of the ACT set using different variants of the formation of 
difference color models, s 

Color model 
Image Number Average  

time 1 2 3 4 5 6 7 8 

RGB 2.19 3.05 1.06 1.93 1.16 2.04 1.25 1.87 1.82 

Difference CM from the 49th or 31st alternative 2.62 3.53 1.29 2.17 1.41 2.20 1.50 2.05 2.10 

Difference CM from 16 alternatives 2.52 3.52 1.25 2.11 1.36 2.14 1.49 1.99 2.06 

 
Table 4 
Decoding time of ACT set image files encoded using different difference color models, s 

Color model 
Image Number Average  

time 1 2 3 4 5 6 7 8 

RGB 0.58 1.21 0.30 0.54 0.32 0.49 0.49 0.42 0.54 

Different from 49th, 31st or 16th alternative 0.58 1.27 0.32 0.60 0.31 0.61 0.50 0.50 0.59 

 
In general, the use of difference color models significantly (on average by more than 13% 

according to Table 3) slows down encoding not only due to the need to choose such a model from 

among alternatives, but also due to the orientation to a context-independent algorithm that encodes 

individual literals. However, the time of image decoding due to the use of these color models is 

increased by only a tenth of a second (9.3%, second row of Table 4), which, together with a 

significant reduction in CR, makes it possible to use them effectively in practice. 

8. Discussions 

In the future, with the aim of further reducing the file sizes of lossless compressed images in the 

process of progressive hierarchical traversal and speeding up decoding, we plan to increase the 

efficiency of using symmetric and asymmetric predictors [6] by applying difference color models 

with integer coefficients to image fragments. We are working on an algorithm for dividing images 

into large rectangular pieces with different adaptive difference color models by analyzing their 

median differences. 

9. Conclusions 

1. It is possible to reduce the CR of images in three-component color models not only due to the 

data decorrelation of individual components, but also with the help of inter-component 

decorrelation by switching to difference color models. Inter-component decorrelation should be 

performed in such a way as to enhance the properties of the image used by the algorithms of 

prepressing and direct compression of the selected graphic format, for example, to minimize the 

predicted length of the entropy code (2). 

2. The use of difference color models with integer coefficients in the process of progressive 

hierarchical compression of lossless images makes it possible to reduce the CR of photorealistic 

images by an average of 0.58 bpb. To ensure the smallest CR, a difference color model with 

integer coefficients should be chosen from all 49 alternatives (7). 

3. In order to increase the efficiency of the application of difference color models with integer 

difference coefficients, the median differences of the basic components R, G, B should be shifted 

to the middle of the range of possible values (for example, in color models with a sampling rate of 

8 bits – up to 128). 

4. Integer difference color models provide significant improvements in the lossless compression 

efficiency of three components photorealistic images in formats that use predictors, and may 

therefore be implemented in future standards-level versions of these formats. 
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