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Abstract  
Speaker verification is an essential task in speech processing.  Implementation this task based 

on convolutional neural networks. Several key metrics were evaluated, including equal error 

rate and precision top-K, and were compared the performance of different architectures and 

loss functions. The experiments are conducted using a Ukrainian dataset and include 

comparisons of models trained on multilingual data, as well as models trained on clean and 

augmented data. The results are presented in tables and figures, showing that even for low-

resource languages, the models can achieve good performance metrics. The authors also 

discuss the implications of their findings and the potential for transferring skills to other 

languages. The paper provides valuable insights for researchers working in the field of speaker 

verification.  
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1. Introduction 

In today's digital age, speech recognition and speaker verification techniques have become 

increasingly important for a variety of applications. These technologies have revolutionized the way we 

interact with machines, allowing for seamless communication and automation in various fields, from 

personal assistants to security systems. Speech recognition refers to the ability of machines to identify 

and transcribe human speech, while speaker verification focuses on verifying the identity of the person 

speaking. Both technologies have numerous practical applications, including improving accessibility 

for individuals with disabilities, enhancing the user experience of devices and applications, and 

enhancing security measures in industries such as banking and finance. Thus, understanding the 

importance and potential of speech recognition and speaker verification is crucial for those interested 

in the future of technology and its impact on society. 

Despite the vast potential of speech recognition and speaker verification technologies, there are still 

significant challenges in implementing them for low-resource languages [1] like Ukrainian. Many of 

these languages lack the necessary data and resources to develop robust and accurate models. However, 

recent advancements in machine learning, particularly in deep learning techniques, have made it 

possible to overcome some of these limitations and enable the development of speech and speaker 

recognition models for these languages. 

The potential impact of these technologies on low-resource languages is immense. Speech 

recognition can greatly improve accessibility for individuals who speak these languages, allowing them 

to communicate more effectively with technology and access a wider range of digital content. Speaker 

verification can also enhance security measures in industries like finance and government, enabling 

secure authentication of individuals who speak these languages. 

Furthermore, the development of speech recognition and speaker verification models for low-

resource languages can have broader socio-economic benefits. For example, it can improve the 
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efficiency and accuracy of customer service for businesses operating in these regions, increasing 

customer satisfaction and loyalty. It can also facilitate the development of new tools and applications 

that are specifically tailored to the needs of these populations, enhancing their digital literacy and 

participation in the global digital economy. 

The aim of the work is to develop an approach to perform highly accurate (comparable with 

performance of SOTA models for resource-rich language) speaker verification for low-resource 

languages like Ukrainian. 

So the goal of this work is to: 

• Develop a robust speaker verification system 

• Study the effectiveness of transferring skills of speaker verification from other languages 

• Compare the effectiveness of different approaches and algorithms  

2. Related works 

Speaker verification is the process of verifying the identity of a person based on their voice. This 

process is often used in security systems, access control and other applications where identification is 

required. However, speaker verification systems are typically designed for high resource languages, 

leaving low resource languages with limited options. In this literature review we will explore the state-

of-the-art research on speaker verification for low resource languages. 

In recent years, researchers have attempted to address the issue of speaker verification for low 

resource languages by developing systems that are capable of identifying individuals who speak less 

common languages. These efforts have been driven by the need to ensure that all people, regardless of 

their language, can have access to secure and reliable identification systems. 

One approach that has been used to overcome the lack of resources for low resource languages is 

data augmentation. This technique involves creating new data from existing data by applying various 

transformations such as pitch shifting, noise addition and speed variation. In a study by Chen et al. 

(2021) [2], the authors proposed a data augmentation method for speaker verification in low resource 

languages using a combination of noise addition, reverberation and pitch shifting. The authors reported 

that their proposed method outperformed the baseline approach, which only used the original data. 

Another approach that has been explored is transfer learning, which involves training a model on a 

resource-rich language and then fine-tuning it for a low resource language. In a study by Sigtia et al. 

(2018) [3], the authors proposed a transfer learning method for speech recognition in Swahili, a low 

resource language spoken in East Africa. The authors trained a deep neural network (DNN) on a large 

dataset of English speech and then fine-tuned the model on a smaller dataset of Swahili speech. The 

authors reported that their proposed method outperformed the baseline approach, which only used the 

small dataset of Swahili speech. 

In addition to data augmentation and transfer learning, other approaches have also been explored, 

such as unsupervised speaker adaptation and speaker diarization. Unsupervised speaker adaptation 

involves adapting a pre-trained model to a new speaker without requiring any labeled data. In a study 

by Gautam et al. (2019) [4], the authors proposed an unsupervised speaker adaptation method for 

speaker verification in Hindi, a low resource language spoken in India. The authors reported that their 

proposed method outperformed the baseline approach, which required labeled data. 

In conclusion, the research on speaker verification for low resource languages is an emerging area 

of study, and several approaches have been proposed to address this issue. Data augmentation, transfer 

learning, unsupervised speaker adaptation and speaker diarization are some of the approaches that have 

been explored. While these approaches have shown promise, there is still much work to be done to 

develop accurate and reliable speaker verification systems for low resource languages. 

 

3. Methods and materials 

Consider the data that will be used in further experiments, some other materials and methods 

proposed to solve the problem under consideration. 



3.1. Dataset Description 

As a base dataset we have chosen Common Voice dataset [5]. It`s a crowd source dataset that 

contains a lot of audio recordings of different speakers even for low resource languages like Ukrainian. 

Large number of speakers is essential to build robust speaker verification system. The Ukrainian dataset 

contains 73 hours of recording of 120 speakers in train split and 14 hours of 639 speakers in test split. 

In some experiments we additionally use datasets in other languages (language 1 and language 2) in 

training process. The data about duration and number of unique speakers is presented in Table 1.  

 

Table 1 
Number recoded hours and speakers per language 

Language Ukrainian Language 1 Language 2 

Duration, hours 87 215 1217 
Number speakers 759 2731 6965 

 
In order not to overfit on speakers with a few number of recordings we dropped speakers with less 

than 40 recordings from training dataset. On figure 1 shown the histograms of number of recordings 

per speaker. 

  
a)        b) 

Figure 1: Distribution of number of recordings per speaker a) language 1 b) language 2 
 

Also in some experiments we limit the number of recordings by speaker for Ukrainian recordings in 

order to make dataset no balanced. 

As a step of feature extraction we split each audio into 3 second chunks and extracted spectrogram 

from them. After it we normalized them and from this step we could process them like images. 

During the training process in some experiments, we applied Mell spectrogram augmentations such 

as time and frequency masking. This was done in order to prevent overfitting and make model robust 

to real-world data. 

In order to evaluate model on real-world data we additionally collected recordings of interviews, 

department meeting in Google Meet, etc. 

3.2. Methods 

We have chosen as key metrics: 

1) Equal error rate – it is one of the most widely used metric to evaluate speaker verification 

models. 

2) Precision Top-K – spends for fraction of examples in Top-K most similar data points with the 

original one. In our experiments we used K equal to (3, 5, 10). 

3) Mean and standard deviation of positive similarity – mean and standard deviation of cosine 

similarity between examples of the same class. 



4) Mean and standard deviation of negative similarity – mean and standard deviation of cosine 

similarity between examples that do not belong to the same class as an original data point. 

4. Experiment 

We have chosen as a beck bone a ConvNext [6] because it`s one of the best performing convolutional 

neural network architectures in computer vision tasks, such as an ImageNet. We used randomly 

initialized weights, because Mel spectrograms are completely different, from datasets network was 

trained on so it`s unlikely that pre training will give an advantage in the task of speaker verification. 

Because of limitations in computation resources we have only tried to use small and tiny version of it. 

 

 
Figure 2: ConcNext architecture [6] 

 

In order to improve the model we were experimenting with the DOLG architecture [7]  which 

showed SOTA results in face recognition and image retrieval. It originally used ResNet as a backbone, 

so we have to adapt it to our task and ConvNext as a backbone. 

 

 
Figure 3: DOLG architecture [7] 

 

As loss functions TripletLoss[8], ArcFace [9] and Sub center ArcFace [10]. Both of this metrics 

show the SOTA results in other metric learning tasks. The implementation of this losses was taken from 

python library Pytorch Metric learning [11]. The hyper parameter scale for both losses was chosen 

according to formula proposed in paper AdaCos[12]. As a sampling strategy for Triplet Loss we have 

chosen sampling semi hard negatives. 

All networks were trained with the same initial learning rate and Cosine scheduler. 

We performed several experiments. 

1) Compared performance of ConvNext small and ConvNext tiny after training for 12 epochs. 

Only Ukrainian dataset was used as a training data. ArcFace was used as a loss function. This 

experiment will help to determine the best architecture to continue experiments. 

2) Compared performance of ConvNext with size selected from previous experiment training for 

12 epochs. Only Ukrainian dataset was used as a training data. In this experiment we compared 



different loss function: Triplet loss, ArcFace loss, Sub center Arcface loss, ArcFace loss + Triplet 

loss, Sub center Arcface loss + Triplet loss. 

3) Compare the performance of the best architecture from previous experiments training on large 

datasets, which includes other languages. Validation is performed only on Ukrainian dataset. This 

experiment will help to determine possibility of transferring skills from other languages in the task 

of speaker verification. Since the size of dataset is increased network is trained only for 4 epochs.  

4) Compare the performance of the best model from previous experiment with the same model as 

a backbone in DOLG architecture. This experiment will help to identify the possibility of applying 

DOLG architecture in the task of speaker verification. 

5) Compare the performance of the model from previous experiments trained on clean data and 

augmented data. This experiment is aimed to determine how the usage of augmented data effects the 

training proses. 

After all of this experiments we perfumed speaker diarization on our dataset using the best model from 

previous experiments. To achieve it we split audio into parts of 3 seconds, transformed it to Mell 

spectrogram and got embedding by our model. Then they were clustered using KMeans algorithm. 

Training will be carried out in the Kaggle environment using P100 GPU. 

 

5. Results 

The results of the experiments are shown in Figures 4 – Figure 6 and in Tables 2. All the graphs are 

shown in the appendix A. 

5.1. ML Results 

Figure 4 shows the change of loss and precision in the top 3 during the second experiment. Both 

metrics improve over the training process, bate after 6 epoch reaching the plateau.   

 

 
   a)           b) 

 

Figure 4: Change of metric during the second experiment a) loss b) precision at top 3 
 

Figure 5 shows the change of loss and precision in the top 3 during the third experiment. Models 

trained on multilingual datasets achieved significantly better results, even after less training time.   

 



 
   a)           b) 

 

Figure 5: Change of metric during the third experiment a) loss b) precision at top 3 
 

 

Figure 6 shows the change of loss and precision in the top 3 during the fourth and fifth experiments. 

DOLG architecture shows better initial performance and better performance in general. Also data 

augmentations slightly improved the model`s performance and robustness to new data.   

 

 

 
a) b) 

 

Figure 6: Change of metric during the fourth and fifth experiments a) loss b) precision at top 3 
 

Table 2 shows all final performance metrics for all experiments.  

 

Table 2 
Performance metrics of all experiments 

Name loss mean_neg mean_pos std_neg std_pos eer_mean 

Speaker verification DOLG + 
augmentations 4,779827 0,006445 0,512067 0,06615 0,191957 0,05745 

convnext_tiny sub center 
multilingual balanced 2,266273 0,143715 0,621793 0,136854 0,188838 0,120028 

convnext_tiny sub center 
multilingual 1,056141 0,098119 0,543737 0,112699 0,226304 0,130431 

Speaker verification DOLG 0,819421 0,012565 0,559775 0,122927 0,183735 0,068941 
convnext_tiny triplet 20,94974 0,064958 0,634587 0,18114 0,201048 0,116371 

convnext_tiny sub center + 
triplet 12,71726 0,049018 0,682394 0,205036 0,192486 0,105805 



convnext_tiny sub center 3,396142 0,05256 0,529312 0,126081 0,233282 0,115455 
Speaker verification 

convnext_small 1,904608 0,183038 0,611239 0,102753 0,195134 0,127895 
Speaker verification 

convnext_tiny arcface 0,952009 0,134064 0,55084 0,086243 0,219322 0,131675 

 

5.2. Testing Results 

In order to test model performance on the real-world data we performed speaker diarization of 

Google Meet call between 2 speakers. First of all, we split the audio into windows of 3 seconds each. 

Next we transformed the raw audio into mel spectrograms and extracted embeddings using our model. 

These embeddings were clustered using KMeans algorithm. The results of clusterization are shown on 

figure 7. 

 

  
   a)           b) 

 

Figure 7: TSNE progections of voice embeddings and clusterization result 
 

As we can see from the plots, there are 2 large clusters which represents speakers. The boundary 

region between clusters represents fragments, where both speakers are active.  

As a next step each embedding was matched with the corresponding timestamp. The result was 

formatted according to srt format and is shown on figure 8. 

 

 
Figure 8: Speaker diarization example 

 



In conclusion, model trained for speaker verification showed good results in the task of speaker 

diarization on real-world data.  

 

6. Discussions 

As a result of the first experiment it was shown, that even for low-resource languages models can 

achieve quite good performance metrics. Also results of both convnext tiny and convnext small are 

quite similar. For both networks we can see that after the 6th epoch the precision at n starts to decrees 

or stay approximately the same. That may indicate the overfitting of the networks. Also after the 6th 

epoch negative std reached plateau and don’t decrease as fast as before. On the other hand, std of 

positive examples is constantly increasing over training. So it was decided to use convnext tiny, because 

it has less parameters, so following experiments can be performed faster. The question of performance 

of large networks (like base, or large) is still open, so probably they can perform better in the task of 

speaker verification. 

In the second experiment we compared different loss functions. In the end all networks performed 

approximately the same. But losses that contain triplet loss performed a bit worse than ArcFace and sub 

center ArcFace. These losses reached plateau faster and convergence slower. In general, all the metrics 

follow the same trend like in previous one. We have chosen sub center arcface because it shows more 

robustness to a new data, while keeping good performance metrics. 

In the third experiment we compared the model trained only on one language with trained on 

multilingual dataset. Multilingual models show a superior metrics on test Ukrainian set and achieve 

better results in general. But the model that was trained on fully multilingual dataset reached plateau 

faster than one trained one balanced (where number of recordings per speaker is approximately the 

same as in a target language), which may indicate overfitting to languages with more speakers. So 

transferring of skills for low resource languages, like Ukrainian, from other languages is quite effective, 

but in order to achieve better results, dataset should be balanced. 

In the fourth experiment we compared ConvNext with DOLG pipeline with ConvNext as a backbone 

on balanced multilingual dataset. DOLG shows superior results, and pretty much achieved SOTA result 

in the task of speaker verification. In addition, it was trained only for 6 epochs, so it may possible 

achieve better results with further training. 

In the fifth experiment we applied augmentations to spectrogram and repeated previous experiment. 

As a result, the model achieved even better level of performance and robustness. 

Next we tried to analyze with the help of the model from last experiment real-word data – Google 

Meet call of 2 people. So it performed quite well. However, sometimes if there was no sound, the model 

can treat it as a separate speaker. So in conclusion we recommend to use ConvNext tiny as a backbone 

in DOLG pipeline to achieve SOTA results. 

7. Conclusions 

The paper presents the study on speaker verification using deep learning models. The study used 

four key metrics to evaluate the performance of the models: equal error rate, precision top-K, mean and 

standard deviation of positive similarity, mean and standard deviation of negative similarity. The study 

compared the performance of different network architectures, such as ConvNext and DOLG, and 

different loss functions, such as TripletLoss, ArcFace, and Sub center ArcFace. The study also 

compared the performance of models trained on single language datasets and those trained on 

multilingual datasets. 

The experiments showed that even for low-resource languages, the models can achieve quite good 

performance metrics. The results indicated that the ConvNext tiny model performed better than the 

ConvNext small model. The study also found that Sub center ArcFace loss showed more robustness to 

new data while maintaining good performance metrics. Furthermore, the study showed that transferring 

skills from other languages to low-resource languages was quite effective in achieving better 

performance metrics. Finally, the study performed speaker diarization on the dataset using the best 

model from previous experiments, achieving good results. 



In conclusion, the study demonstrated the effectiveness of deep learning models in the task of 

speaker verification, even for low-resource languages. The study provides insights into the best-

performing network architectures and loss functions for this task and shows the potential for transferring 

skills from other languages to low-resource languages. The findings of this study could have significant 

implications for developing better speaker verification systems. 

The perspective of future studding includes comparison of large amount of convolutional neural 

network architectures (especially with large number of parameters), different loss functions and their 

combinations. Also it`s quite important to study transfer learning from other languages and perform 

multilingual speaker verification. 

8. References 

[1] E. Erdem et al., ‘Neural Natural Language Generation: A Survey on Multilinguality, 

Multimodality, Controllability and Learning’. 06-Apr-2022. 

[2] R. Zevallos, ‘Text-To-Speech Data Augmentation for Low Resource Speech Recognition’. arXiv, 

2022. 

[3] H. Gelas, L. Besacier, and F. Pellegrino, ‘Developments of Swahili resources for an automatic 

speech recognition system’, in Workshop on Spoken Language Technologies for Under-resourced 

Languages, 2012. 

[4] N. Brummer, A. Mccree, S. Shum, D. Garcia-Romero, and C. Vaquero, ‘Unsupervised Domain 

Adaptation for I-Vector Speaker Recognition’, in Proc. The Speaker and Language Recognition 

Workshop (Odyssey 2014), 2014, pp. 260–264. 

[5] R. Ardila et al., ‘Common Voice: A Massively-Multilingual Speech Corpus’, in Proceedings of 

the 12th Conference on Language Resources and Evaluation (LREC 2020), 2020, pp. 4211–4215. 

[6] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, ‘A ConvNet for the 2020s’, in 

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 

11966–11976. 

[7] M. Yang et al., ‘DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and 

Global Features’, 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 

11752–11761, 2021. 

[8] E. Hoffer and N. Ailon, ‘Deep Metric Learning Using Triplet Network’, in Similarity-Based 

Pattern Recognition, 2015, pp. 84–92. 

[9] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘ArcFace: Additive Angular Margin Loss for Deep Face 

Recognition’, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR), 2019, pp. 4685–4694. 

[10] J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou, ‘Sub-center ArcFace: Boosting Face 

Recognition by Large-Scale Noisy Web Faces’, in Computer Vision -- ECCV 2020, 2020, pp. 

741–757. 

[11] K. Musgrave, S. Belongie, and S.-N. Lim, ‘PyTorch Metric Learning’. arXiv, 2020. 

[12] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li, ‘AdaCos: Adaptively Scaling Cosine Logits for 

Effectively Learning Deep Face Representations’, 2019 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), pp. 10815–10824, 2019. 

[13] A. L. Yerokhin, A. S. Babii, A. S. Nechyporenko, O. P. Turuta, A Lars-Based Method of the 

Construction of a Fuzzy Regression Model for the Selection of Significant Features, Cybernetics 

and Systems Analysis, Vol. 52, Issue 4, (2016), 641–646. https://doi.org/10.1007/s10559-016-

9867-5 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/s10559-016-9867-5
https://doi.org/10.1007/s10559-016-9867-5


Appendix A 

 
   a)           b) 

Figure A.1: Change of metric during the first experiment a) mean positive similarity b) loss 
 

 
   a)           b) 

Figure A.2: Change of metric during the first experiment a) precision at top 3 b) precision at top 3 
 

 

 
   a)           b) 

 

Figure A.3: Change of metric during the first experiment a) negative standard deviation b) mean 
negative similarity 

 



 
   a)           b) 

 

Figure A.4: Change of metric during the first experiment a) precision at top 10  b) positive standard 
deviation 
 

 
   a)           b) 

 

Figure A.5: Change of metric during the second experiment a) equal error rate b) mean positive 
similarity 

 

 
   a)           b) 

 

Figure A.6: Change of metric during the second experiment a) precision at top 5  b) negative standard 
deviation 

 



 
   a)           b) 

 

Figure A.7: Change of metric during the second experiment a) mean negative similarity b) precision at 
top 10 

 

 
Figure A.8: Change of positive standard deviation during the second experiment 
 

 

 
   a)           b) 

 

Figure A.9: Change of metric during the third experiment a) equal error rate b) mean positive similarity 
 



 
   a)           b) 

 

Figure A.10: Change of metric during the third experiment a) precision at top 5  b) negative standard 
deviation 

 

 
   a)           b) 

 

Figure A.11: Change of metric during the third experiment a) mean negative similarity b) precision at 
top 10 

 

 
Figure A.12: Change of positive standard deviation during the third experiment 

 



 
   a)           b) 

 

Figure A.13: Change of metric during the fourth and fifth experiments a) equal error rate b) mean 
positive similarity 
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Figure A.14: Change of metric during the fourth and fifth experiments a) precision at top 5  b) negative 
standard deviation 

 

 
   a)           b) 

 

Figure A.15: Change of metric during the fourth and fifth experiments a) mean negative similarity b) 
precision at top 10 

 



 
Figure A.16: Change of positive standard deviation during the fourth and fifth experiments 

 


