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Abstract
We describe the transformation of binary neural networks (BNNs) for classification into deterministic
and decomposable Boolean circuits by means of knowledge compilation techniques. The resulting circuit
is used, as an open-box model, to compute Shap scores taking advantage of a recent efficient algorithm
for Shap on this class of circuits. We show experimental results that corroborate the huge improvement
in score computation time in comparison with the computation that directly uses the BNN as a black-box
model.
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1. Introduction

Explanations for the outcomes from classification models come in different forms, and can be
obtained through different approaches. A common one assigns attribution scores to the features
values associated to an input that goes through an ML-based model, to quantify their relevance
for the obtained outcome. We concentrate on local scores, i.e. associated to a particular input,
as opposed to global scores that indicates the overall relevance of a feature. In this work, we
also concentrate on explanations for binary classification models, whose features take binary
values, so as the classification label, say 0 or 1.

A popular local score is Shap [10], which is based on the Shapley value that has introduced
and used in coalition game theory and practice for a long time [15, 13]. Shap scores can be
computed with a black-box or an open-box model [14]. With the former, we do not know or use
its internal components, but only its input/output relation. This is the most common approach.
In the latter case, we can have access to its internal structure and components, and we can
use them for score computation. It is common to consider neural-network-based models as
black-box models, because their internal gates and structure may be difficult to understand or
process when it comes to explaining classification outputs. However, a decision-tree model, due
to its much simpler structure and use, is considered to be open-box for the same purpose.

Even for binary classification models, the complexity of Shap computation is provably hard,
actually #𝑃 -hard for several kinds of binary classification models, independently from whether
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the internal components of the model are used when computing Shap [3, 1, 2]. However, there
are classes of classifiers for which, using the model components and structure, the complexity
of Shap computation can be brought down to polynomial time [11, 2, 18].

A polynomial time algorithm for Shap computation with deterministic and decomposable
Boolean circuits (dDBCs) was presented in [2]. From this result, the tractability of Shap computa-
tion can be obtained for a variety of Boolean circuit-based classifiers than can be represented as
(or compiled into) them. In particular, this holds for Ordered Binary Decision Diagrams (OBDDs)
[5], decision trees, and other established classification models that can be compiled into OBDDs
[16, 6, 12]. Similar results can be obtained for Sentential Decision Diagrams (SDDs) [9], which
can be seen as dDBCs, and form a convenient knowledge compilation target language [7, 17].
In [18], through a different approach, tractability of Shap computation was obtained for a
collection of classifiers that intersect with that in [2].

In this work, we concentrate on explicitly developing this approach to the efficient com-
putation of Shap for binary neural networks (BNNs). For this, and inspired by [16], a BNN
is transformed into a dDBC using techniques from knowledge compilation [7], an area that
investigates the transformation of (usually) propositional theories into an equivalent one with
a canonical syntactic form that has some good computational properties, e.g. tractable model
counting. The compilation may incur in a relatively high computational cost [7, 8], but it may
still be worth the effort when a particular property will be checked often, as is the case of
explanations for the same BNN.

We also make experimental comparisons between this open-box and circuit-based Shap
computation and that based directly on the BNN treated as a black-box, i.e. using only its
input/output relation. We perform comparisons in terms of computation time and alignment of
Shap scores. We confirm that Shap computation via the dDBC vastly outperforms the direct
Shap computation on the BNN. It is also the case that the scores obtained are fully aligned, as
expected since the dDBC represents the BNN. A detailed account of our work can be found in
[4].

2. Background

Consider a fixed entity e = ⟨𝐹1(e), . . . , 𝐹𝑁 (e)⟩ subject to classification. It has values 𝐹𝑖(e) for
features ℱ = {𝐹1, . . . , 𝐹𝑁}. In [10, 11], the Shapley value is applied with {𝐹1(e), . . . , 𝐹𝑁 (e)}
as the set of players, and the game function 𝒢e(𝑠) := E(𝐿(e′) | e′𝑠 = e𝑠), giving rise to the
Shap score. Here, e𝑠 is the projection (or restriction) of e on (to) the subset 𝑠 of features, 𝐿 is
the label. The e′ inside the expected value is an entity whose values coincides with those of e
for the features in 𝑠. For 𝐹 ∈ ℱ , and entity e:

Shap(ℱ ,𝒢e, 𝐹 ) =
∑︁

𝑠⊆ℱ∖{𝐹}

|𝑠|!(|ℱ| − |𝑠| − 1)!

|ℱ|! ×

[ E(𝐿(e′) | e′𝑆∪{𝐹} = e𝑠∪{𝐹})− E(𝐿(e′) | e′𝑠 = e𝑠) ].

The expected value is defined on the basis of an underlying probability distribution on the
entity population. Shap quantifies the contribution of feature value 𝐹 (e) to the outcome label.



In order to compute Shap, we only need function 𝐿, and none of the internal components of
the classifier. Given that all possible subsets of features appear in its definition, Shap is bound
to be hard to compute. Actually, for some classifiers, its computation may become #𝑃 -hard
(c.f. [2] for some cases). However, in [2], it is shown that Shap can be computed in polynomial
time for every deterministic and decomposable Boolean circuit (dDBC) used as a classifier. The
circuit’s internal structure is used in the computation.

3. BNN Compilation

A BNN is first compiled into a propositional formula in Conjunctive Normal Form (CNF), which,
in its turn, is compiled into an SDD, which is finally compiled into a dDBC. We compute
Shap on the resulting circuit via the efficient algorithm in [2]. This compilation is performed
once, and is independent from any input to the classifier. The final circuit can be used to
compute Shap scores for different input entities. We show the compilation path by means of a
simple example.

In our BNNs we used, for each gate 𝑔, a step function as activation function, of the form:

𝜑𝑔(�̄�) = sp(�̄�𝑔 ∙ �̄�+ 𝑏𝑔) :=

{︂
1 if �̄�𝑔 ∙ �̄�+ 𝑏𝑔 ≥ 0,
−1 otherwise,

which is parameterized by a vector of binary weights �̄�𝑔 and a real-valued constant bias 𝑏𝑔 . For
technical, non-essential reasons, we used inputs and outputs, −1, 1, except for the output gate,
𝑜, that returns 0 or 1.

is used as one of the inputs to gates next to the right. In this
way, we eventually obtain a defining formula for the output
gate. The formula is converted into CNF. The participating
propositional variables are logically treated as true or false,
even if they take numerical values 1 or −1, resp.

Example 2. (example 1 cont.) Consider gate h1, with pa-
rameters w̄ = ⟨−1,−1, 1⟩ and b = 0.16, and input ī =
⟨x1, x2, x3⟩. An input xj is said to be conveniently instanti-
ated if it has the same sign as wj , and then, contributing to
having a larger number on the LHS of the comparison in (4).
E.g., this is the case of x1 = −1. In order to represent as a
propositional formula its output variable, also denoted with
h1, we first compute the number, d, of conveniently instanti-
ated inputs that are necessary and sufficient to make the LHS
of the comparison in (4) greater than or equal to 0. This is
the (only) case when h1 becomes true; otherwise, it is false.
This number can be computed in general by: (Narodytska
et al. 2018)

d =



(−b+

|̄i|∑

j=1

wj)/2



+# of negative weights in w̄. (5)

In the case of h1, with 2 negative weights: d =
⌈(−0.16 + (−1− 1 + 1))/2⌉ + 2 = 2. With this, we can
impose conditions on two input variables with the right sign
at a time, considering all possible convenient pairs. For h1
we obtain its condition to be true:

h1 ←→ (−x1 ∧ −x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (6)

This is DNF formula, directly obtained from considering all
possible convenient pairs (which is already better that trying
all cases of three variables at a time). However, there is a
more expedite, iterative method that still uses the number
of convenient inputs. In order to convey the bigger picture,
we postpone the detailed description of this method (that is
also used in our experiments) until Appendix A. Using this
algorithm, we obtain an equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1). (7)

Similarly, we obtain defining formulas for gates h2 and
h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (8)

Replacing the definitions of h1, h2, h3 into (8), we finally
obtain:

o←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∨
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)])) ∨
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∧
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]). (9)

The final part of step (a) in path (3), requires transform-
ing this formula into CNF. In this example, it can be taken

Figure 3: An SDD (a) and a vtree (b).

straightforwardly into CNF.4 The resulting CNF formula
is, in its turn, simplified into a shorter and simpler new CNF
formula by means of the Confer SAT solver (Manthey 2017).
For this example, the simplified CNF formula is as follows:

o ←→ (−x1∨−x2)∧ (−x1∨−x3)∧ (−x2∨−x3). (10)

Having a CNF formula will be convenient for the next
conversion steps along path (3). 2

Following with step (b) along path (3), the resulting CNF
formula is transformed into a Sentential Decision Diagram
(SDD) (Darwiche 2011b; Van den Broeck and Darwiche
2015), which, as a particular kind of decision diagram (Bol-
lig and Buttkus 2019), is a directed acyclic graph. So as the
popular OBDDs (Bryant 1986), that SDDs generalize, they
can be used to represent general Boolean formulas, in partic-
ular, propositional formulas (but without necessarily being
per se propositional formulas).
Example 3. (example 2 cont.) Figure 3(a) shows an
SDD, S, to be used for illustration. (C.f. (Bova 2016;
Nakamura, Denzumi, and Nishino 2020) for precise defi-
nitions.) An SDD has different kinds of nodes. Those repre-
sented with encircled numbers are decision nodes (Van den
Broeck and Darwiche 2015), e.g. 1⃝ and 3⃝, that consider
alternatives for the inputs (in essence, disjunctions). There
are also nodes called elements. They are labeled with con-
structs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, includ-
ing ⊤ and ⊥, for 1 or 0, resp. E.g. [¬x2|⊤] is one of them.
The sub can also be a pointer, •, with an edge to a decision
node. [ℓ1|ℓ2] represents two conditions that have to be satis-
fied simultaneously (in essence, a conjunction). An element
without • is a terminal.
An SDD represents (or defines) a total Boolean function
FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→ {0, 1}. For example,
FS(0, 1, 1) is evaluated by following the graph downwards.
Since x1 = 0, we descent to the right; next via node 3⃝
underneath, with x2 = 1, we reach the instantiated leaf
node labeled with [1|0], a “conjunction”, with the second

4For our experiments, we programmed a simple algorithm that
does this job, while making sure the generated CNF does not grow
too much (c.f. Appendix A).

4

In CNF:

𝑜 ←→ (−𝑥1∨−𝑥2)∧(−𝑥1∨−𝑥3)∧(−𝑥2∨−𝑥3).

The BNN on the LHS above is transformed into the propositional formula on the RHS. After
that, it is transformed into a simplified CNF formula, which is shown right below. In its turn,
the CNF is transformed into the SDD on the RHS below. In general, this is the most expensive
step during the overall compilation time, but it has an upper bound that is exponential in the
tree-width of the formula [9].
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Finally, the SDD is easily transformed into a dDBC, the one shown on the RHS here. It can
be used as a binary classifier, with binary input features 𝑥1, 𝑥2, 𝑥3. The binary label is read off
from the top node. This circuit is deterministic in that, for every ∨-gate, at most one of its inputs
is 1 when the output is 1. It is decomposable in that, for every ∧-gate, the inputs do not share
features. This dDBC is also smooth, in that sub-circuits that feed a same ∨-gate share the same
features. It has a fan-in at most two, in that every ∧-gate and ∨-gate have at most two inputs.

4. Experiments

For our experiments, we consider real estate as an application domain, where house prices
depend on certain features, which we appropriately binarize.1 The problem consists in classifying
property blocks, represented as entity records of thirteen feature values, as high-value or low-
value. This is a binary classification problem for which a BNN is first learnt, and then used.

After the transformation of the BNN into circuit 𝒞, we had the possibility to compute Shap,
for a given input entity, in three different ways: (a) Directly on the BNN as a black-box model,
i.e. using only its input/output relation for multiple calls; (b) Similarly, using the circuit 𝒞 as a
black-box model; and (c) With the efficient algorithm in [2] for smooth dDBCs with fan-in 2,
treating circuit 𝒞 as an open-box.

We performed these three computations for sets of 20, 40, 60, 80, and 100 input entities, to
compare average times with increasing numbers of entities. In all cases, Shap was computed
with the uniform probability distribution over the joint feature domain of size 213. The results
shown right below report on the seconds taken to compute Shap on 20, 40, 60, 80 and 100
entities; using the BNN as a black-box (blue bar), the dDBC as a black-box (red bar), and the
dDBC as an open-box (orange bar). Note that the vertical axis employs a logarithmic scale.

In our experiment, the initial transformation of the BNN into CNF took 1.3 hrs, which was
the most expensive paper of the compilation. However, it is a one time computation, and our
rather naive transformation algorithm leaves considerable room for improvement.

1We use the California Housing Prices dataset available at https://www.kaggle.com/datasets/camnugent/california-
housing-prices.
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