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Abstract 
In this paperwe discuss a newvariational approach to the Date Fusion problem of multi-spectral 
satellite images from Sentinel-2 and MODIS that have been captureed at different resolution level 
and, arguably, on different days. The crucial assumption to our approach is that the MODIS image 
has to be cloud-free whereas the images from Sentinel-2 can be corrupted by clouds or noise. We 
formulate the data fusion problem as the two-level optimization problem. We discuss the well 
thoroughness and consistency of the proposed variational models. We also derive some optimality 
conditions and supply our approach by results of numerical simulations with the real satellite 
images. 
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1.  Introduction 

It is well-known that the data fusion problem is often exacerbated by cloud contamination. In some 
cloudy areas, researchers are fortunate to get 2–3 cloud-free satellite scenes per year, what is insufficient for 
many applications that require dense temporal information, such as crop condition monitoring and 
phenology studies. In view of this, we can indicate the following general requirements for the satellite 
image fusion process: (i) The fused image should preserve all relevant information from the input images; 
(ii) The image fusion should not introduce artifacts which can lead to wrong inferences. 

In spite of the fact that the first requirement (item (i)) sounds rather vague, we give a precise treatment 
for it in Section 5, making use of a collection of special constrained minimization problems (see (22)). As 
for the second item, it is important to emphasize that we are mainly interesting by satellite images that can 
be useful from agricultural point of view (land cover change mapping, crop condition monitoring, yield 
estimation, and many others). 
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Because of this an important option in the image data fusion is to preserve the precise geo-location of the 
existing crop fields and avoid an appearance of the so-called false contours and pseudo-boundaries on a 
given territory. 

In this paper we mainly focus on the image fusion problem coming from two satellites — Setnitel-2 and 
Moderate Resolution Imaging Spectroradiometer (MODIS) [1]. Since each band (spectral channel) in 
Sentinel images has 10, 20, or 60 meters in pixel size, it gives an ideal spatial resolution for vegetation 
mapping at the field scale. Moreover, taking into account that Sentinel-2 has 3–5 revisit cycle over the 
same territory, it makes its usage for studying global biophysical processes, which allows to evolve rapidly 
during the growing season, essentially important. The unique problem that drastically restricts its practical 
implementation, is the fact that the images from Sentinel-2, as a rule, are often contaminated by clouds, 
shadows, dust, and other atmospheric artifacts. 

One of possible solutions for practical applications is to make use of frequent coarse-resolution data of 
the MODIS. Taking into account that the MODIS data can be delivered with the daily repeat cycle and 
500-m surface reflectance, the core idea is to use the Sentinel and MODIS data to generate synthetic ’daily’ 
surface reflectance products at Sentinel spatial resolution [2]. 

The problem we consider in this paper can be briefly described as follows. We have a collection of 
multi-band images {��,��,… ,��:�� → ℝ �} from Sentinel-2 that were captured at some time instances 
{��,��,… ,��}, respectively, and we have a MODIS image �:�� → ℝ � from some day ��. It is assumed 
that all of these images are well co-registered with respect to the unique geographic location. We also 
suppose that the MODIS image is cloud-free and the day �� may does not coincide with any of time 
instances {��,��,… ,��}. Meanwhile, the Sentinel images {��,��,… ,��:�� → ℝ �} can be corrupted by 
clouds. The main question is how to generate a new synthetic ’daily’ multi-band image of the same territory 
from the day �� at the Sentinel-2 spatial resolution ��, utilizing for that the above mentioned data. 

In principle, this problem is not new in the literature [3, 4, 5]. For nowadays the spatial and temporal 
adaptive reflectance fusion model (STARFM) is one of the most popular model where the idea to generate 
a new synthetic ’daily’ satellite images at high resolution level has been realized [6, 7]. However, its 
performance essentially depends on the characteristic patch size of the landscape and degrades somewhat 
when used on extremely heterogeneous fine-grained landscapes [3]. 

Instead of this, we mainly focus on the variational approach to the satellite image data fusion (see [8, 9, 
10]). We formulate the data fusion problem as the two-level optimization problem. At the first level, 
following a simple iterative procedure, we generate the so-called structural prototype for a synthetic 
Sentinel image from the given day ��. The main characteristic feature of this prototype is the fact that, it 
must have a similar geometrical structure (namely, precise location of contours and field boundaries) to the 
nearest in time ’visible’ Sentinel images, albeit they may have rather different intensities in all bands. Since 
the revisit cycle of Sentinel-2 is 2–3 days, such prototype can be easily generated. We consider the above 
mentioned structural prototype as a reasonable input data for ’daily’ prediction problem that we formulate a 
special constrained minimization problem, where the cost functional has a nonstandard growth and the edge 
information for restoration of MODIS cloud-free images at the Sentinel resolution is accumulated both in 
the variable exponent of nonlinearity and in the directional image gradients which we derive from the 
predicted structural prototype. It is worth to emphasize that our model is considerably different from the 
variational model for P+XS image fusion that was proposed in [11]. 

2.  Non-Formal Statement of the Problem  

Let Ω ⊂ ℝ � be a bounded connected open set with a sufficiently smooth boundary �Ω  and nonzero 
Lebesgue measure. In majority cases Ω  can be interpreted as a rectangle domain. Let �� and �� be two 
sample grids on Ω . 

Let [0,�] be a given time interval. Normally, by � we mean a number of days. Let �� and {��}���
�  be 

moments in time (particular days) such that 0 ≤ �� < �� < ⋯ < �� ≤ �  and �� < �� < � . Let 
{��,��,… ,��:�� → ℝ �} be a collection of multispectral images of some territory, delivered from 



Sentinel-2, that were taken at time instances ��,��,… ,��, respectively. Let �:�� → ℝ �  be a MODIS 
image of the same territory and this image has been captured at time � = ��. It is assumed that:   

    1.  The Sentinel-2 images {��}���
�  can be corrupted by some noise, clouds and blur, whereas �� is 

a cloud-free image;  
    2.  We divide the set of all bands for Sentinel images onto two parts �� and �� such that each 

spectral channel of the MODIS image � has the similar spectral characteristics to some channel of 
��-group; 

    3.  The MODIS image �:�� → ℝ �  is not corrupted by clouds or its damage zone can be 
neglected; 

    4.  The MODIS image � and the images {��,��,… ,��} from Sentinel-2 are rigidly co-registered 
[12, 13]. This means that the MODIS image after arguably some affine transformation and each Sentinel 
images after the resampling to the grid with low resolution ��, could be successfully matched according to 
the unique geographic location [14, 15]. 

2.1.  Functional Spaces 

Let us recall some useful notations. For given 1 ≤ � ≤ +∞ , the space ��(Ω;ℝ �) is defined by  

 ��(Ω;ℝ �)= ��:Ω → ℝ � 	∶		∥� ∥��(�;ℝ�)< +∞ �, 

where ∥� ∥��(�;ℝ�)= �∫ 	
�

|�(�)|�	���
�/�

 for 1 ≤ � < +∞ . 

Given a real Banach space �, we will denote by �([0,�];�) the space of all continuous functions from 
[0,�] into � . We recall that, for 1 ≤ � < ∞ , ��(0,�;�) is the space of all measurable functions 
�:[0,�]→ � such that [16, 17]  

 ∥� ∥��(�,�;�)= �∫ 	
�

�
∥�(�)∥�

�
	���

�

� < ∞ , 

while ��(0,�;�)  is the space of measurable functions such that ∥� ∥�� (�,�;�)= sup�∈[�,�]∥

�(�)∥�< ∞ . For more detailed presentation of the theory of these spaces and the Sobolev spaces with 
variable exponents, we refer to [18, 19, 20, 21, 22, 23]. 

2.2.  Topographic Maps and Geometry of Satillite Multispectral Images 

  Following the main principle of the Mathematical Morphology, a scalar image �:Ω → ℝ  is a 
representative of an equivalence class of images � obtained from � via a contrast change, i.e., � = �(�), 
where �  is a continuous strictly increasing function. Under this assumption, a scalar image can be 
characterized by its upper level sets ��(�)= {� ∈ Ω	∶		�(�)≥ �}. Moreover, each image can be 
recovered from its level sets by the reconstruction formula �(�)= sup{�	∶		� ∈ ��(�)}. Thus, according 
to the Mathematical Morphology Doctrine, we can suppose that the reliable geometric information about a 
scalar image is contained in those level sets. 

In order to describe the level sets by their boundaries, ���(�), we assume that � ∈ ��,�(Ω), where 
��,�(Ω) stands for the standard Sobolev space of all functions � ∈ ��(Ω) with respect to the norm 
∥� ∥� �,�(�)= ∥� ∥��(�) +∥∇� ∥��(�)� . Then at almost all points of almost all level sets of � ∈ ��,�(Ω) 

we may define a unit normal vector �(�) [24]. This vector field formally satisfies the following relations 
(�,∇�)= |∇�|				and				|�|≤ 1		a.e.in. In the sequel, we will refer to the vector field � as the vector field 
of unit normals to the topographic map of a function �. So, we can associate � with the geometry of the 
scalar image � [25, 26]. 

 

Remark 2.1  In practice, a better choice for �(�,�) would be to compute it as the ration 
∇� (�,⋅)

|∇� (�,⋅)|
 for 

some small value of � > 0, where �(�,�,�) is a solution (for small value of � > 0) of the following 



initial-boundary value problem with 1� -Laplace operator in the principle part  

 
��

��
= div	�

∇�

|∇� |
� ,				� ∈ (0,+∞ ),(�,�)∈ Ω, (1) 

 �(0,�,�)= �(�,�),				(�,�)∈ Ω, (2) 

 
�� (�,�,�)

��
= 0,				� ∈ (0,+∞ ),(�,�)∈ �Ω. (3) 

2.3.  Texture Index of a Gray-Scale Image 

 Let � ∈ �([0,�];��(Ω)) be a given function. For each � ∈ [0,�], we associate the real-valued 
mapping �(�,⋅):Ω ↦ ℝ  with a gray-scale image, and the mapping �:(0,�)× Ω → ℝ  with an optical 
flow.  

Definition 2.1  We say that a function ��:(0,�)× � → ℝ  is the texture index of a given optical 
flow �:(0,�)× � → ℝ  if it is defined by the rule  

 ��(�,�):= 1 + � �
�

�
∫ 	

�

���
|(∇�� ∗��(�,⋅))(�)|�	���, (4) 

 for all (�,�)∈ ��, where �� denotes zero extension of � from �� = (0,�)× Ω  to ℝ �, ��  stands for 
the two-dimentional Gaussian of width (standard deviation) � > 0  �:[0,∞ )→ (0,∞ )  is the 

edge-stopping function which we take in the form of the Cauchy law �(�)=
�

���
 with � > 0 small 

enough, and ℎ > 0 is a small positive value.  
 
Since �� ∈ ��(ℝ �) , it follows from (4) that 1 < ��(�,�)≤ 2  in ��  and 

�� ∈ ��([0,�];��(ℝ �)) even if � is just an absolutely integrable function in ��. Moreover, for each 
� ∈ [0,�], ��(�,�)≈ 1 in those places of Ω  where some edges or discontinuities are present in the image 
�(�,⋅), and ��(�,�)≈ 2 in places where �(�,�) is smooth or contains homogeneous features. In view of 
this, ��(�,�) can be interpreted as a characteristic of the sparse texture of the function � that can change 
with time.  

Lemma 2.1  Let � ∈ �([0,�];��(�)) be a measurable function extended by zero outside of ��. 
Let �� be the corresponding texture index. Then there exists a constant � > 0 depending on � , �, and 
∥� ∥�([�,�];��(�)) such that  

 �:= 1 + � ≤ ��(�,�)≤ �:= 2,				∀	(�,�)∈ ��, (5) 
 �� ∈ ��,�(��), (6) 

 where � = �ℎ��ℎ+∥�� ∥
��(���)
� |Ω|∥� ∥��(�,�;��(�))

� �
��

.  

3.  Data Fusion Problem. Main Requirements to the Formal Statement 

Let {��,��,… ,��:�� → ℝ �} be a collection of multispectral images of some territory from Sentinel-2 
that were taken at time instances {��,��,… ,��}⊂ [0,�], respectively. Let {��,��,… ,��}⊂ 2�  be a 
collection of damage regions for the corresponding Sentinel-images. So, in fact, we deal with the set of 
images {��:��\�� → ℝ �}, � = 1,...,� . Let �:�� → ℝ �  be a MODIS image of the same territory and 
this image has been captured at time � = �� ∈ (��,�). 

We begin with the following assumption: �� = ∅ and the damage zones for the rest images from 
Sentinel-2 are such that each ��, � = 2,… ,� , is a measurable closed subset of Ω  with property ℒ�(��)≤
0.6	ℒ�(Ω), where ℒ�(��) stands for the 2-D Lebesgue measure of ��. 

We say that multi-band images ����:�� → ℝ ��
���

�
 are structural prototypes of the corresponding 

cloud-corrupted ones {��:��\�� → ℝ �}���
�  if they are defined as follows:  



 

���,�(�) = ��,�(�),

���,�(�) = �
��,�(�), � ∈ ��\��,

��,������,�(�), � ∈ �� ∩ ��,
�,

 (7) 

 where � = 2,… ,� , � = 1,… ,� , ��,� =
[��,�]� \� �

[���� �,�]� \� �

, and  

 [��,�]�\��
:=

�

ℒ�(�\��)
∑ 	�∈�� \��

��,�(�). 

Moreover, each structural prototype ���:�� → ℝ � is rigidly related to the corresponding day �� when 
the image ��:��\�� → ℝ �  had been taken. 

 
Remark 3.1  As follows from the rule (7), this iterative procedure should be applied to each spectral 

channel of all multi-band images from Sentinel-2. Since the revisit time for Sentinel-2 is 3 − 5 days and 
the collection of images {��}���

�  is rigidly co-registered, it follows from (7) that the structural prototypes 

��������

�
 are also well co-registered and they have the similar topographic maps with respect to their precise 

space location, albeit some false contours can appear along the boundaries of the damage zones ��. In 
fact, in order to avoid the appearance of the false contours, the weight coefficients ��,�  have been 
introduced.  

 
Since the MODIS image has been taken at a time instance �� ∈ (��,�), we can have three possible 

cases:   
    (А1) there exists an index �∗ ∈ {1,...,� } such that �� = ��∗; 
    (А2) there exists an index �∗ ∈ {1,...,� − 1} such that ��∗ < �� < ��∗��; 
    (А3)  �� < �� < �.  
 
In view of this, we will distinguish three different statements of the data fusion problem:   
    (Restoration Problem) The problem (A1) consists in restoration of the damaged multi-band optical 

image ��∗:��\��∗ → ℝ � using result of its fusion with the cloud-free MODIS image �:�� → ℝ � of the 
same territory. It means that, we have to create a new image ��∗

����:�� → ℝ �, which would be well defined 
on the entire grid ��, such that  

 ��∗
����(�)= ��∗(�),				∀	�= (�,�)∈ ��\��∗, (8) 

 ∑ 	�∈��∩��∗
(�� ∗��,�

�����(�)− ��(�))� = inf
�∈ℐ

∑ 	�∈��∩��∗
((� ∗�)(�)− ��(�))�,

∀	� ∈ ��,
 (9) 

 ��∗,�
����(�)= ���∗,�(�),				∀	�∈ ��,∀	� ∈ ��. (10) 

 The precise description of the class of admissible (or feasible) images ℐ will be given in the next 
section. 

    (Interpolation Problem) The problem (A2) consists in generation of a new multi-band optical image 
���

���:�� → ℝ � at the Sentinel-level of resolution using result of the fusion of cloud-free MODIS image 

�:�� → ℝ � with the predicted structural prototype ����
:�� → ℝ � from the given day ��. In fact, in this 

case we deal with the two-level problem. At the first level, having the collection of structural prototypes 

����:�� → ℝ ��
���

�
 which is associated with the time instances {��,��,… ,��}⊂ [0,�], we create a new 

’intermediate’ image ����
:�� → ℝ � that can be considered as daily prediction of the topographical map of 

a given territory from the day �� . Then, at the second level, we realize the fusion procedure of this 
predicted image with the cloud-free MODIS image �:�� → ℝ � of the same territory. 

    (Extrapolation Problem) The problem (A3) consists in generation of a new multi-band optical image 
���

���:�� → ℝ � using result of the data assimilation from the cloud-free MODIS image �:�� → ℝ � into 

the structural prototype ���:�� → ℝ � of the Sentinel-image ��:��\�� → ℝ �.  



4.  The Model for Prediction of Structural Prototypes 

Let ���∗,� and ���∗��,� be structural prototypes of the corresponding images from given days ��∗ and 

��∗��. Since ���∗,� and ���∗��,� are well co-registered images, it is reasonable to assume that they have the 

similar geometric structure albeit they may have very different intensities. 
The main question we are going to discuss in this section is: how to correctly define the ’intermediate’ 

image ����
:�� → ℝ �  that can be considered as daily prediction of the topographical map of a given 

territory from the day ��. With that in mind, for each spectral channel � ∈ {1,2,… ,� }, we make use of the 
following model  

 
��

��
− div�|∇�|��(�,�)��∇�� = �		in		(��∗,��∗��)× Ω, (11) 

 ��� = 0				on		(��∗,��∗��)× �Ω, (12) 
 �(��∗,⋅)= ���∗,�(⋅)				in		Ω, (13) 

 where ��(�,�) stands for the texture index of the scalar image � (see Definition 2.1), and � ∈
��(��∗,��∗��;�

�(Ω)) is an unknown source term that should be defined in the way to guarantee the 
fulfillment (with some accuracy) of the relation  

 �(��∗��,⋅)≈ ���∗��,�(⋅)				in		Ω. (14) 

 Here, in (13) and (14), by default, we assume that the images ���∗,� and ���∗��,� are well defined onto 

the entire domain Ω . 
 
Remark 4.1  The main characteristic feature of the proposed initial-boundary value problem (IBVP) is 

the fact that the exponent �� depend not only on (�,�) but also on �(�,�). It is well-known that the 
variable character of exponent ��  causes a gap between the monotonicity and coercivity conditions. 
Because of this gap, equations of the type (11) can be termed equations with nonstandard growth 
conditions. So, in fact, we deal with the Cauchy-Neumann IBVP for parabolic equation of �� =
�(�,�,�)-Laplacian type with variable exponent of nonlinearity. It was recently shown that the model (11)–
(13) naturally appears as the Euler-Lagrange equation in the problem of restoration of cloud contaminated 
satellite optical images [27]. In particular, this model has been proposed in [2] in order to avoid the 
blurring of edges and other localization problems presented by linear diffusion models in images 
processing.  

 
We note that the distributed control � in the right hand side of (11) describes the fictitious sources or 

sinks of the intensity � that may have a tendency to change at most pixels even for co-registered structural 
prototypes ���∗,�(⋅) and ��∗��,�(⋅). 

 
Definition 4.1  We say that, for given � ∈ ��(�) and ���∗,� ∈ ��(�), a function � is a weak solution 

to the problem (11)–(13) if, for a.a. � ∈ [��∗,��∗��],  

 � ∈ ��(��∗,��∗��;�
�(Ω)),�(�,⋅)∈ ��,�(Ω)		,∫ 	

��∗��

��∗
∫ 	
�

|∇�|��(�,�)	���� < +∞ , (15) 

 and the integral identity  

 ∫ 	
��∗��

��∗
∫ 	
�

�−�
��

��
+ (|∇�|��∇�,∇�)�	���� 

 = ∫ 	
��∗��

��∗
∫ 	
�

��	���� + ∫ 	
�

���∗,��|�� ��∗
	�� (16) 

 holds true for any function � ∈ Φ, where Φ = �� ∈ ��([��∗,��∗��]× Ω)	∶�|����∗��
= 0�.  

 
Utilizing the perturbation technique and the classical fixed point theorem of Schauder, it has been 

recently proven the following existence result. 
 



Theorem 4.1 [28]  Let � ∈ ��(�) and ���∗,� ∈ ��(�) be given distributions. Then initial-boundary 

value problem (11)–(13) admits at least one weak solution � = �(�,�) with the following higher 
inegrability properties  

 � ∈ ��(��∗,��∗��;�
�(Ω)),� ∈ ��,�((��∗,��∗��)× Ω),� ∈ ���(��∗,��∗��;�

��(Ω)), (17) 
 where the exponent � is given by the rule  

 � =
��

���∥��∥
��(� � � )
� |�|�∥�∥

��(��)
� ��∥���∗,�∥��(� )

� �
. 

  
In order to satisfy the condition (14) and define an appropriate source term � = �(�,�), we utilize some 

issues coming from the well-known method of Horn and Schunck that has been developed in order to 
compute optical flow velocity from spatiotemporal derivatives of image intensity. Following this approach, 
we define the function �∗ as a solution of the problem  

 ∫ 	
�

�
��

��
�
��
− div	(|∇�|��∇�)|�� − ��

�
	�� + ��

� ∫ 	
�

|∇�|�	�� → inf
�∈��(�)

, (18) 

 where �̂ = (��∗ + ��∗��)/2, �� > 0 is tuning parameter (for numerical simulations we take �� = 0.5), 
and the spatiotemporal derivatives are computed by the rules  

 
��

��
�
��
=

�

��∗�����∗
����∗��,� − ���∗,��, 

 div	(|∇�|��∇�)|�� =
�

�
[div	�|∇���∗,�|

����∗,�∇���∗,�� + div	�|∇���∗��,�|
����∗��,�∇���∗��,��]. 

 
It is clear that a minimum point �∗ ∈ ��(Ω) to unconstrained minimization problem (18) is unique and 

satisfies necessarily the Euler-Lagrange equation  

 ��
�Δ�∗ + �

��

��
�
��
− div	(|∇�|��∇�)|�� − �∗� = 0 (19) 

with the Nuemann boundary condition ���
∗ = 0 on �Ω . 

Setting � = �∗ in (11), we can define a function �∗ = �∗(�,�) as the weak solution of the IBVP (11)–
(13). Numerical experiments show that, following this way, we obtain a function �∗ with properties (15) 
and (17) such that �∗(��∗,�)= ���∗,�(�)  and �∗(��∗��,�)≈ ���∗��,�(�)  in Ω , where the peak 

signal-to-noise ratio (PSNR) between images �∗(��∗��,�) and ���∗��,�(�) is sufficiently large, ���� >

46. 
This observation leads us to the following conclusion: the ’intermediate’ image ����

:�� → ℝ � can be 

defined as follow:  
 ����

(�)= �∗(��,�),				∀	� ∈ ��. (20) 

5.  Variational Statements of the Data Fusion Problems (A1)–(A3) 

Coming back to the principle cases (A1)–(A3), that have been described in Section 3, we can suppose 
that a structural prototype ����

 from the given day �� is well defined. As it was pointed out in Section 3, 

this prototype coincides either with one of the images ����� in cases (A1) and (A3), or it should be defined 
using the solutions of the problem (11)–(13), (19) for each � = 1,...,�  in the case (A2)-problem (see the 
rule (20)). 

Let � ∈ {1,...,� } be a fixed index value (the number of spectral channel). Let ��:Ω → ℝ  be the 

texture index of the �-th band for the structural prototype ����
:�� → ℝ � . Let � ∈ (0,1) be a given 

threshold. Let �� = [��,� be a vector field such that |��(�)|ℝ� ≤ 1 and  

 ���(�),∇����,�(�)�ℝ� = |∇����,�(�)|ℝ�				a.e.inΩ. 

 We define the linear operator ��,�:ℝ
� → ℝ � as follows  

 ��,�∇�:= ∇� − �����,∇��
ℝ���,				∀	� ∈ ��,�(Ω). (21) 



 It is clear that ��,�∇� reduces to (1 − ��)∇� in regions where the gradient ∇� is colinear to �� , and 

to ∇�, where ∇� is orthogonal to �� . It is important to note, that this operator does not enforce gradients in 

the direction �� . 

Let �(��,��) be the Dirac’s delta at the point (��,��). Then Π��
= ∑ 	(��,��)∈��

�(��,��) stands for the 

Dirac’s comb defined by the sample grid ��. 
We are now in a position to give a precise meaning of the solutions to the Problems (A1)–(A3). We say 

that:   
    1.  A multi-band image ��∗

����:�� → ℝ �, where ��∗ = ��, is a solution of the Restoration Problem, 
if it is given by the rule  

 ��∗,�
����(�)= �

��∗,�(�) ,∀	� ∈ ��\��∗,

��
�(�)+ �� ,∀	� ∈ �� ∩ ��∗,

	∀	� ∈ ��, 

 ��∗,�
����(�)= ����,�(�),				∀	� ∈ ��,∀	� ∈ ��. 

 Here, �� is the weight coefficient and we define it as follows  

 �� = �∫ 	
�\��∗

|��∗,�(�)|	���− �∫ 	
�\��∗

|���,�(�)|	��� 

and ��
� is a solutions of the following constrained minimization problem  

 ℱ�(�)= ∫ 	
�

�

��(�)
|��,�∇�(�)|��(�)	�� +

�

�
∫ 	
�

�∇�(�)− ∇����,�(�)�
�
	�� 

 				+
�

�
∫ 	
�

Π��
(�� ∗� − ���,��)

�	�� → inf
�∈��

, (22) 

Ξ� = �� ∈ ��,��(⋅)(Ω)	∶		0 ≤ �(�)≤ ��		a.e.in		Ω�  stands for the set of feasible solutions, and 

��,��(⋅)(Ω) denotes the Sobolev space with variable exponent. As for the constants �� , their choice 

depends on the format of signed integer numbers in which the corresponding intensities ��,�(�) are 

represented. In particular, it can be �� = 2� − 1, �� = 2�� − 1, and so on. 

 
    2.  A multi-band image ���

���:�� → ℝ �, with ��∗ < �� < ��∗��, is a solution of the Interpolation 

Problem, if it is given by the rule  

 ���,�
��� (�)= �

��
�(�)+ �� ,∀	� ∈ ��,

����,�(�) ,∀	� ∈ ��,
		∀	� ∈ ��, 

 where  
 �� = �∫ 	

�
|����,�(�)|	��� − �∫ 	

�
|���,�(�)|	��� (23) 

 and ��
� is a solutions of the constrained minimization problem (22). 

 
    3.  A multi-band image ���

���:�� → ℝ � , with �� < �� < �, is a solution of the Extrapolation 

Problem, if it is given by the rule  

 ���,�
��� (�)= �

��
�(�)+ �� ,∀	� ∈ ��,

����,�(�) ,∀	� ∈ ��,
		∀	� ∈ ��, 

where ��
� is a solutions of the constrained minimization problem (22), and �� is defined as in (23).  

 
Let us briefly discuss the relevance of the proposed minimization problem. The first term in (22) can be 

considered as the regularization in the Sobolev-Orlicz space ��,��(⋅)(Ω) [29]. As for the second term in 
(22), it reflects the fact that the topographic map of the retrieved image should be as close as possible to the 
topographic map of predicted structural prototype ����

:�� → ℝ � . We interpret this closedness in its 

simplified form, namely, in the sense of ��-norm of the difference of the corresponding gradients [6, 30, 
31]. The last term in (22) represents an ��-distortion between a �-th spectral channel in the MODIS image 
and the corresponding channel of the retrieved image ��

� which is resampled to the grid of low resolution 



��. 

6.  Existence Result and Optimality Conditions for Constrained Minimization 
Problem (��) 

Following in many aspects the recent studies [28], we give the following existence result.  
 
Theorem 6.1  Let ����

:�� → ℝ �  be a given structural prototype for unknown image ���
 from 

Sentinel-2. Then for any given � ∈ ��, � > 0, � > 0, and � ∈ (0,1), the minimization problem (22) admits 
a unique solution ��

� ∈ ��.  

 
In order to derive some optimality conditions to the problem (22) and characterize its solution 

��
� ∈ ��,��(⋅)(Ω), we note that the cost functional ℱ�:Ξ� → ℝ  is Gâteaux differentiable. Since Ξ�  is a 

nonempty convex subset of ��,��(⋅)(Ω)∩ ��(Ω) and the objective functional ℱ�:Ξ� → ℝ  is strictly 

convex, the well known classical approach leads us to the following conclusion. 
 
Theorem 6.2  Let ����

:�� → ℝ �  be a given structural prototype for unknown image ���
 from 

Sentinel-2. Let �:�� → ℝ � be a given MODIS image. Let �� stands for the texture index of the �-th band 

for the predicted structural prototype ����
. Then the unique minimizer ��

� ∈ ��  to the minimization 

problem ���
�∈��

ℱ�(�) is characterized by the following variational inequality  

 ∫ 	
�

|��,�∇��
�(�)|��(�)�����,�∇��

�(�),��,�∇�(�)− ��,�∇��
�(�)�	�� 

 +� ∫ 	
�

�∇��
�(�)− ∇����,�(�),∇�(�)�	�� 

 +� ∫ 	
�

Π���
∗ ∗��� ∗��

�� − ���,����	�� ≥ 0,				∀	� ∈ Ξ�. 

  
Remark 6.1 In practical implementation, it is reasonable to define an optimal solution ��

� ∈ ��  using a 

’gradient descent’ strategy. Indeed, following the standard procedure and starting from the initial image 
����,�, we can pass to the following initial value problem for the quasi-linear parabolic equations with 

Nuemann boundary conditions  

 
���

�

��
− div	�|��,�∇��

�(�)|��(�)����,�∇��
�(�)� 

 = −��div��|��,�∇��
�(�)|��(�)����,�∇��

�(�),���� 

 				+�div�∇��
�(�)− ∇����,�(�)� − �Π���

∗ ∗��� ∗��
�� − ���,���, 

 �|��,�∇��
�(�)|��(�)����,�∇��

�,�� = 0				on		�Ω, 

 0 ≤ ��
�(�)≤ ��		a.a.in		Ω, 

 ��
�(0,�)= ����,�(�),				∀	� ∈ Ω. (24) 

 In principle, instead of the initial condition (24) we may consider other image that can be generated 
from ����,� and the bicubic interpolation of the MODIS band ���,� onto the entire domain Ω  following 

one of well-known simple data fusion methods [32].  

7.  Numerical Experiments 

In order to illustrate the proposed approach for the restoration of satellite multi-spectral images we have 
used two Sentinel-2 images (610 × 699 in pixels) over the Dnipro Airport area, Ukraine (see Fig. 1) that 
were captured at different time instances. What is the most important, it was a growing season when the 



global biophysical processes are rapid enough. This region represents a typical agricultural area with 
medium sides fields of various shapes. 

 

   
Figure  1: Given images from Sentinel-2. Date of generation: (left) — 2019/06/15, (right) — 
2019/07/17 

   

 
Figure  2: MODIS image with the date of generation 2019/07/01 

   

   
Figure  3:  (left) Result of MODIS interpolation to the Sentinel resolution, (right) Its re-normalization 
to the spectral characteristics of Sentinel-2 

 
  We also have a cloud-free MODIS image (67 × 77 in pixels) from 2019/07/01 (see Fig. 2). We solve 

the interpolation problem (A2). As a result, a new image from the date 2019/07/01 at the Sentinel-level of 



resolution is depicted in Fig. 3. These numerical simulations have been supplied by a detailed analysis of 
the obtained results using the special validation metrics. 
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