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Abstract  
In this paper, we propose a novel approach for building a conversational agent for creating 

trigger-action rules and controlling smart objects inside smart environments, such as a smart 

home. Our approach integrates ChatGPT, a state-of-the-art pre-trained language model for 

open-domain dialogue generation, with Rasa, a popular open-source framework for developing 

task-oriented chatbots. We leverage ChatGPT's abilities to perform Natural Language 

Processing tasks through prompting and few-shot learning, and Rasa Open Source's features 

to handle intents, entities, forms, and execute actions. We design Rasa custom actions that 

invoke ChatGPT's API to process complex customization rules, manage conversational 

breakdowns and answer questions about the smart environment. 
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1. Introduction 

Recent advances in Natural Language Processing (NLP) have greatly improved conversational 

capabilities and language-related downstream tasks. Large Language Models (LLMs), such as GPT-3 

and ChatGPT, have been instrumental in achieving those improvements. These models have enabled 

text generation, translation across various languages, text style rewriting, question answering, and more.

With the use of prompt engineering techniques, they can perform zero-shot and few-shot tasks 1

from a small set of examples, without the need for training or fine-tuning a new model [2, 6]. 

Starting from previous work [4] in which we present a Dialogflow chatbot for creating customisation 

rules, we have worked on a new version based on Rasa in order to overcome the previous limitations 

(errors in interpreting complex rules, limited capacity to manage breakdowns), improve its capabilities 

and move to an open-source solution. Meanwhile, the expansion of LLMs and their skills in various 

types of tasks led us to consider a solution based on the combination of Rasa and ChatGPT. Large 

language models demonstrated advanced capabilities of understanding and generating natural language 

as well as maintaining context during the entire conversation, making it very close to a human and 

consequently more natural and less frustrating. However, applying these models to real-world problems 
requires further research since they exhibit probabilistic and not deterministic behaviour so even a small 

change in the input may lead to the generation of an unexpected or inaccurate output. A solution only 

based on ChatGPT – or more in general on LLMs – could raise well-known problems, such as 
“hallucinations” and bias, even for newer models such as GPT-4 (albeit a marked improvement over its 

predecessors) [8]. On the other hand, frameworks such as Rasa or Dialogflow are well-proven tools to 

build task-oriented chatbots and virtual assistants using machine learning to classify the user input into 

 
IS-EUD 2023: 9th International Symposium on End-User Development, 6-8 June 2023, Cagliari, Italy 

EMAIL: simone.gallo@isti.cnr.it (S. Gallo) 

ORCID: 0000-0002-5162-0475 (S. Gallo) 

 
©️  2023 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 
1 In zero-shot the model predicts the answer given only a natural language description of the task. In one-shot or few-shot, in addition to the 

task description, the model sees a single or multiple examples of the task. 



an intent, extracting the relative entities. Then, using pre-defined rules or conversation patterns (e.g., 

Rasa stories) the system chooses the next action to be taken (e.g., execute code, making API calls), and 

generate or use predetermined answers for the user request. We propose a hybrid solution that can be 

the trade-off between exploiting the considerable capabilities of LLMs but at the same time mitigating 

their risks by integrating them with reliable tools for greater accuracy and control. 

2. Related Work 

Despite the most common commercial tools such as Amazon Alexa and Google Assistant do not 

support the creation of automation through natural language, various research solutions consider the 

conversational approach. For instance, Barricelli et al. [1] developed an Alexa skill that employs a 

multimodal approach (voice and touch) to guide users in selecting and refining triggers and actions for 

creating automation rules. Corno et al. [3] propose a chatbot that, based on the user's personalization 

intention, gathers user preferences during the conversation and ultimately suggests pre-existing IFTTT 

applets that closely align with the user's request. Lastly, Jarvis [7] is a Slack chatbot that enables the 

execution of instant or delayed commands on home devices in the form of trigger-action rules. Jarvis 

can compose rules with a maximum of one trigger and one action; thus, it is not possible, for example, 

to specify rules with actions that require a specific delay and, simultaneously, a certain condition to be 

verified in order to be triggered (e.g., "turn on the living room light at 7:00 pm if it is dark"). 

3. System Components Overview 

This work proposes a tool for the creation of customization rules in trigger-action format by non-

expert users for personalizing smart environment behaviour. Using natural language, the tool makes it 

possible to define events and/or conditions to be verified for the activation of the corresponding actions 

(e.g., "remind me to bring my umbrella when I leave home if it rains during the day"). Moreover, the 

proposed design can also be used to execute multiple instant actions in a single user command (e.g., 

"turn on relaxing light in the living room and play some music"). 

The Rasa component is used for the recognition of the user's intentions, the extraction of the relevant 

entities involved, and for managing the dialogue flow. ChatGPT components are employed for splitting 

complex rules (comprising multiple triggers and actions) into simple commands, managing breakdowns 

during rule creation, and providing answers and explanations consistent with the context of the smart 

environment in which the user operates (e.g., "what is a trigger?", "what are the available actions?", 

"what is the difference between an event and a condition?"). Moreover, ChatGPT can also be applied 

for answering explanation requests on why a certain action occurred at a certain time (e.g., "why did 

the heating system turn on?").  

The tasks mentioned above can be realized by using prompting and one-shot or few-shot learning, 

without the need to collect and use datasets for training task-specific models. Furthermore, changes in 

the context (e.g., the addition of a trigger or an action in the intelligent environment) should be easily 

handled by modifying the prompt of the individual task.  

The system architecture is shown in Fig. 1 and describes the workflow from a user automation 

request to the completed rule. When the chatbot receives an automation description, the message is sent 

to ChatGPT Splitter, returning the variables “tg” and “ac” that indicates the identified “triggers” and 

“actions” involved. The simpler commands obtained are then identified by the Rasa Intent Classifier, 

eventually starting the “slot-filling” phase (managed by the Rasa Dialogue Manager). A ChatGPT 

Classifier is used to manage possible breakdowns during the creation of the rule.  Finally, a feedback 

message is given to the user when the rule is complete. 



 
Figure 1: System architecture. 

3.1. Rasa  

Rasa is a framework for creating chatbots that makes use of machine learning techniques to handle 

intent recognition, entity extraction and conversational flow management. Rasa provides for the use of 

“custom actions”, which allow Python functions to be executed when the user expresses certain 

intentions or when certain conditions occur in the conversation. 

The basic idea is to use custom actions to fetch the ChatGPT API when specific intents are 

recognised (an in-depth description is given in the section 3), performing different NLP tasks (section 

2.2). 

The structure of intents and entities in Rasa should reflect the structure of the smart environment 

context model. One intent should be defined for each individual trigger or action in the context, each of 

which will have a set of entities to recognise the parameters required to correctly use the trigger or 

action into a rule (e.g., the desired state of an appliance, the reference room). Moreover, one intent that 

identifies if the input is a trigger-action rule (without the need to identify the single components) is 

needed in order to identify when sending the rule to ChatGPT Splitter for further analysis. 

For example, assuming an environment with two triggers (temperature sensor, and motion sensor) 

and two actions (light status and sending notifications), the Rasa Intent Classifier supports an intent for 

the recognition of inputs related to temperature control, one intent for the inputs related to the presence 

of motion in a room, one intent to handle inputs for turning lights on and off and one intent for 

classifying input about receiving notifications. The entity recognition will make it possible to extract 

the relevant parameters from the inputs received, such as the number representing the temperature, the 

state to be set for the lights (e.g., on/off), the room in which to control the temperature or the lights, and 

so on.  

This structure is required since the Rasa model will manage complex rules “part by part”, using the 

chunks extracted by ChatGPT Splitter representing the single triggers and actions involved. This design 

requires less effort to add, remove or modify any trigger or action of the context since every intent (thus, 

every trigger and action in the context) is independent from the others. 

 

 



3.2. Prompting ChatGPT 

The system designed uses ChatGPT to complete different tasks by using predefined prompt 

templates that includes the instruction to be followed and, in some case, a set of examples (composed 

by question-answer pairs) to show ChatGPT how to achieve the final goal (few-shot learning) [2]. 

In particular, the following are the tasks that can be executed using ChatGPT. Each of these requires 

a different prompt to work properly: 

• Splitting complex rules into simple commands: when the user describes how the smart home 

should act, the sentence produced is usually composed almost by a trigger and an action. This 

component should split those sentences into single commands (e.g., “I want to be notified if someone 

enter home while I’m outside” → “I want to be notified”, “if someone enter home”, “while I’m 

outside”) to be sent to the Rasa Intent Classifier; 

• Managing breakdowns during rule creation: when the user describes a rule, it is possible 

that one or more trigger and action are not recognized by the Rasa Intent Classifier, generating a so 
called “conversational breakdown”. In this case, the breakdown can be due to two causes: the 

trigger/action is not recognised because of a lack of understanding of the intent classifier, or the 

trigger/action is not present in the context, thus is not executable by the system nor recognisable by 

the classifier. When a breakdown occurs, the input is sent to ChatGPT Classifier along with a 

description of the current context, asking to rephrase and classify the input if it falls in a trigger or 

action possible command (covering the lack of understanding of the Rasa Intent Classifier), or to 

classify the input as “unavailable” and to generate an explanation message for the user (covers the 

case of the missing trigger or action in context). Using this technique, the breakdown message will 

not be the classic 'Sorry, I didn't understand' but will provide precise information on why the request 

failed; 

• Question-answering: used to fulfil information requests about the context, about the triggers 

and the actions, or provide explanation about the rules created. The system relies on a knowledge 

base that stores information as text embeddings. When a user submits a request, the system converts 

the query into an embedding and applies cosine similarity [5] to identify and extract the relevant 

embeddings from the knowledge base. These embeddings are then converted back into plain text 

and fed to ChatGPT to generate a summary message for the user. 

The mentioned tasks could be performed also using specific trained models for each task, but this 

would require a large amount of training data, moreover the adaptation to different context would 

require training different models and different training data for the same task.  

4. Example Scenario 

The system provides for the creation of customisation rules using written natural language both in 

English and Italian and it is designed to understand and manage complex input that describes rules 

composed by multiple triggers and actions, describing how the smart environment should behave. 

During the creation of the rule the user can ask requests for explanation or information about the 

environment, the triggers and the actions present in the context. In general, all user inputs are first 

classified using the Rasa Intent Classifier and, depending on the resulting intent, the corresponding 

actions are executed (which may involve a default static response or the execution of Python code for 

ChatGPT API calls). 

In an example interaction scenario the user sends a single input for describing the desired smart 

home behaviour, thus putting together all the triggers and actions that should compose the rule (e.g., 

“Turn off the lights and lock the main door if it is after 11 p.m. and I’m in bed”). 

If the Rasa Classifier associates the user message with a trigger-action rule intent, then the input is 

sent to the ChatGPT Splitter component that performs the required task and returns an array of strings 

representing the single triggers and actions present in the input (in the example, triggers = [“if it’s after 

11 p.m.”, “I’m in bed”]; actions = [“turn off the lights”, “lock the main door”]). 

Then, each element of the resulting array is sent individually to the Rasa Classifier to be mapped 

into a trigger or an action, to extract the entities already present and checking for required but missing 



entities to be asked to the user, starting the so called “slot-filling” phase (in the example, triggers = 

[time_schedule(“after”, “11pm”), bed_presence(“inside”)]; actions = [light_state(“off”, room 

required), not_classified(“lock the main door”)]. 

If one or multiple elements of the array cannot be classified as trigger or action, thus it causes a 

breakdown, and they are sent to the ChatGPT Breakdown Manager (in the example the action “lock the 

main door”). This component can return the rephrased input along with the possible intent of the trigger 

or action (without user intervention), otherwise it can generate and return an explanation about why that 

input cannot be classified as a valid trigger or action, and eventually the most similar trigger or action 

to replace it with, using the information and instruction given in the prompt (e.g., “I have no control 

over the lock, but I can activate the alarm instead”). In the latter case, the user can choose between 

deleting the rule, continue the rule without the unrecognized element or replace the unrecognized 

element. If the user chooses to replace the element, the new input follows again the steps above until 

the user is satisfied with the rule. 

At this point, the system starts the slot-filling process asking the user for the missing – and 

mandatory – parameters, needed to correctly build the rule. In the example, the system will ask for the 

room in which the lights are to be switched off. 
After collecting all the necessary parameters, the chatbot sends a message with a summary of the 

rule created and asks the user whether he/she wants to save the rule or delete it. 

Finally, the rule is saved and associated with a name chosen by the user. 

5. Conclusions 

In this paper, we propose a novel approach for building a conversational agent that combines the 

capabilities of ChatGPT and Rasa Open Source for creating trigger-action rules and controlling smart 

objects inside smart environments. Our approach integrates ChatGPT's abilities in natural language 

processing through prompting and few-shot learning and Rasa Open Source's features in handling 

intents, entities, forms, and executing actions. We designed custom Rasa actions that invoke ChatGPT's 

API to process complex customization rules, manage conversational breakdowns, and answer questions 

about the smart environment. Thus, the proposed tool allows for the creation of complex trigger-action 

rules that involves several triggers and actions. Overall, this hybrid solution exploits the significant 

capabilities of LLMs while mitigating their risks by integrating them with trustworthy tools for greater 

security and control.  
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