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Abstract
Join queries involving many relations pose a severe challenge to today’s query optimisation techniques.

To some extent, this is due to the fact that these techniques do not pay sufficient attention to structural

properties of the query. In stark contrast, the Database Theory community has intensively studied struc-

tural properties of queries (such as acyclicity and various notions of width) and proposed efficient query

evaluation techniques through variants of Yannakakis’ algorithm for many years. However, although

most queries in practice actually are acyclic or have low width, structure-guided query evaluation tech-

niques based on Yannakakis’ algorithm have not found their way into mainstream database technology

yet.

The goal of this work is to address this gap between theory and practice. We want to analyse the

potential of considering the query structure for speeding up modern DBMSs in cases that have been

traditionally challenging. To this end, we propose a rewriting of SQL queries into a sequence of SQL

statements that force the DBMS to follow a Yannakakis-style query execution. Through first empirical

results we show that structure-guided query evaluation can indeed make the evaluation of many difficult

join queries significantly faster.
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1. Introduction

Query processing lies at the very heart of database applications and systems – with join queries

arguably being the most fundamental and basic form of queries. A lot of research spanning

over several decades has gone into optimizing queries in general and join queries in particular.

Consequently, in many practical cases, Database Management Systems (DBMSs) perform really

well. However, there still remain queries where today’s DBMSs struggle or simply fail. This is
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especially the case with queries that involve the join of many (say 10, 50 or even hundreds of)

relations. Large join queries remain challenging even when all joins are made along foreign key

constraints, one of the most common and basic cases for relational DBMSs. Such queries are

becoming more and more common, e.g., when automatically generated by business intelligence

tools [1]. It, therefore, is a requirement for DBMSs today to cope also with simply structured

queries of this order of magnitude.

The traditional approach to evaluating a join query is to split it into a sequence of two-way

joins. One of the main tasks of query optimisation is then to determine an optimal join order,

which avoids the costly computation of large intermediate results as far as possible. However,

even for moderately large queries, the resulting optimisation problem becomes too difficult to

solve exactly and DBMSs resort to heuristic optimisation techniques. For instance, PostgreSQL

14 by default performs a full search for the optimal plan only up to 11 joins. Sophisticated

pruning methods and parallelisation have been shown to push this threshold higher [2], but

the task still remains challenging. Moreover, the problem of huge intermediate results is an

intrinsic deficiency of splitting join queries into a sequence of two-way joins and not restricted

to the choice of a bad join order. Worst-case optimal joins [3] provide a solution to this problem

for queries of particular structure (small cyclic queries with joins that do not follow foreign key

relationships) and heavily skewed data. But empirical studies of database queries have shown

that most queries in practice are acyclic or almost acyclic, involving mostly joins along foreign

keys [4, 5] and thus call for a different solution.

From a theoretical perspective, the problem of avoiding large intermediate results in join

queries has long been considered as mostly solved. For acyclic queries, Yannakakis’ algorithm [6]

is well known to guarantee query answering without any unnecessary intermediate results

by following the inherent tree-like structure of acyclic queries in the evaluation of the query.

From there, a rich theory of structural decompositions and related notions of width has been

developed [7, 8] that generalises the acyclic case to general queries with guaranteed bounds

(relative to some notion of width) on the intermediate results.

A small number of research systems have indeed adopted structural decomposition methods

and worst-case optimal join algorithms with highly promising results [9, 10, 11, 12, 13]. However,

these are “standalone-systems" (i.e., not integrated into widely used relational DBMSs) and

some of the most successful approaches have actually focused on queries that are more of

graph theoretical interest and particularly suitable to worst-case optimal joins (e.g., queries

with clique, or lollipop graph structure). Therefore, despite all the progress made with applying

Yannakakis-style query evaluation to real-world problems and the experience gained with these

systems, the principal question remains unanswered:

Can the theory of Yannakakis-style query evaluation of acyclic queries be of use for typical
relational queries in mainstream RDBMSs?

Our goal is to study precisely this question and to bridge this gap between the theory

and systems communities. We thus embark on a broad experimental evaluation on a recent

benchmark [2] that is representative of the typical yet challenging queries we are interested in:

big, (almost) acyclic, with all joins being along foreign key constraints.

Such an evaluation on mainstream DBMSs is not straightforward due to an apparent mis-

match in paradigms between Yannakakis’ algorithm, which operates in multiple phases, and



the Volcano iterator model commonly adapted by modern DBMSs. A direct integration of

such methods is therefore laborious and shifts the performance question towards a matter of

effective implementation and integration, rather than a study of the general viability of the

method. Instead, we base our experimental evaluation on a DBMS-agnostic rewriting-based

approach to control a Yannakakis-style evaluation from “outside” the DBMS by submitting to the

DBMS appropriate SQL statements that correspond to the operations performed by Yannakakis’

algorithm. Using these rewritings, we compare the performance of a structure-guided approach

to the standard query execution strategies in three DBMSs: PostgreSQL, DuckDB, and Spark

SQL, that were selected as popular representatives of distinct types of DBMS architecture. Our

experimental results thus obtained clearly indicate that structure-guided evaluation can indeed

bring large performance gains and can thus alleviate some of the most critical pain-points of

modern DBMSs.

2. Preliminaries
We assume familiarity with basic database terminology and we very briefly recall only the most

important concepts. Consider a Conjunctive Query (CQ) 𝑄 as Relational Algebra expressions of

the form 𝑄 = 𝜋𝑈 (𝑅1 ◁▷ . . . ◁▷ 𝑅𝑛), where 𝑅1, . . . , 𝑅𝑛 are pairwise distinct relations and the

projection list 𝑈 consists of attributes occurring in the 𝑅𝑖’s. Then 𝑄 is acyclic, if it has a join
tree, i.e., a rooted, labelled tree ⟨𝑇, 𝑟, 𝜆⟩ with root 𝑟, such that (1) 𝜆 is a bijection that assigns

to each node of 𝑇 one of the relations in {𝑅1, . . . , 𝑅𝑛} and (2) if some attribute 𝐴 occurs in

both relations 𝜆(𝑢𝑖) and 𝜆(𝑢𝑗) for two nodes 𝑢𝑖 and 𝑢𝑗 in 𝑇 , then 𝐴 occurs in the relation

𝜆(𝑢) for every node 𝑢 along the path between 𝑢𝑖 and 𝑢𝑗 . Deciding whether a CQ is acyclic

and constructing a join tree only requires linear time. Yannakakis’ algorithm [6] to efficiently

evaluate acyclic CQs proceeds in 3 traversals of the join tree 𝑇 : (1) in a bottom-up traversal, the

relations labelling the child nodes of a node 𝑢 of 𝑇 are semi-joined into the relation labelling 𝑢;

(2) in a top-down traversal, the relation at a node 𝑢 is semi-joined into the relation at each child

node; (3) all relations are finally joined in yet another bottom-up traversal. The projection 𝜋𝑈 is

easily integrated into this third traversal. The final result of the query is the resulting relation

associated with the root node 𝑟 of 𝑇 . If this relation is empty after the first bottom-up traversal,

then so is the final result and the traversals (2) and (3) can be omitted.

3. Experimental Evaluation

Our goal is to shed light on the benefit of realizing structure-guided query evaluation by

common RDBMSs. We thus do not want to restrict ourselves to a single architecture or query

planning and execution strategy. We have therefore chosen three DBMSs based on different

technologies: PostgreSQL 13.4 [14] as a “classical” row-oriented relational DBMS, the column-

based in-memory system DuckDB 0.4 [15], and the distributed data processing system Spark

SQL 3.3 [16].

We have implemented a proof-of-concept system called YanRe, that works by rewriting a

query into a sequence of SQL statements which express Yannakakis’ algorithm. This makes

our approach easily portable and we can execute it on the three chosen DBMSs uniformly.

The system proceeds in several steps: we first extract the CQ from the given SQL query and



Table 1
DuckDB, PostgreSQL, and Spark SQL with or without YanRe over acyclic queries on the MusicBrainz

dataset.

Full Enumeration Queries
Method Timeouts Max (s) Mean (s) Med. (s) Std.Dev. (s)

DuckDB 69 770.55 20.38 0.39 77.20

DuckDB+YanRe 29 801.79 24.24 2.03 93.08

PostgreSQL 96 1107.66 45.18 0.78 157.25

PostgreSQL+YanRe 69 786.31 54.81 8.49 120.89

SparkSQL 98 1164.06 79.75 11.03 198.84

SparkSQL+YanRe 35 876.74 114.45 50.87 156.75

Min-Aggregation Queries
Method Timeouts Max (s) Mean (s) Med. (s) Std.Dev. (s)

DuckDB 58 1169.38 23.49 0.26 107.90

DuckDB+YanRe 0 15.57 2.31 1.44 2.38

PostgreSQL 91 1131.08 42.75 0.77 1153.96

PostgreSQL+YanRe 2 236.75 18.01 5.72 29.59

SparkSQL 91 1082.58 94.37 10.59 226.83

SparkSQL+YanRe 0 156.97 31.73 15.95 34.41

transform it into a hypergraph, from which we compute a join tree. We then generate individual

SQL statements that correspond to the semi-joins
1

and joins of an execution of Yannakakis’

algorithm over the join tree.

We perform experiments using a recent benchmark by Mancini et al. [2], which consists of

435 challenging synthetic join queries over the MusicBrainz dataset [17]. The queries, of which

351 are acyclic, involve between 2 and 30 tables. Classic benchmark datasets, such as TPC-H or

TPC-DS, are less interesting for our purposes since their focus is on comparatively small joins.

In Table 1, we summarise our results obtained with two types of experiments for the acyclic

queries in [2]. One set of tests (corresponding to SELECT * FROM ... queries in SQL) is referred

to as full enumeration queries, which are essentially the original queries of [2], only introducing

some projections to lessen the role of unimportant I/O. In a second set of experiments, we

explore the effectiveness of computing min-aggregate queries. For this purpose, we transform

each query to compute a "MIN" aggregate for a randomly chosen attribute. For such queries

Yannakakis’ algorithm only needs the first bottom-up traversal, provided that the relation at

the root of the join tree contains this attribute
2
.

In Table 1, the Max, Mean, Med. (Median), and Std. Dev. columns provide statistical

information for those queries that terminated within the 20 minutes time limit of the respective

case. The number of queries that did not terminate within 20 minutes is stated in the Timeouts

column. The number of timeouts is significantly lower with YanRe and the remaining timeouts

are primarily due to a prohibitively large number of output tuples. Of course, the discrepancy

1

We express semi-joins as usual via the SQL EXISTS operator.

2

This can always be achieved by rerooting the jointree.



is particularly big (see particularly the Max column) for the min-aggregate queries, where

Yannakakis-style evaluation completely avoids materialisation of all joins.

4. Conclusion and Further Work
We have presented a first empirical study of Yannakakis’ algorithm in common RDBMSs. Full

details are available in [18]. The results, though preliminary, clearly indicate that such a

structure-guided approach may indeed allow RDBMSs to handle large join queries that were

out of reach before. Our experiments split query evaluation into multiple SQL statements over

various temporary tables and naturally leads to some overhead on easy queries, as can be seen

in the higher median execution time of YanRe in Table 1. In contrast, queries that are too hard

for mainstream RDBMS to solve benefit immensely from evaluation via YanRe. The natural

next step is a full-fledged integration of Yannakakis’ algorithm into the RDBMSs to get the best

of both worlds.

In [18], we have also looked at “almost acyclic” CQs (i.e., CQs of low hypertree-width). Here,

many further challenging research questions wait to be solved: above all, database statistics

will have to be considered when computing a “good” decomposition – minimising the width

alone is no longer enough.
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