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Abstract

Repairing inconsistent knowledge bases is a task that has been assessed, with great advances over several

decades, from within the knowledge representation and reasoning and the database theory communities.

As information becomes more complex and interconnected, new types of repositories, representation

languages and semantics are developed in order to be able to query and reason about it. Graph databases

provide an effective way to represent relationships among data, and allow processing and querying

these connections efficiently. In this work, we focus on the problem of computing preferred (subset

and superset) repairs for graph databases with data values, using a notion of consistency based on a set

of Reg-GXPath expressions as integrity constraints. Specifically, we study the problem of computing

preferred repairs based on two different preference criteria, one based on weights and the other based on

multisets, showing that in some cases it is possible to retain the same computational complexity as in

the case where no preference criterion is available for exploitation.
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1. Introduction

Graph databases are useful in many modern applications where the topology of the data is as

important as the data itself, such as social networks analysis [1], data provenance [2], and the

Semantic Web [3]. The structure of the database is commonly queried through navigational

languages such as regular path queries or RPQs [4] that can capture pair of nodes connected by

some specific kind of path. This query languages can be extended to add more expressiveness,

while usually adding extra complexity in the evaluation as well. For example, C2RPQs are a

natural extension of RPQs defined by adding to the language the capability of traversing edges

backwards and closing the expressions under conjunction (similar to relational CQs).

RPQs and its most common extensions (C2RPQs and NREs [5]) can only act upon the edges

of the graph, leaving behind any possible interaction with data values in the nodes. This led to

the design of query languages for data-graphs (i.e. graph databases where data lies both in the

paths and in the nodes themselves), such as REMs and Reg-GXPath [6].

As in the relational case, it is common to expect that the data preserves some semantic

structure related to the world it represents. These integrity constraints can be expressed in graph

databases through path constraints [7, 8].
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When a database does not satisfy its integrity constraints, a possible approach is to search

for a ‘similar’ database that does satisfy the constraints. In the literature, this new database is

called a repair [9], and in order to define it properly one has to precisely define the meaning of

‘similar’.

In the literature one can find different notions of repairs, among others, set-based repairs [10],

attribute-based repairs [11], and cardinality based repairs [12]. When considering set-based

repairs 𝐺′
of a graph database 𝐺 under a set of Reg-GXPath expressions 𝑅, two natural restric-

tions of the problem are when 𝐺′
is a sub-graph of 𝐺 and when 𝐺′

is a super-graph of 𝐺. These

kind of repairs are usually called subset and superset repairs respectively [10, 13]. Since repairs

may not be unique, it is possible to impose an ordering over the set of repairs and look for an

‘optimum’ repair over such ordering. There is a significant body of work on preferred repairs

for relational databases [14, 15] and other types of logic-based formalisms [16, 17]. However, to

the best of our knowledge, there is no such work focused on graph databases or data-graphs. In

this work, we study the problem of finding a preferred repair based on two preference criteria

that we propose.

This work is organized as follows. In Section 2 we introduce the necessary preliminaries

and notation for the syntax and semantics for our data-graph model as well as the definitions

of consistency and different types of repairs. In Section 3 we develop two different proposals

to assign preferences to repairs. The first one is based on the assignment of weights, and the

second one is based on lifting an ordering over edges and data to multiset orderings. For both

proposals we study the computational complexity of the problem of computing a preferred

repair. Conclusions and future work directions are discussed in Section 4.

2. Definitions
Fix a finite set of edge labels Σ𝑒 and a countable (either finite or infinite enumerable) set of data

values Σ𝑛 (sometimes called data labels), which we assume non-empty and with Σ𝑒 ∩ Σ𝑛 = ∅.

A data-graph 𝐺 is a tuple (𝑉,𝐿𝑒, 𝐷) where 𝑉 is a set of nodes, 𝐿𝑒 is a mapping from 𝑉 ×𝑉 to

𝒫(Σ𝑒) defining the edges of the graph, and 𝐷 is a mapping from 𝑉 to the set of data values Σ𝑛.

Reg-GXPath expressions are given by the following mutual recursion:

𝜙,𝜓 := c
= | c ̸= | ¬𝜙 | 𝜙 ∨ 𝜓 | 𝜙 ∧ 𝜓 | ⟨𝛼⟩ | ⟨𝛼 = 𝛽⟩ | ⟨𝛼 ̸= 𝛽⟩

𝛼, 𝛽 := 𝜖 | _ | a | a− | 𝛼 ∘ 𝛽 | 𝛼 ∪ 𝛽 | 𝛼 ∩ 𝛽 | 𝛼* | 𝛼 | [𝜙] | 𝛼𝑛,𝑚

where c iterates over Σ𝑛 and a iterates over Σ𝑒. Formulas like 𝜙 are called node expressions and

formulas like 𝛼 are called path expressions. The subset of Reg-GXPath called Core-GXPath is

obtained by allowing the Kleene star to be applied only to labels and their inverses (i.e. a
−

).

The semantics of these languages are defined in [6] in a similar fashion as the usual regular

languages for navigating graphs [4], also adding some extra capabilities such as the complement

of a path expression 𝛼 and data tests. The ⟨𝛼⟩ operator is the usual one for nested regular

expressions (or NREs) used in [5]. Given a data-graph 𝐺 = (𝑉,𝐿,𝐷), the semantics are:

J𝜖K𝐺 = {(𝑣, 𝑣) | 𝑣 ∈ 𝑉 } J_K𝐺 = {(𝑣, 𝑤) | 𝐿(𝑣, 𝑤) ̸= ∅}
JaK𝐺 = {(𝑣, 𝑤) | a ∈ 𝐿(𝑣, 𝑤)} Ja−K𝐺 = {(𝑤, 𝑣) | a ∈ 𝐿(𝑣, 𝑤)}



J𝛼*K𝐺 = the reflexive transitive closure of J𝛼K𝐺
J𝛼 ⋆ 𝛽K𝐺 = J𝛼K𝐺 ⋆ J𝛽K𝐺 for ⋆ ∈ {∘,∪,∩}
J𝛼K𝐺 = 𝑉 × 𝑉 ∖ J𝛼K𝐺 J[𝜙]K𝐺 = {(𝑣, 𝑣) | 𝑣 ∈ J𝜙K𝐺}
Jc=K𝐺 = {𝑣 ∈ 𝑉 | 𝐷(𝑣) = c} Jc ̸=K𝐺 = {𝑣 ∈ 𝑉 | 𝐷(𝑣) ̸= c}
J𝜙 ∧ 𝜓K𝐺 = J𝜙K𝐺 ∩ J𝜓K𝐺 J𝜙 ∨ 𝜓K𝐺 = J𝜙K𝐺 ∪ J𝜓K𝐺
J¬𝜙K𝐺 = 𝑉 ∖ J𝜙K𝐺 J⟨𝛼⟩K𝐺 = {𝑣 | ∃𝑤 ∈ 𝑉, (𝑣, 𝑤) ∈ J𝛼K𝐺}
J⟨𝛼 = 𝛽⟩K𝐺 = {𝑣 | ∃𝑢,𝑤, (𝑣, 𝑢) ∈ J𝛼K𝐺, (𝑣, 𝑤) ∈ J𝛽K𝐺, 𝐷(𝑢) = 𝐷(𝑤)}
J⟨𝛼 ̸= 𝛽⟩K𝐺 = {𝑣 | ∃𝑢,𝑤, (𝑣, 𝑢) ∈ J𝛼K𝐺, (𝑣, 𝑤) ∈ J𝛽K𝐺, 𝐷(𝑢) ̸= 𝐷(𝑤)}

We use 𝛼⇛ 𝛽 to denote the path expression 𝛽∪𝛼, and 𝜙⇒ 𝜓 to denote the node expression

𝜓 ∨ ¬𝜙. We also note a label a as ↓a in order to easily distinguish the ‘path’ fragment of the

expressions. For example, the expression a[c
=

]a will be noted as ↓a [c=] ↓a. Naturally, the

expression 𝛼 ∩ 𝛽 can be rewritten as 𝛼 ∪ 𝛽 while preserving the semantics. Something similar

happens with the operators ∧ and ∨ for the case of node expressions using the ¬ operator. We

define all these operators in this grammar since further on we will be interested in a fragment

of Reg-GXPath called Reg-GXPath
𝑝𝑜𝑠

, which has the same grammar except for the 𝛼 and ¬𝜙
productions. Thus, in Reg-GXPath

𝑝𝑜𝑠
we will not be able to ‘simulate’ the ∩ operator unless it

is present in the original Reg-GXPath grammar.

We will also denote by Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 the subset of Reg-GXPath

𝑝𝑜𝑠
that only contains node

expressions.

Consistency Given a specific database, we want node or path expressions to represent some

structural property we expect to find in our data. This kind of Core-GXPath or Reg-GXPath

expression works as an integrity constraint by defining semantic relations among our data.

Formally, we define the notion of consistency in the following way:

Definition 1 (Consistency). Let 𝐺 be a data-graph and 𝑅 = 𝑃 ∪𝑁 a set of restrictions, where

𝑃 consists of path expressions and 𝑁 of node expressions. We say that 𝐺 is consistent w.r.t. 𝑅,

denoted by 𝐺 |= 𝑅, if the following conditions hold: (a) for all 𝜙 ∈ 𝑁 , we have that J𝜙K = 𝑉𝐺,

(b) for all 𝛼 ∈ 𝑃 , we have that J𝛼K = 𝑉𝐺 × 𝑉𝐺. Otherwise, we say that 𝐺 is inconsistent w.r.t.

𝑅.

In the rest of the paper, we will simply say that 𝐺 is (in)consistent whenever the restriction

set 𝑅 is clear from the context.

Example 2. Consider the film database from Figure 1, where we have nodes representing

people from the film industry (such as actors or directors) and others representing movies or

documentaries.

If we want to make a cut from that graph that preserves only actors who have worked with

Philip Seymour Hoffman through a film by Paul Thomas Anderson, then we want the following

formula to be satisfied:

𝜙 = ⟨↓type [𝑎𝑐𝑡𝑜𝑟=]⟩ ⇒ ⟨↓acts_in ⟨↓directed_by [Anderson
=]⟩ ↓−

acts_in
[Hoffman

=]⟩.
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Figure 1: A film data-graph.

Notice that 𝜙 is not satisfied in the depicted data-graph, since Robbie did not work with

Hoffman in a film directed by Anderson, hence we do not have consistency with respect to {𝜙}.

Observe that the restriction also applies to Hoffman, thus it is required that he participates in at

least one film by Anderson in order to satisfy the constraint.

Repairs If a graph database 𝐺 is inconsistent with respect to a set of restrictions 𝑅 (i.e. there

is a path expression or node expression in 𝑅 that is not satisfied), we would like to compute a

new graph database 𝐺′
consistent with respect to 𝑅 that minimally differs from 𝐺. This new

database 𝐺′
is usually called a repair of 𝐺 with respect to 𝑅, following some formal definition

for the semantics of ‘minimal difference’.

Here we consider set repairs, in which the notion of minimal difference is based on sets of

nodes and edges. While we could provide a notion of distance between arbitrary data-graphs

via an adequate definition of symmetric difference, it has been the case that the complexity of

finding such repairs is quite high, so it is common to consider set repairs where one graph is

obtained from the other by only adding or only deleting information [13, 18, 10]. This gives

raise to subset and superset repairs, on which we focus in this work.

We say that a data-graph 𝐺 = (𝑉,𝐿𝑒, 𝐷) is a subset of a data-graph 𝐺′ = (𝑉 ′, 𝐿′
𝑒, 𝐷

′)
(written as 𝐺 ⊆ 𝐺′

) if and only if 𝑉 ⊆ 𝑉 ′
and for all 𝑣, 𝑣′ ∈ 𝑉 it happens that 𝐿𝑒(𝑣, 𝑣

′) ⊆
𝐿′
𝑒(𝑣, 𝑣

′) and 𝐷(𝑣) = 𝐷′(𝑣). In this case, we also say that 𝐺′
is a superset of 𝐺.

Definition 3 (Subset and superset repairs). Let 𝑅 be a set of restrictions and 𝐺 a data-graph.

We say that 𝐺′
is a subset repair (resp. superset repair) or ⊆-repair (resp. ⊇-repair) of 𝐺 if:

(a) 𝐺′ |= 𝑅, (b) 𝐺′ ⊆ 𝐺 (resp. 𝐺′ ⊇ 𝐺), and (c) there is no data-graph 𝐺′′
such that 𝐺′′ |= 𝑅

and 𝐺′ ⊂ 𝐺′′ ⊆ 𝐺 (resp. 𝐺′ ⊃ 𝐺′′ ⊇ 𝐺). We note the set of subset (resp. superset) repairs of 𝐺
with respect to 𝑅 as ⊆-𝑅𝑒𝑝(𝐺,𝑅) (resp. ⊇-𝑅𝑒𝑝(𝐺,𝑅)).

Example 4. In Example 1, by deleting the node with value Margot Robbie we obtain a ⊆-repair

of the graph database.

Preferences Now we introduce the two preference criteria that we will use to induce orderings

on the set of repairs. In the manner done in [17] for Description Logic knowledge bases, we

provide a notion of weight over graph databases, which can be translated into preferences via

the induced ordering.



Definition 5 (Weight functions). Given a function 𝑤 : Σ𝑒 ⊔Σ𝑛 → N (where ⊔ denotes disjoint

union), we can extend 𝑤 to any finite data-graph 𝐺 = (𝑉,𝐿𝑒, 𝐷) over Σ𝑒 and Σ𝑛 as

𝑤(𝐺) =
∑︁

𝑥,𝑦∈𝑉

⎛⎝ ∑︁
𝑧∈𝐿𝑒(𝑥,𝑦)

𝑤(𝑧)

⎞⎠+
∑︁
𝑥∈𝑉

𝑤(𝐷(𝑥)).

When considering a way to select one among various possible subset or superset repairs,

one approach is to consider that different edge labels and data values are prioritized differently

by being assigned different weights. These weights can be aggregated to obtain a measure

of the weight of a whole data-graph, and this aggregated value can then be compared for all

the possible repairs to obtain a preferred repair based on the natural ordering of non-negative

integers.

Definition 6 (Weight-based preferences). Given a weight function𝑤, we define that𝐺1 <𝑤 𝐺2

iff 𝑤(𝐺1) < 𝑤(𝐺2).
If 𝐺1 <𝑤 𝐺2, we say that 𝐺1 is 𝑤-preferred to 𝐺2 in the context of superset repairs, while

we say that𝐺2 is 𝑤-preferred to𝐺1 in the case of subset repairs. We say that𝐺 is 𝑤-preferred
if 𝐺 is <𝑤-minimal for superset (resp. <𝑤-maximal for subset).

Example 7. Consider a context where data-graphs represent physical networks, and where

edges represent two different quality levels of connection (e.g. varying robustness, resistance to

physical attacks) which we call ↓low and ↓high. Let 𝑅 = {𝛼𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑑𝑖𝑟, 𝛼2𝑙→𝑔𝑜𝑜𝑑} be a set of

restrictions, where

𝛼𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑑𝑖𝑟 = _
*

𝛼2𝑙→𝑔𝑜𝑜𝑑 =↓low↓low⇛↓high↓low ∪ ↓low↓high ∪ ↓high↓high ∪ ↓high ∪ ↓low .

𝛼𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑑𝑖𝑟 expresses the notion of directed connectivity, and 𝛼2𝑙→𝑔𝑜𝑜𝑑 establishes that if

a node can be reached by two low-quality edges, then it is also possible to reach it by a ‘good’

path. That is, it can be reached in either only one step, or in two steps but using at least one

high-quality edge.

We could consider a weight function that attempts to represent the costs of building nodes

and connections in this network. For example, it could assign a uniform weight to all data

values 𝑤(𝑥) = 20, a low cost for low-quality connections 𝑤(↓low) = 1, and higher costs for

high-quality connections 𝑤(↓high) = 5.

Now, given a data-graph𝐺 that does not satisfy the restrictions, a 𝑤-preferred superset repair

can be interpreted as the most cost-effective way of making a superset of the network that

satisfies the restrictions while minimizing the costs given by 𝑤. For a full example, see Figure 2.

The weight function 𝑤 (over Σ𝑛 and Σ𝑒) is considered fixed in general, and it should be an

‘easy’ function to compute. That is, given a reasonable encoding for Σ𝑒 ⊔ Σ𝑛, we expect that

𝑤(𝑥) ≤ 2𝑝(|𝑥|) for every 𝑥 ∈ Σ𝑒 ⊔ Σ𝑛 and some polynomial 𝑝(𝑛), and also assume that the

result of 𝑤(𝑥) should be computable in polynomial time over |𝑥|, the size of 𝑥. Other kinds of

restrictions could be made upon 𝑤 (for example, that 𝑤(𝑥) ≤ 𝑞(|𝑥|) for some polynomial 𝑞(𝑛))
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Figure 2: (a) A data-graph that does not satisfy 𝛼𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑑𝑖𝑟 nor 𝛼2𝑙→𝑔𝑜𝑜𝑑 from Example 7: it is not

connected as a directed graph, and the pair (𝑐, 𝑒) of nodes is connected via two ↓low but cannot be

connected via a ‘good’ path. (b) A possible 𝑤 superset repair with respect to the example of figure (a);

note that the removal of any of the new edges ends up violating 𝑅. The associated weight of this repair

is the original weight plus 1 + 1 + 5 (from the added low and high edges). (c) A 𝑤-preferred superset

repair with respect to the example of figure (a). The associated extra weight of this repair is 3, and it can

be proved that there is no other superset repair with a lower weight.

depending on the kind of weight function wanted to be modeled, but we note that, without any

restriction, 𝑤 could even be an uncomputable function.

The second type of preference criteria we study is based on multisets.

Definition 8 (Multisets). Given a set 𝐴, its set of finite multisets is defined as ℳ<∞(𝐴) =
{𝑀 : 𝐴 → N | 𝑀(𝑥) ̸= 0 only for a finite number of 𝑥}. Given a strict partial order (𝐴,<),
the multiset ordering (ℳ<∞(𝐴), <𝑚𝑠𝑒𝑡) is defined as in [19, 20]: 𝑀1 <𝑚𝑠𝑒𝑡 𝑀2 iff𝑀1 ̸=𝑀2

and for all 𝑥 ∈ 𝐴, if 𝑀1(𝑥) > 𝑀2(𝑥), then there exists some 𝑦 ∈ 𝐴 such that 𝑥 < 𝑦 and

𝑀1(𝑦) < 𝑀2(𝑦).

If (𝐴,<) is a strict partial (resp. total) order, then (ℳ<∞(𝐴), <𝑚𝑠𝑒𝑡) is a partial (resp.

total) order. If (𝐴,<) is a well-founded order
1
, then we have that (ℳ<∞(𝐴), <𝑚𝑠𝑒𝑡) is also a

well-founded order [19].

Definition 9. Given a finite data-graph 𝐺 over Σ𝑒 and Σ𝑛, we define its multiset of edges
and data values as the multiset 𝐺ℳ

over Σ𝑒 and Σ𝑛 such that:

𝐺ℳ(𝑥) =

{︃
|J𝑥K𝐺| 𝑥 ∈ Σ𝑒

|J𝑥=K𝐺| 𝑥 ∈ Σ𝑛.

Note that all these multisets of edges and data values belong to ℳ<∞(𝐴) with 𝐴 = Σ𝑒 ⊔Σ𝑛.

Definition 10 (Multiset-based preferences). Let 𝐺1, 𝐺2 be two finite data-graphs over Σ𝑒 and

Σ𝑛, and let < be a partial order defined over 𝐴 = Σ𝑒 ⊔ Σ𝑛. We say that 𝐺1 <𝐺𝑚𝑠𝑒𝑡 𝐺2 if

𝐺ℳ
1 <𝑚𝑠𝑒𝑡 𝐺

ℳ
2 .

1

I.e. for all 𝑆 ⊆ 𝐴, if 𝑆 ̸= ∅ then there exists 𝑚 ∈ 𝑆 such that 𝑠 ̸< 𝑚 for every 𝑠 ∈ 𝑆.



If 𝐺1 <𝐺𝑚𝑠𝑒𝑡 𝐺2, we say that 𝐺1 is ℳ-preferred to 𝐺2 in the context of superset repairs,

while we say that 𝐺2 is ℳ-preferred to 𝐺1 in the case of subset repairs. We say that 𝐺 is

ℳ-preferred if 𝐺 is <ℳ-minimal for superset (resp. <ℳ-maximal for subset).

Example 11. Consider the data-graphs from Figure 2. Ignoring any possible data value, observe

that the multisets corresponding to graphs b) and c) are (with the informal multiset notation):

{low, low, low, low, low,high,high,high} and {low, low, low, low, low, low,high,high},

respectively. Assuming low > high, then in this case data-graph b) is ℳ-preferred to c).

3. Preferred repairs

In this section we consider subset and superset repairs and Ω-preferred criteria where Ω ∈
{𝑤,ℳ}, using different subsets of Reg-GXPath for ℒ.

We will always consider the weight function 𝑤 : Σ𝑒 ⊔ Σ𝑛 → N fixed and efficiently com-

putable: given a codification of 𝑥 ∈ Σ𝑒 ⊔ Σ𝑛 of size 𝑛 the value 𝑤(𝑥) is computable in 𝑝𝑜𝑙𝑦(𝑛).
This implies that, for any data-graph 𝐺, 𝑤(𝐺) is also computable in 𝑝𝑜𝑙𝑦(|𝐺|).

In the same manner, when considering multiset-preferred repairs, we will assume that the

order < defined over Σ𝑒 ⊔ Σ𝑛 can be computed efficiently: given 𝑥, 𝑦 ∈ Σ𝑒 ⊔ Σ𝑛 it is possible

to decide if 𝑥 < 𝑦 in polynomial time on the representation on both 𝑥 and 𝑦. Thus, we can

decide whether 𝐺1 <𝐺𝑚𝑠𝑒𝑡 𝐺2 in 𝑝𝑜𝑙𝑦(|𝐺1|+ |𝐺2|). Furthermore, we assume that the order <
is well founded. This implies that there are no infinite descending chains c1 > c2 > . . .

Note that the notions of weight-based and multiset-based preferences induce an ordering

over finite data-graphs, which does not admit infinite descending chains. Hence, if a superset

repair exists, then there is also a (weight-based or multiset-based) preferred repair. On the other

hand, the number of subsets of a given data-graph is finite, so if a repair exists, there must

necessarily be a preferred repair.

The complexity of the problems when the set of expressions 𝑅 is fixed is commonly denomi-

nated data complexity. Most lower bounds we derive apply to this case.

3.1. Preferred Subset Repairs

For the case of ⊆-repairs, it was proved in [21] that deciding whether there exists a non-trivial

repair (i.e. different from the ∅ data-graph) is an NP-complete problem for a fixed set 𝑅 of

Reg-GXPath
𝑝𝑜𝑠

expressions, and that the problem is tractable if we only allow node expressions

from Reg-GXPath
𝑝𝑜𝑠

as ℒ. Observe that:

Proposition 12. The problem of deciding whether 𝐺 has a non-trivial ⊆-repair with respect to 𝑅
can be reduced to the problem of deciding whether 𝐺 has a non-trivial Ω-preferred ⊆-repair with

respect to 𝑅.

Given a fixed weight function 𝑤 (resp. an ordering <), the existence of a ⊆-repair 𝐺′
of 𝐺

with respect to 𝑅 implies the existence of a preferred ⊆-repair for 𝐺 (and vice versa). Therefore,

it follows directly from Proposition 12 and the aforementioned results in [21] that:



Theorem 13. The problem of deciding whether there exists a non-trivial Ω-preferred ⊆-repair for

a given data-graph 𝐺 and a set of expressions 𝑅 is NP-complete for a fixed set of Reg-GXPath
𝑝𝑜𝑠

path expressions.

When ℒ ⊆ Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒, a subset repair can be computed in polynomial time and,

furthermore, it is unique [21]. Therefore, it must be the preferred one:

Theorem 14. Given a data-graph 𝐺, a set of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions 𝑅, and a preference

criteria Ω, there exists an algorithm that computes the Ω-preferred ⊆-repair of 𝐺 with respect to 𝑅.

3.2. Preferred Superset Repairs

There is a restriction set 𝑅 containing only Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions such that computing

𝑤-preferred ⊇-repair is already intractable:

Theorem 15. Given a data-graph𝐺, a set of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions𝑅 and a natural number

𝐾 , let Π𝑤 be the problem of deciding whether there exists a 𝑤-preferred ⊇-repair of 𝐺 with respect

to 𝑅 whose weight is bounded by 𝐾 . Then, there exists a set of positive node expressions 𝑅 and a

weight function 𝑤 such that the problem is NP-complete.

Notice that we could have equivalently defined Π𝑤 as the problem of deciding whether there

exists some data-graph 𝐺′ ⊇ 𝐺 such that 𝐺′ |= 𝑅 and 𝑤(𝐺′) ≤ 𝐾 (i.e., requiring minimality is

not necessary).

Proof. The problem is in NP in general: if there exists a repair of 𝐺 with respect to 𝑅, due

to [21, Theorem 24], then there is one in ‘standard form’. The size of this repair is bounded

by 𝑝𝑜𝑙𝑦(|𝐺| + |𝑅|), and by inspecting the proof of the theorem and considering that 𝑤 is a

non-negative function, it can be shown that the preferred repair always has this ‘standard

form’. Then, a positive certificate consists of a data-graph 𝐺′
such that |𝐺′| ≤ 𝑝𝑜𝑙𝑦(|𝐺|+ |𝑅|),

𝐺′ |= 𝑅, 𝐺 ⊆ 𝐺′
and 𝑤(𝐺′) ≤ 𝐾 .

For the hardness, we reduce 3-SAT to Π𝑤, with 𝑅 fixed. For the reduction, we consider

Σ𝑒 ⊇ {value_of, appears_in, appears_negated_in} and Σ𝑛 ⊇ {𝑐𝑙𝑎𝑢𝑠𝑒, 𝑣𝑎𝑟,⊤,⊥}. We define

the weight function 𝑤 as 𝑤(𝑐) = 2 for 𝑐 ∈ Σ𝑛 ∪ {appears_in, appears_negated_in} and

𝑤(value_of) = 1.

Given a 3-CNF formula 𝜑 with 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and 𝑚 clauses 𝑐1, . . . , 𝑐𝑚 we build a

data-graph 𝐺, a set of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 node expressions 𝑅 and define a number 𝐾 such that 𝜑

is satisfiable if and only if 𝐺 has a superset repair 𝐺′
with respect to 𝑅 such that 𝑤(𝐺′) ≤ 𝐾 .

We define the graph as 𝐺 = (𝑉𝐺, 𝐿𝐺, 𝐷𝐺) where:

𝑉𝐺 = {𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑐𝑗 | 1 ≤ 𝑗 ≤ 𝑚} ∪ {⊥,⊤}

𝐿𝐺(𝑥𝑖, 𝑐𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{appears_in, appears_negated_in} if 𝑥𝑖 and ¬𝑥𝑖 appear in 𝑐𝑗

{appears_in} if only 𝑥𝑖 appears in 𝑐𝑗

{appears_negated_in} if only ¬𝑥𝑖 appears in 𝑐𝑗

∅ otherwise

𝐿𝐺(𝑣, 𝑤) = ∅ for every other pair 𝑣, 𝑤 ∈ 𝑉𝐺



𝐷𝐺(𝑥) = 𝑥 for 𝑥 ∈ {⊥,⊤}
𝐷𝐺(𝑥𝑖) = 𝑣𝑎𝑟 for 1 ≤ 𝑖 ≤ 𝑛

𝐷𝐺(𝑐𝑗) = 𝑐𝑙𝑎𝑢𝑠𝑒 for 1 ≤ 𝑗 ≤ 𝑚.

The structure of 𝜑 is codified in the appears edges. We define 𝐾 = 𝑤(𝐺) + 𝑛, and we want

any superset repair of 𝐺 with respect to 𝑅 with weight 𝐾 to codify an assignment of the

‘node’ variables by using the edges value_of. In order to do this we define the Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒

expressions

𝜓1 = ⟨[𝑣𝑎𝑟 ̸=]∪ ↓value_of [⊤]∪ ↓value_of [⊥]⟩
𝜓2 = ⟨[𝑐𝑙𝑎𝑢𝑠𝑒̸=]∪ ↓−

appears_in
↓value_of [⊤]∪ ↓−

appears_negated_in
↓value_of [⊥]⟩.

The expression 𝜓1 forces every variable node to have a value edge directed to a boolean node,

while the expression 𝜓2 forces every clause to be ‘satisfied’ in any repair of 𝐺. Therefore, we

define 𝑅 = {𝜓1, 𝜓2}. Now we show that 𝜑 is satisfiable if and only if 𝐺 has a superset repair

with respect to 𝑅 with weight at most 𝑤(𝐺) + 𝑛.

=⇒ ) Let 𝑓 be a valuation on the variables of 𝜑 that evaluates 𝜑 to true. We then ‘add’ edges

to 𝐺 in the following way: if 𝑓(𝑥𝑖) = ⊤ we add the edge (𝑥𝑖, value_of,⊤), and otherwise we

add (𝑥𝑖, value_of,⊥). This graph satisfies both expressions from 𝑅 and has cost 𝑤(𝐺) + 𝑛,

since 𝑤(value_of) = 1.

⇐= ) Let 𝐺′
be a superset repair of 𝐺 with respect to 𝑅 with weight at most 𝑤(𝐺) + 𝑛.

Since every superset repair of 𝐺 has to add at least 𝑛 value edges and they cost 1 unit each

we know that 𝐺′
has to be exactly the original graph 𝐺 plus 𝑛 value edges (one for each node

variable). Then we can define a valuation of the variables of 𝜑 by using this edges: if the edge

(𝑥𝑖, value_of,⊤) is present in 𝐺′
we define 𝑓(𝑥𝑖) = ⊤, and otherwise 𝑓(𝑥𝑖) = ⊥. Since 𝜓2 is

satisfied in 𝐺′
this assignment must satisfy 𝜑.

The hardness of Π𝑤 implies that, unless P = NP there is no algorithm to compute𝑤-preferred

⊇-repairs for fixed sets of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions.

Furthermore, computing a multiset preferred repair is also a hard problem for simple

Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions:

Theorem 16. Given a data-graph𝐺, a set of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions𝑅, an edge label a ∈ Σ𝑒,

and a natural number 𝐾 , let Πℳ be the problem of deciding whether 𝐺 has a ℳ-preferred ⊇-

repair 𝐺′
with respect to 𝑅 such that 𝐺′

has at most 𝐾 edges with label a. Then, there exists a set

of positive node expressions 𝑅 and a well-ordering < such that the problem is NP-complete.

Proof. The proof is analogous to the one of Theorem 15, considering the order value_of <
appears_in < appears_negated_in < 𝑐𝑙𝑎𝑢𝑠𝑒 < 𝑣𝑎𝑟 < ⊤ < ⊥ and 𝐾 = 𝑛.

It follows that the hardness of Πℳ implies the hardness of computing ℳ-preferred ⊇-repairs

for fixed sets of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions.

Remark 17. In the case of ⊇-repairs, it was proved in [21] that deciding whether there exists

at least one repair is an undecidable problem for a fixed set of Reg-GXPath expressions, and

NP-hard if Reg-GXPath
𝑝𝑜𝑠 ⊆ ℒ. Meanwhile, it was shown that if ℒ ⊆ Reg-GXPath

𝑝𝑜𝑠
and



the restriction set is fixed, or rather if ℒ ⊆ Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒, then there are polynomial-time

algorithms to compute a superset repair. Theorems 15 and 16 show that these tractable cases

become intractable when considering preferred repairs.

Looking at the proof of Theorem 15 it is clear that assigning a non zero weight to the edges

is necessary to achieve the hardness result. If we assume that 𝑤(a) = 0 for all a ∈ Σ𝑒 we can

show that:

Theorem 18. There exists an algorithm that given a data-graph 𝐺 and a set of Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒

expressions 𝑅 computes a 𝑤-preferred ⊇-repair in polynomial time whenever 𝑤 satisfies that

𝑤(a) = 0 for all a ∈ Σ𝑒.

Proof. The standard form described in [21, Theorem 24] minimizes the number of nodes added,

and the number of standard forms is bounded by 2|𝑅|
. Therefore, if 𝑅 is fixed, it is possible to

search for the one with smallest weight in polynomial time.

If 𝑅 ⊆ Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 then it is actually possible to compute a ⊇ repair even in combined

complexity (when𝑅 is part of the input). Nonetheless, it is not possible to compute a𝑤-preferred

one, even when 𝑤 ignores edge labels:

Theorem 19. There is a fixed 𝑤 function that assigns 0 cost to all edge labels such that the

problem Π𝑤 (see Theorem 15) is NP-complete in combined complexity when restricting that

𝑅 ⊆ Reg-GXPath
𝑝𝑜𝑠
𝑛𝑜𝑑𝑒.

Proof. We reduce 3-SAT to our problem. Given a formula 𝜑 on 𝑛 variables 𝑥1, . . . 𝑥𝑛 and 𝑚
clauses 𝑐1, . . . , 𝑐𝑚 we will construct a data-graph 𝐺 and a set of Reg-GXPath

𝑝𝑜𝑠
𝑛𝑜𝑑𝑒 expressions

𝑅 such that 𝜑 is satisfiable if and only if 𝐺 has a ⊇-repair 𝐺′
with respect to 𝑅 such that

𝑤(𝐺′) ≤ 𝑤(𝐺) + 𝑛. We denote by 𝑙𝑗,𝑘 the 𝑘th literal of 𝑐𝑗 , for 1 ≤ 𝑗 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 3. For

example, if 𝑐3 = (𝑥1 ∨ 𝑥3 ∨ ¬𝑥4) then 𝑙3,1 = 𝑥1 and 𝑙3,3 = ¬𝑥4. The fixed weight function 𝑤
is defined as 𝑤(𝑑) = 1 for 𝑑 ∈ Σ𝑛, and 𝑤(𝑑) = 0 otherwise.

Let Σ𝑒 ⊇ {down} and Σ𝑛 ⊇ {𝑥𝑖 : 𝑖 ∈ N} ∪ {¬𝑥𝑖 : 𝑖 ∈ N} ∪ {𝑐𝑗 : 𝑗 ∈ N}, and let us define

𝐺 = (𝑉,𝐿,𝐷) as:

𝑉 = {𝑐𝑗 : 1 ≤ 𝑗 ≤ 𝑚}
𝐿(𝑣, 𝑤) = ∅ for 𝑣, 𝑤 ∈ 𝑉

𝐷(𝑐𝑗) = 𝑐𝑗 for 1 ≤ 𝑗 ≤ 𝑚

We also define 𝑅 = {𝜙𝑗 : 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝜓𝑖 : 1 ≤ 𝑖 ≤ 𝑛} where

𝜙𝑗 = 𝑐=𝑗 ∨ ⟨↓down [
3⋁︁

𝑘=1

𝑙=𝑗,𝑘]⟩

𝜓𝑖 = ⟨↓down [𝑥=𝑖 ∨ ¬𝑥=𝑖 ]⟩

The formula 𝜙𝑗 ensures that in any repair there is a node with a data value related to a literal

that satisfies 𝑐𝑗 . The formula 𝜓𝑖 ensures that in every repair there is either a node with data

value 𝑥𝑖 or ¬𝑥𝑖.



We now show that 𝜑 is satisfiable if and only if 𝐺 has a ⊇-repair with respect to 𝑅 bounded

by 𝑤(𝐺) + 𝑛:

=⇒ ) If 𝜑 is satisfiable then there is a valuation of its variables 𝑓 : {𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛} →
{⊤,⊥} that satisfies every clause. If we add to 𝐺 the set of nodes {𝑓(𝑥𝑖) : 1 ≤ 𝑖 ≤ 𝑛} with

data values 𝐷(𝑓(𝑥𝑖)) = 𝑥𝑖 if 𝑓(𝑥𝑖) = ⊤ and 𝐷(𝑓(𝑥𝑖)) = ¬𝑥𝑖 otherwise, and every possible

edge, then the obtained data-graph satisfies 𝑅 and has weight 𝑤(𝐺) + 𝑛.

⇐= ) Let 𝐺′
be a ⊇-repair of 𝐺 with respect to 𝑅 such that 𝑤(𝐺′) ≤ 𝑤(𝐺) + 𝑛. Observe

that in order to satisfy each 𝜓𝑖 𝐺
′

must have a node with data value 𝑥𝑖 or ¬𝑥𝑖. Since the weight

is bounded by 𝑤(𝐺) + 𝑛 we can conclude that there is either a node with data value 𝑥𝑖 or one

with data value ¬𝑥𝑖, but not both. We can define a valuation 𝑓 on the variables 𝑥1, . . . , 𝑥𝑛 as

𝑓(𝑥𝑖) = ⊤ if and only if there is a node 𝑣 in 𝐺′
such that 𝐷(𝑣) = 𝑥𝑖. Such valuation satisfies 𝜑

because all the 𝜙𝑗 are satisfied in 𝐺′
.

The approach of restricting the priority criteria to only consider data values can be carried

on in the same way for the ℳ-criteria, by asking only for an order over Σ𝑛 rather than both

Σ𝑛 and Σ𝑒. Then, it is possible to prove theorems analogous to both Theorems 18 and 19.

4. Conclusions

In this work, we analyze preferred repairing for data-graphs. We specifically focus on the

problem of deciding whether a data-graph 𝐺 has a non-trivial preferred repair under two

different data-aware preference criteria, one based on weights and the other based on multiset

orderings. We showed that in some cases, these criteria do not make the repair decision problem

harder than the version lacking preferences.

Some questions in this context remain open, such as that of finding refined tractable versions

of the problem that might be based on real-world applications. Alternative definitions of types of

repairs for data-graphs [13], like those based on symmetric-difference [10], are worth studying

in the preference-based setting. It would also be interesting to study more general families of

criteria, such as the ones proposed in [15], and analyze whether the complexity of the decision

problems changes for data-graphs.

In the definition of preferred repairs presented in this work, we never discuss how to handle

scenarios with multiple solutions. While introducing a notion of preference reduces the set of

repairs of interest, this does not address the problem of choosing one in the presence of several

options. In practice, the preference criterion should be adjusted based on the general use case,

in order to reduce the set of obtained repairs to a size that is acceptable in expectation. Still, to

avoid choosing one repair over another, one could ask for the information that is contained

in every possible repair: this is precisely the problem of consistent query answering, whose

complexity remains open in this context. However, based on the results presented in this work,

some observations can already be made: for example, in the case of subset repairs considering

positive node expressions as integrity constraints, we proved that there is a unique preferred

repair computable in polynomial time, which therefore implies that the CQA problem can be

solved efficiently as well.
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