
MillenniumDB Path Query Challenge
Benjamín Farías1,2, Carlos Rojas2 and Domagoj Vrgoč1,2

1PUC Chile, Santiago, Chile
2IMFD Chile, Santiago, Chile

Abstract
In this short paper we present a benchmark of regular path queries where paths are returned in addition
to reachable nodes. The types of paths returned mimic the upcoming GQL graph query standard, and
require returning a single path, a single shortest path, all shortest paths, all trails, or all simple paths
connecting each pair of nodes in the answer to the query. We provide two challenge sets: (i) real
world queries extracted from the Wikidata query logs; and (ii) a synthetic dataset with exponential
behavior meant to serve as a sanity check for the termination conditions of a path algorithm. A reference
implementation using MillenniumDB, a recently published open-source graph database engine, is also
provided with the challenge.

Keywords
graph databases, regular path queries, query evaluation

1. Introduction

Graph databases [1] are a rapidly growing area, both in terms of academic research [2], and
commercial systems being developed by multiple vendors [3, 4, 5]. Graphs databases offer
flexibility in terms of design, are easily extensible, and independent of a fixed schema. In terms
of querying, graph databases introduce interesting challenges as opposed to the relational
setting. Following [1], graph queries could roughly be divided into two classes: (i) graph
patterns; and (ii) path queries. Here we will focus on path queries.

The most widely used class of path queries are regular path queries, or RPQs for short [6]. An
RPQ is specified by a regular expression, and the query looks for all pairs of nodes connected
by a path whose edge labels form a word in the language of the expression. An RPQ can thus
return: (a) only the connected nodes; or (b) the connected nodes together with the path(s)
witnessing this connection. Option (a) is usually considered in the research literature [6], or
in SPARQL systems [7]. However, option (b) is extremely relevant in practice, where multiple
engines support returning paths [3, 4, 8], and the upcoming ISO standard for graph querying [9]
prescribing different types of paths (shortest, trail, simple, etc.) to be returned when answering
an RPQ.

In this short paper we report on ongoing work about algorithms for returning paths that
witness a pair of nodes being in the answer of an RPQ, and present a resource, called Millenni-
umDB Path Query Challenge, which can be used by the research and development community

AMW’23: 15th Alberto Mendelzon International Workshop on Foundations of Data Management, May 22 –26, 2023,
Santiago, Chile
$ bffarias@uc.cl (B. Farías); c.rojasvictoriano@gmail.com (C. Rojas); vrdomagoj@uc.cl (D. Vrgoč)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:bffarias@uc.cl
mailto:c.rojasvictoriano@gmail.com
mailto:vrdomagoj@uc.cl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


to test their implementations of path queries. The challenge contains datasets and RPQs, which
are to be evaluated under different semantics for returning paths. We also provide a reference
implementation using MillenniumDB [10], an open-source graph database engine developed at
IMFD Chile. All the resources are freely available at [11].

1.1. Related Work

Several path query benchmarks had been proposed in the past. Most of them focused on
reachable nodes, and not on returning paths. Notable examples include gMark [12], and
BeSEPPI [13]. The most representative work on returning paths along with reachable nodes
is The LDBC Social Network Benchmark [14], which contains several queries that use the
RPQ knows*, and require paths with different characteristic (weighted, shortest, etc.) are to be
returned. Our approach is more focused on complex RPQs, and path modes prescribed by the
GQL standard [9]. The presented work heavily relies on WDBench [15], a recent Wikidata [16]
query benchmark, and on examples from [17].

2. MillenniumDB Path Query Challenge

The key objective of the MillenniumDB Path Query Challenge is to test the efficiency of
algorithms for finding paths that witness an answer to an RPQ. We specify RPQs using the
SPARQL property path syntax [7], given that this is the only fully standardized language for
RPQs (and their slight extensions such as 2RPQs [18]) to date. We consider the following three
types of RPQs:

(i) (start) propertyPath (end);
(ii) (start) propertyPath (?x); and

(iii) (?x) propertyPath (?y),

where (start) and (end) are either fixed nodes of the graph, and ?x and ?y are variables. Type
(i) queries are boolean and check whether end is reachable from start via propertyPath.
Type (ii) queries look for all nodes reachable from start, while type (iii) queries return all pairs
of nodes connected by propertyPath. For each such answer, we also wish to return paths.

What should my implementation return? We prescribe evaluating the challenge queries
under the following semantics:

• Endpoints: For type (i) queries this is just true/false; for type (ii) we return all nodes
reachable from (start); for type (iii) we require all pairs of nodes connected by
propertyPath.

• Any path: For each answer returned by enpoints, we also provide a single path wit-
nessing this result.

• Shortest path: For each answer returned by enpoints, we also provide a single shortest
path witnessing this result.

• All shortest paths: For each answer returned by enpoints, we also return all shortest
paths witnessing this result.



• All trails: For each answer returned by enpoints, we also return all trails (i.e. paths not
repeating any edges) witnessing this result.

• All simple paths: For each answer returned by enpoints, we also return all simple
paths (i.e. paths not repeating any nodes) witnessing this result.

How many results? We recommend the number of results to be limited to 100,000. This
number includes different paths for the same pair of connected nodes in the query answer. For
instance, if a fixed pair (start,end) is connected by 100,000 shortest paths, returning all these
paths already reaches the query limit. The limit is to keep the number of results manageable,
and to allow checking whether the algorithms terminate efficiently.

How to run the queries? For each challenge dataset, all the queries should be run in
succession without any warmup for each implementation mode that the user wishes to test. For
instance, if we are testing how the algorithms for returning all shortest paths runs, we should
run all the queries under the all shortest-path semantics. Each return mode should be tested in
isolation. A timeout of 1 minute should be imposed on all the queries.

What should I report? The main metric we wish to track is execution time. Additionally,
memory usage is recommended to be reported. Depending on the actual implementation, the
data management mode should be categorized as:

1. On-disk: when the graph database is stored on disk (e.g. in B+trees) and buffered into
main memory.

2. In-memory: when all the data is available in main memory.
3. Hybrid: when the disk data is loaded into specialized memory structures.

Reference implementation A reference implementation is made available at [11]. We
remark that at this point queries of type (iii) are not fully supported. All the semantics modes
and data management modes are available in the reference implementation, with repository
readme files explaining their usage.

We next describe the data/queries provided in the challenge.

2.1. Challenge #1: real-world

The first challenge set tests the performance on real world data and user posted queries. For
this, we use the Wikidata [16] dataset and its SPARQL query logs [19], from which property
path patterns were extracted. More precisely, we base ourselves on the recently published
WDBench [15] benchmark. The same dataset as in WDBench is used; namely, we take the
truthy dump of Wikidata, and keep only direct properties from this RDF dataset1, and remove
Wikidata labels and descriptions. This results in an (RDF) dataset consisting of 1.257 billion
triples. Transforming this dataset into a graph results in 364 million nodes and 1.257 billion
edges. The dataset can be downloaded at [20].
1This allows us to have the graph structure in the dataset, which is the only thing explored by the RPQs.



In terms of queries, WDBench extracted several different query sets according to their
characteristics. We took the RPQ query set from WDBench, and classified the RPQs in this
set according to the three types described above. The queries are to be evaluated according to
the modes described above (endpoints, trail, etc.). In total there are 659 RPQs in our dataset.
Of these 6 are of type (i); 586 are of type (ii), and 67 of type (iii). These are to be evaluated
according to one of the semantics modes described above. Remember that a limit of 100,000
results applies. The queries can be found at [11].

In order to facilitate usage in other engines, at [11] we include the Cypher [21] version of
queries whenever possible. Notice that not all RPQs can be expressed in Cypher, and some
semantics modes are not supported.

2.2. Challenge #2: synthetic

Here we present a synthetic dataset with a large number of paths between two nodes. The
purpose of this challenge is to check whether the path algorithms can detect choking points
and stop execution. The graph used in this challenge, illustrated in Figure 1, is taken from [17].
The single RPQ of type (i) used here has the pattern (A) a* (B). Notice that in this graph
all paths from 𝐴 to 𝐵 conforming to a* are shortest, trails and simple paths at the same time,
and there are 2𝑛 of them, while the graph has only 3𝑛+ 1 nodes and 4𝑛 edges. Notice that for
any semantics mode finding 100,000 paths should be easy enough, however, a poorly designed
algorithm might try and compute all paths, which is unfeasible even for moderate values of 𝑛.

𝐴

𝑢1

𝑣1

𝑢2

𝑣2

· · ·
𝑢𝑛

𝑣𝑛

𝐵

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

Figure 1: Graph for challenge #2. Here 𝑛 is a parameter.

3. Conclusions

We present a resource and reference implementation for testing out algorithms for returning
paths conforming to regular expressions over graph databases. We also perform initial experi-
ments available at [11]. We hope that this resource can be of use to researchers and developers
interested in implementing algorithms for returning paths in graph database query answers.

Acknowledgments

Work supported by the ANID – Millennium Science Initiative Program – Code ICN17_002 and
ANID Fondecyt Regular nr. 1221799.



References

[1] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, D. Vrgoč, Foundations of Modern
Query Languages for Graph Databases, ACM Comput. Surv. 50 (2017) 68:1–68:40. URL:
https://doi.org/10.1145/3104031. doi:10.1145/3104031.

[2] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, J. E. L. Gayo,
S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A. N. Ngomo, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. F. Sequeda, S. Staab, A. Zimmermann, Knowledge Graphs, CoRR
abs/2003.02320 (2020). URL: https://arxiv.org/abs/2003.02320. arXiv:2003.02320.

[3] J. Webber, A programmatic introduction to Neo4j, in: G. T. Leavens (Ed.), Conference on
Systems, Programming, and Applications: Software for Humanity, SPLASH ’12, Tucson,
AZ, USA, October 21-25, 2012, ACM, 2012, pp. 217–218. URL: https://doi.org/10.1145/
2384716.2384777. doi:10.1145/2384716.2384777.

[4] T. Team, TigerGraph Documentation – version 3.1, 2021. URL: https://docs.tigergraph.com/.
[5] A. N. Team, What Is Amazon Neptune?, 2021. URL: https://docs.aws.amazon.com/neptune/

latest/userguide/intro.html.
[6] P. B. Baeza, Querying graph databases, in: PODS 2013, 2013, pp. 175–188.
[7] S. Harris, A. Seaborne, E. Prud’hommeaux, SPARQL 1.1 Query Language, W3C Recom-

mendation, 2013. URL: https://www.w3.org/TR/sparql11-query/.
[8] D. Vrgoč, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C. B. Aranda, A. Hogan, G. Navarro,

C. Riveros, J. Romero, Millenniumdb: A persistent, open-source, graph database, CoRR
abs/2111.01540 (2021). URL: https://arxiv.org/abs/2111.01540.

[9] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker, V. Marsault,
W. Martens, J. Michels, F. Murlak, S. Plantikow, P. Selmer, O. van Rest, H. Voigt, D. Vrgoc,
M. Wu, F. Zemke, Graph Pattern Matching in GQL and SQL/PGQ, in: Z. Ives, A. Bonifati,
A. E. Abbadi (Eds.), SIGMOD ’22, ACM, 2022, pp. 2246–2258.

[10] M. Team, MillenniumDB Source Code, 2021. URL: https://github.com/MillenniumDB/
MillenniumDB.

[11] C. R. Benjamín Farías, D. Vrgoč, MillenniumDB Path Query Challenge, 2023. URL: https:
//github.com/MillenniumDB/path-query-challenge.

[12] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, N. Advokaat, gMark:
Schema-Driven Generation of Graphs and Queries, IEEE Trans. Knowl. Data Eng. 29 (2017)
856–869.

[13] A. Skubella, D. Janke, S. Staab, BeSEPPI: Semantic-Based Benchmarking of Property
Path Implementations, in: P. Hitzler, M. Fernández, K. Janowicz, A. Zaveri, A. J. G. Gray,
V. López, A. Haller, K. Hammar (Eds.), ESWC 2019, volume 11503, Springer, 2019, pp.
475–490.

[14] R. Angles, J. B. Antal, A. Averbuch, P. A. Boncz, O. Erling, A. Gubichev, V. Haprian,
M. Kaufmann, J. L. Larriba-Pey, N. Martínez-Bazan, J. Marton, M. Paradies, M. Pham,
A. Prat-Pérez, M. Spasic, B. A. Steer, G. Szárnyas, J. Waudby, The LDBC Social Network
Benchmark, CoRR abs/2001.02299 (2020). URL: http://arxiv.org/abs/2001.02299.

[15] R. Angles, C. B. Aranda, A. Hogan, C. Rojas, D. Vrgoc, WDBench: A Wikidata Graph
Query Benchmark, in: U. Sattler, A. Hogan, C. M. Keet, V. Presutti, J. P. A. Almeida,
H. Takeda, P. Monnin, G. Pirrò, C. d’Amato (Eds.), ISWC 2022, volume 13489, Springer,

https://doi.org/10.1145/3104031
http://dx.doi.org/10.1145/3104031
https://arxiv.org/abs/2003.02320
http://arxiv.org/abs/2003.02320
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777
http://dx.doi.org/10.1145/2384716.2384777
https://docs.tigergraph.com/
https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://www.w3.org/TR/sparql11-query/
https://arxiv.org/abs/2111.01540
https://github.com/MillenniumDB/MillenniumDB
https://github.com/MillenniumDB/MillenniumDB
https://github.com/MillenniumDB/path-query-challenge
https://github.com/MillenniumDB/path-query-challenge
http://arxiv.org/abs/2001.02299


2022, pp. 714–731.
[16] D. Vrandecic, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Commun. ACM

57 (2014) 78–85. URL: https://doi.org/10.1145/2629489. doi:10.1145/2629489.
[17] W. Martens, M. Niewerth, T. Popp, S. Vansummeren, D. Vrgoč, Representing paths in

graph database pattern matching, CoRR abs/2207.13541 (2022). URL: https://doi.org/10.
48550/arXiv.2207.13541. doi:10.48550/arXiv.2207.13541. arXiv:2207.13541.

[18] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Y. Vardi, Rewriting of regular expressions
and regular path queries, J. Comput. Syst. Sci. 64 (2002) 443–465.

[19] A. Bonifati, W. Martens, T. Timm, An analytical study of large SPARQL query logs,
VLDB J. 29 (2020) 655–679. URL: https://doi.org/10.1007/s00778-019-00558-9. doi:10.1007/
s00778-019-00558-9.

[20] R. Angles, C. B. Aranda, A. Hogan, C. Rojas, D. Vrgoč, WDBench: A Wikidata Graph
Query Benchmark, 2022. doi:10.6084/m9.figshare.19599589, https://figshare.com/
s/50b7544ad6b1f51de060.

[21] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Ry-
dberg, P. Selmer, A. Taylor, Cypher: An Evolving Query Language for Property Graphs, in:
G. Das, C. M. Jermaine, P. A. Bernstein (Eds.), SIGMOD 2018, ACM, 2018, pp. 1433–1445.
URL: https://doi.org/10.1145/3183713.3190657. doi:10.1145/3183713.3190657.

A. Online Resources

Resources needed to run the challenge (datasets, queries, scripts, etc.) can be found at:

• MillenniumDB Path Query Challenge

https://doi.org/10.1145/2629489
http://dx.doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.2207.13541
https://doi.org/10.48550/arXiv.2207.13541
http://dx.doi.org/10.48550/arXiv.2207.13541
http://arxiv.org/abs/2207.13541
https://doi.org/10.1007/s00778-019-00558-9
http://dx.doi.org/10.1007/s00778-019-00558-9
http://dx.doi.org/10.1007/s00778-019-00558-9
http://dx.doi.org/10.6084/m9.figshare.19599589
https://figshare.com/s/50b7544ad6b1f51de060
https://figshare.com/s/50b7544ad6b1f51de060
https://doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3183713.3190657
https://github.com/MillenniumDB/path-query-challenge

	1 Introduction
	1.1 Related Work

	2 MillenniumDB Path Query Challenge
	2.1 Challenge #1: real-world
	2.2 Challenge #2: synthetic

	3 Conclusions
	A Online Resources

