CEUR-WS.org/Vol-3408/short-s2-03.pdf

Can ChatGPT Support End-User Development of
Robot Programs?

Giorgio Bimbatti®, Daniela Fogli*' and Luigi Gargioni®*'

'Department of Information Engineering, University of Brescia, Via Branze 38, Brescia, Italy

Abstract

In this paper, we investigate the use of OpenAI ChatGPT to improve the natural language understanding
of an End-User Development environment, called CAPIRCI, supporting users neither expert in computer
programming nor expert in robotics to create programs for a collaborative robot. The integration of
ChatGPT in CAPIRCI is studied to be transparent for the user, who will be allowed to check and correct
that program description generated by ChatGPT, by interacting with an intuitive block-based interface,
according to a Human-Centered Artificial Intelligence design approach.

Keywords

Collaborative robot, Robot programming, Al-based system, Human-centered Al

1. Introduction

Collaborative robots (also known as cobots) are recently being deployed to automate tasks in
several domains — from office work to manufacturing, from logistics to healthcare. They can
operate in the same space of human workers and collaborate with them to achieve shared goals.
Collaborative robots contribute to create the conditions for increasing production flexibility,
being more affordable, compact and easy-to-use than traditional industrial robots [1]. However,
notwithstanding their potential, barriers exist in their wide adoption due to the complexity
of programming their tasks. Producers of cobots are thus implementing physical interaction
techniques with robots and programming tools aimed at supporting easy definition of simple
robot tasks by users without any experience of robotics and software programming. However,
these techniques and tools are still far away from the ideal solution, and several research scholars
are studying new approaches to solving this problem, even though these approaches often
require that users have some technical background (e.g., [2, 3]), or are evaluated with computer
science/engineering students (e.g., [4]), rather than with end users having limited computational
fluency [5].

In [6, 7], we proposed CAPIRCI (Chat And Program Industrial Robots through Convenient
Interaction), an End-User Development (EUD) [8, 9, 10] environment providing an intuitive and

IS-EUD 2023: 9th International Symposium on End-User Development, 6-8 June 2023, Cagliari, Italy

*Corresponding author.

"These authors contributed equally.

& g.bimbatti@studenti.unibs.it (G. Bimbatti); daniela.fogli@unibs.it (D. Fogli); luigi.gargioni@unibs.it (L. Gargioni)
&} https://daniela-fogli.unibs.it (D. Fogli)

® 0000-0003-1479-2240 (D. Fogli)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:g.bimbatti@studenti.unibs.it
mailto:daniela.fogli@unibs.it
mailto:luigi.gargioni@unibs.it
https://daniela-fogli.unibs.it
https://orcid.org/0000-0003-1479-2240
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

natural way to program pick-and-place tasks for a collaborative robot. Specifically, CAPIRCI
encompasses a hybrid interaction style that merges two paradigms: natural language interaction
with a chat-based interface, and visual interaction with a block-based graphic interface.

The final aim of CAPIRCI is not simply demonstrating that the proposed interaction style
for EUD of robot tasks is feasible and easier than block-based programming alone, as shown
in the experiment carried out in [7], but also promoting a way to foster gradual learning of
robot programming on behalf of human workers, thus facilitating a smooth acquisition of
computational fluency.

However, one of the main weaknesses of the CAPIRCI prototype presented in [7] was the
computational power of the chat-based interface. Natural language processing (NLP) was
implemented exploiting Python libraries, like the Standard CoreNLP and the NLTK (Natural
Language ToolKit) package, and was based on the recognition of a finite set of noun domain-
dependent phrases. In this paper, we explore the use of OpenAl ChatGPT! to improve the
natural language understanding of our chat-based interface and show how ChatGPT could be
of help in the case of robot programming.

2. CAPIRCI: a EUD environment for robot programming

The EUD feature of CAPIRCI is composed of 1) a chat environment where the system and the
user interact through a simple guided natural language dialogue that leads to the definition
of tasks for a collaborative robot, and 2) a visual environment where tasks can be composed
through direct manipulation of specific types of blocks.

A robot task may include the specification of the objects to pick up, the actions that must be
performed on the objects, and the locations where the objects must be put. Pick-and-place tasks
may include repetitions if more than one object must be manipulated or the action must be
carried out on the object several times. Conditional termination of tasks may depend on specific
events. For instance, considering the scenario of flask manipulation in an analytical laboratory,
Figure 1 shows a user-system dialogue in the chat environment aimed at defining a task for
picking up 10 flasks and put them in a container after that each flask has been rotated twice,
and where no specific event determines the end of task execution. The interaction with the chat
always ends with a question to the user asking whether they would like to see the program
in the visual environment. If the user answers affirmatively, they will have the possibility to
verify the program created by means of the natural language dialogue in the visual environment,
and possibly modify or extend it through drag-and-drop of predefined controls and functional
blocks. Figure 2 shows the main parts of the visual environment. We denoted with (A) the
part of the graphic interface where the user can find the libraries of components useful for task
programming (Tasks — since tasks previously developed can be saved and re-used —, Controls,
Events, Actions, Objects, and Locations). The library Controls is currently selected in the figure,
and the blocks corresponding to the available control statements are shown at the right of the
libraries; the user can select and drag-and-drop one of them in the working area denoted with
(B) in the figure. In this working area, there is the visualization of the task just created with
the chat. The two programming modes may accommodate different users’ attitudes: users

'https://openai.com/blog/chatgpt/

Create task: flasks in the container Create task: flasks in the container

® Hello! Tell me what to do

a:19PM

o 320PM

319 PM

; M—
® Where should | put the flasks? ® Is there an event for which | have to end the execution?

20 PM
3:20PM

=0 0@
" 320 PM
320 PM
i i ?
® I have to put the flasks in the container. ® Do you want to see tha program in graphical form?

a20PM

320PM

Type your message... L] fType your message... L]

Figure 1: The chat-based interface: the user would like to define a task to put 10 flasks in the container
after having rotate each one twice.

with advanced computational fluency may prefer interacting only with the visual environment,
which supports the creation of complex tasks including nested loops and conditional statements;
users with more limited computational fluency, instead, may create a first draft of the robot
program with the chat, which appears more intuitive and easy to use, and then use the visual
environment to refine and complete the draft program.

Each task created either with the chat environment or the visual environment is saved as an
XML file in the Tasks library for future modifications or re-use in other robot tasks. The XML
description of a task represents a formal specification of a robot program. To run the program
on a real robot (e.g., the COBOTTA robot? by DENSO WAVE Ltd.), a parser analyzes the XML
document to identify the elements (objects to be manipulated, actions to be executed, locations
where to put the objects, loops to be performed, etc.) and generates the corresponding Python
code. This code is interpreted at run time, along with a few proprietary libraries, to perform the
task on the real robot.

3. Can ChatGPT Support End-User Development?

Analysing the features of CAPIRCI, one might argue that its chat environment could provide
more powerful features, in order to allow all users to create complex tasks in a natural way,
without resorting to the graphic interface. However, the visual representation of the program
permits to check its correctness and completeness in an immediate way. Alternatively, the chat
could generate directly the executable code corresponding to the robot task, but most of end
users not expert in computer programming would be unable to understand and check it.

The idea of providing a natural language interface for robot programming has been inves-
tigated in literature for several years (e.g., [11, 12, 13]) and is currently gaining momentum
thanks to the recent introduction of OpenAIl ChatGPT, a pre-trained generative text model,

*https://www.densorobotics-europe.com/product-overview/products/colla borative-robots/cobotta

Create Robot task: flasks in the container ¢ OB

Tasks Repeat for g
Controls mm Repeat for (CJPtimes
e
Repeat forig times

Rotate *
Actions L]
Objects
Locations

Some of these blocks allow you to write tasks that perform
actions repeatedly, others to perform different actions
depending on the occurrence of an event. Remember, drag
only other Controls or Actions into Control blocks.

Figure 2: The graphic interface: the set of libraries is on the left (A); the task defined by the user to put
10 flasks in the container is on the right (B).

which provides impressive interaction capabilities. For instance, in [14], the authors investigate
ChatGPT as a potential versatile tool for robot programming, by first creating a high-level
function library and then allowing ChatGPT to parse user requests and convert them to a
logical sequence of function calls. However, this work assigns to the user a significant and
critical role underlining that “the user stays on the loop to evaluate code output by ChatGPT,
either through direct analysis or through simulation, and provides feedback to ChatGPT on the
quality and safety of the output code” [14]. According to this approach, after a few iterations of
user-ChatGPT dialogue, the final code can be deployed on the robot. The assumption here is
that the user is able to understand the generated code, to assess its correctness, and to suggest
possible modifications, if needed.

In our approach, we would like to keep a natural language dialogue to generate a first draft
of the program for the robot and provide the user with the possibility of visualizing this draft
program in a graphic interface, so to modify it, if necessary, in an intuitive manner, that is, with
drag-and-drop and direct operation on the graphic visualization of the draft program. This is
even more important when created programs must be executed on a robot, as the safety of the
human and the environment, as well as of the robot itself, is at stake.

To this end, our idea is integrating ChatGPT features in CAPIRCI, by substituting the NLP
Python libraries exploited in the first prototype and using ChatGPT to generate the XML
intermediate description of robot tasks.

4. Integrating CAPIRCI with ChatGPT

The basic idea for integrating the powerful NLP capabilities of ChatGPT in CAPIRCI was
creating a new software layer able to acquire the user’s request in natural language defining a
specific task for a collaborative robot and formulate the correct question to ChatGPT to obtain
the XML file describing the robot task. The XML file must be syntactically structured according
to the rules specified in CAPIRCI for its correct interpretation both by the parser functionalities
that generate the graphic representation of tasks and by those ones able to generate the Python
code for run time execution.

Preliminary tests have been performed with ChatGPT to assess its determinism in generating
an answer to a request: when the input is partially specified or incomplete, thus not adequately
limiting the solution space, ChatGPT generates several different answers, often completely
wrong or not suitable to the request. Therefore, our layer should have provided ChatGPT not
only with the user’s sentence and the generic request of generating an XML file describing a
robot task, but also with a set of additional specifications to make the system converge toward
a unique and correct solution.

After these preliminary tests, we derived that our layer must provide rigorous instructions to
ChatGPT about the structure of the XML files. To this end, we decided to provide the system
with a dataset of XML files created in previous experiments with CAPIRCI as training examples
for learning the correct structure of an XML file describing a robot task, that is, learning the
XML Schema Definition (XSD). Also in this case, since the dataset did not cover a complete
suite of cases, the output files generated by ChatGPT resulted to be very different one another
(non determinism) and sometimes inconsistent.

A third step was creating a request to ChatGPT that combines i) the XSD obtained in the
previous step that was able to validate the highest percentage of XML documents, with ii) a
set of constraints (still expressed in natural language) that better clarify the roles of tags and
attributes to be used for generating the XML files describing the robot tasks. A convergent
behavior and correct XML documents were obtained in this case, allowing us to delineate a
new architecture of CAPIRCI, which integrates a new NLP layer with an adapter able to invoke
ChatGPT APIs for user’s request interpretation (see Figure 3).

Figure 4 shows an example of request by the adapter to ChatGPT to interpret the user’s
sentence “Pick up ten flasks, rotate each flask twice, and put them in the container” (correspond-
ing to the dialogue with our previous chat shown in Figure 1). The adapter functionality is
fundamental to limit the creativity and non determinism of ChatGPT.

With this approach the natural language interaction may become even more natural than
that offered by the original chat-based interface of CAPIRCI. In fact, users can express their
requests with unique and articulated sentences without being involved in a rigid exchange of
speech turns for gathering all information necessary to generate a complete task description.

5. Discussion and Conclusion

In this paper, we have explored how to exploit the NLP capabilities of OpenAl ChatGPT to
generate robot programs. Differently from existing proposals (e.g., [14]), our aim was not to

Creating a program @

User Interface NLP Layer Parsing Layer
with the chat 1S Chat f@ Adapter
system

¢ Userinput

* XSD

* Constraints
v

ChatGPT API L
« | E/ a
g - - ulka &

User @ Revised

XML file XML file

@ Visual representation v @

@ . of XML file
S T Graphic interface Parsing functions
editing a program e s >
U dificati
with the graphic ser modifications
system

Figure 3: The new architecture of CAPIRCI integrating ChatGPT: the numbers indicate the workflow
when program creation starts with using the chat.

generate the final code for the collaborative robot starting from the user’s request, but rather
to obtain an intermediate representation of the program that could be processed in our EUD
environment CAPIRCI to provide a user, neither expert in programming nor in robotics, with
the possibility of verifying the correctness of the generated program.

In this way, we allow the user to keep on expressing their requests for robot programming
using an intuitive interaction through the formulation of sentences in natural language based
on the concepts of the domain. On the other hand, we provide the user with the block-based
representation of the robot program corresponding to their request, as was originally in CAPIRCI
(6, 7], in order to assess its correctness and completeness, and tune it as needed, by simply
manipulating the visual blocks.

In synthesis, the idea is to use the Artificial Intelligence features of ChatGPT as services
for advanced natural language understanding, leaving the control on the final robot program
description to the human, in a way that the human can find simple and intuitive. Indeed, the
target users of CAPIRCI are not software programmers, but workers that, at some time during
the usage of a collaborative robot, may need to program a new robot task to accomplish a
specific work. In this regard, CAPIRCI can become a EUD environment with a high degree
of EUDability [15] also for workers with a low level of computational fluency. In addition,
computational fluency may be nurtured by the system helping users to gradually acquire the
concepts of abstraction, decomposition, algorithm design, generalization, and evaluation.

The approach presented in this paper is very preliminary and has several limitations. The
most severe one is that only the generation of XML descriptions of small and simple tasks for a
restricted domain has been tested. Thus, further experimentation and tuning of the system are
needed. Moreover, another type of system extension (still a EUD activity) was implemented

<xs

:schema smlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="program">

<xs:complexType names="recursiveRepeatType">

XSD CONSTRAINTS

Create "pick" nodes for synonyms of the word "pick"“;
"place" nodes for synonyms of the word "place“; for
all other verbs that are not '"repeat" create an
"action" node containing the verb as value used.
(s :complexType> Avoid consecutive nesting of identical nodes.
:choice maxOccurs="1"> * The number of times each action must be performed
<xs:element ref="pick"> corresponds to the "times" attribute.

<xs:attribute name="card" types="xs:integer"/> ¢ The value contained in the relative action elements
attribute name="adj" type="xs:string"/> are the objects or names of the sentence.
ement> * Use always the singular form for objects or names,
element refs"place”> omit articles or pronoun.
sttribute name="card" type="xs:integer"/> *+ The "adj" attribute corresponds to any adjective
attribute name="adj" types"xs:string”/> relating to objects or names. It must always be
reported, even if empty.
Return the XML without any comments.

quence>

element name="repeat" maxOccurs="unbounded">

s :element>
ement ref="action" />

ement ref="repeat” type="recursiveRepeatType" />

oice>
<xs:attribute name="times" type="xs:string"/>
<program>
</xs:complexType> g .
<repeat times="10">
</xs:element>)) .
<pick card="1" adj="">flask</pick>
<repeat times="2">
XML caction>rotatec/action>
</repeat>
<place card="1" adj="">container</place>
</repeat>

</program>

Figure 4: XSD and constraints provided to ChatGPT for the running example and XML document
generated as output.

in the original version of CAPIRCI [7]: it supported users to enrich the natural language and
graphic blocks by defining new objects, actions, and locations to be used in the description of
robot tasks; this was performed through the interaction with the graphical interface of CAPIRCI
and image processing algorithms. We plan to integrate in the future the use of ChatGPT also
for this EUD activity.

References

(1]

V. Villani, F. Pini, F. Leali, C. Secchi, Survey on human-robot collaboration in industrial

settings: Safety, intuitive interfaces and applications, Mechatronics 55 (2018) 248—-266.
doichttps://doi.org/10.1016/j.mechatronics.2018.02.009.

[2] J.Huang, M. Cakmak, Code3: A system for end-to-end programming of mobile manipulator

(4]

[5]

robots for novices and experts, in: Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, HRI *17, Association for Computing Machinery,
New York, NY, USA, 2017, p- 453—-462. doi:10.1145/2909824.3020215.

C. Schou, R. S. Andersen, D. Chrysostomou, S. Bagh, O. Madsen, Skill-based instruc-
tion of collaborative robots in industrial settings, Robotics and Computer-Integrated
Manufacturing 53 (2018) 72-80. doi:https://doi.org/10.1016/j.rcim.2018.03.008.
C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, G. D. Hager, Evaluating methods for end-user
creation of robot task plans, in: 2018 IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 6086—6092. doi:10.1109/TIR0S.2018.8594127.

G. Fischer, Computational Literacy and Fluency: Being Independent of High-Tech Scribes,

http://dx.doi.org/https://doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1145/2909824.3020215
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2018.03.008
http://dx.doi.org/10.1109/IROS.2018.8594127

[11]

[12]

[13]

Hildesheim, 2005, pp. 217-230. URL: https://13d.cs.colorado.edu/wordpress/wp-content/
uploads/2016/04/hightechscribes-05.pdf.

S. Beschi, D. Fogli, F. Tampalini, Capirci: A multi-modal system for collaborative robot
programming, in: A. Malizia, S. Valtolina, A. Morch, A. Serrano, A. Stratton (Eds.), End-User
Development, Springer International Publishing, Cham, 2019, pp. 51-66.

D. Fogli, L. Gargioni, G. Guida, F. Tampalini, A hybrid approach to user-oriented pro-
gramming of collaborative robots, Robotics and Computer-Integrated Manufacturing 73
(2022) 102234. URL: https://www.sciencedirect.com/science/article/pii/S073658452100106X.
doi:https://doi.org/10.1016/j.rcim.2021.102234.

H. Lieberman, F. Paterno, V. Wulf, End User Development (Human-Computer Interaction
Series), Springer-Verlag, Berlin, Heidelberg, 2006.

F. Paterno, V. Wulf (Eds.), New Perspectives in End-User Development, Springer, Cham,
2017. d0i:10.1007/978-3-319-60291-2.

B. R. Barricelli, F. Cassano, D. Fogli, A. Piccinno, End-user development, end-user program-
ming and end-user software engineering: A systematic mapping study, Journal of Systems
and Software 149 (2019) 101-137. doi:https://doi.org/10.1016/j.jss.2018.11.041.
N. K. Lincoln, S. M. Veres, Natural language programming of complex robotic bdi agents,
Journal of Intelligent Robot Systems 71 (2013) 211-23. doi:https://doi.org/10.1007/
$10846-012-9779-1.

M. Stenmark, P. Nugues, Natural language programming of industrial robots, in: IEEE ISR
2013, 2013, pp. 1-5. doi:10.1109/ISR.2013.6695630.

D. K. Misra, J. Sung, K. Lee, A. Saxena, Tell me dave: Context-sensitive grounding of
natural language to manipulation instructions, The International Journal of Robotics
Research 35 (2016) 281-300. d0i:10.1177/0278364915602060.

S. Vemprala, R. Bonatti, A. Bucker, A. Kapoor, ChatGPT for Robotics: Design Principles
and Model Abilities, Technical Report, Microsoft, 2023. URL: https://www.microsoft.com/
en-us/research/uploads/prod/2023/02/ChatGPT_Robotics.pdf.

B. R. Barricelli, D. Fogli, A. Locoro, Eudability: A new construct at the intersection of
end-user development and computational thinking, Journal of Systems and Software 195
(2023) 111516. d0i:10.1016/J.jss.2022.111516.

https://l3d.cs.colorado.edu/wordpress/wp-content/uploads/2016/04/hightechscribes-05.pdf
https://l3d.cs.colorado.edu/wordpress/wp-content/uploads/2016/04/hightechscribes-05.pdf
https://www.sciencedirect.com/science/article/pii/S073658452100106X
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2021.102234
http://dx.doi.org/10.1007/978-3-319-60291-2
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/https://doi.org/10.1007/s10846-012-9779-1
http://dx.doi.org/https://doi.org/10.1007/s10846-012-9779-1
http://dx.doi.org/10.1109/ISR.2013.6695630
http://dx.doi.org/10.1177/0278364915602060
https://www.microsoft.com/en-us/research/uploads/prod/2023/02/ChatGPT_Robotics.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2023/02/ChatGPT_Robotics.pdf
http://dx.doi.org/10.1016/j.jss.2022.111516

	1 Introduction
	2 CAPIRCI: a EUD environment for robot programming
	3 Can ChatGPT Support End-User Development?
	4 Integrating CAPIRCI with ChatGPT
	5 Discussion and Conclusion

