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Abstract
The paper presents recent findings on the fine-grained complexity of conjunctive queries with aggregation.
For common aggregate functions (e.g., min, max, sum), such a query can be phrased as an ordinary
conjunctive query over a database annotated with a suitable commutative semiring. We investigate the
ability to evaluate queries by constructing in log-linear time a data structure that provides logarithmic-
time direct access to the answers, ordered by a lexicographic order of choice. Importantly, these
complexity guarantees hold even if the result of the query is asymptotically larger than log-linear in the
size of the input.

1. Direct Access to Answers of Conjunctive Queries

Consider a query 𝑄 that may have a large number of answers, say cubic in the number of tuples
of the input database 𝐷. By answering 𝑄 via direct access, we avoid the materialization of the
list of answers, and instead, construct a compact data structure 𝑆 that supports random access:
given an index 𝑖, retrieve the 𝑖th answer. Hence, direct-access evaluation for a query 𝑄 consists
of two algorithms: the preprocessing algorithm constructs a data structure 𝑆𝐷 from an input
database 𝐷, and the access algorithm takes as input 𝑆𝐷 and an index 𝑖, and returns the 𝑖th answer.
If 𝑖 is greater than the total number of answers, then the algorithm returns null. We say that
the evaluation of 𝑄 is in ⟨loglinear, log⟩ if such algorithms exist so that preprocessing takes
log-linear time (that is, linear possibly multiplied by logarithmic factors) and access returns an
answer in logarithmic time. Note that 𝑆 may be considerably cheaper to construct than 𝑄(𝐷).

Direct-access solutions have been initially devised for Conjunctive Queries (CQs) as a way to
establish algorithms for enumerating the answers with linear preprocessing time and constant
delay [1]. Later, direct access played a crucial role within the task of enumerating the answers in
a uniformly random order [2]. When direct access got recognized as a goal in its own right [3],
the natural next step was to ask which orders over the answers allow for such evaluation.

The following example is inspired by the FIFA World Cup. We have a database of play-
ers of teams (countries), sponsors, games, and goals. Specifically, we have three relations:
Teams(player, country), Sponsors(org, country), and Goals(game, player, time). The following
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CQ finds times where sponsors got exposure due to goals of supported teams:

𝑄1(𝑐, 𝑜, 𝑝, 𝑡) ∶− Teams(𝑝, 𝑐), Sponsors(𝑜, 𝑐),Goals(𝑔, 𝑝, 𝑡)

Suppose also that we would like the answers to be ordered lexicographically by their order in the
head: first by country, then by organization, and so on. Note that 𝑐, 𝑜, 𝑝 and 𝑡 are free variables
and 𝑔 is an existential variable. Carmeli et al. [4] studied the ability to evaluate such ordered
queries with direct access. In the case of 𝑄1, they show that there is an efficient direct-access
evaluation, since the query is free-connex and there is no disruptive trio. We explain these terms
next. (For more precise definition, we refer the reader to Carmeli et al. [4].)

In general, a CQ has the form 𝑄(𝑥) ∶− 𝜑1(𝑥, 𝑦), … , 𝜑ℓ(𝑥, 𝑦)where 𝑥 and 𝑦 are disjoint sequences
of variables, and each 𝜑𝑖(𝑥, 𝑦) is an atomic query. A CQ is free-connex if it is acyclic and remains
acyclic even if the head is viewed as an atom. Also recall that a disruptive trio of a CQ 𝑄(𝑥) is a
set of three distinct free variables 𝑥1, 𝑥2, and 𝑥3 such that 𝑥1 and 𝑥2 neighbor 𝑥3 but not each
other, and 𝑥3 appears after both 𝑥1 and 𝑥2 in 𝑥. Two variables are considered neighbors if they
appear together in some query atom.

2. Ordered CQs over Annotated Databases

In this work, we continue with the line of work of Carmeli et al. [4] and investigate the ability
to support query evaluation via direct access for queries over annotated databases. To illustrate,
suppose that we would like to count the goals per sponsorship and player. We can phrase this
query as follows.

𝑄2(𝑐,Count(), 𝑜, 𝑝) ∶− Teams(𝑝, 𝑐), Sponsors(𝑜, 𝑐),Goals(𝑔, 𝑝, 𝑡)

Here, we order the answers first by 𝑐, then by Count(), and then by 𝑜 and 𝑝. Semantically, 𝑝, 𝑐,
and 𝑜 are treated as the grouping variables (rather than free variables), where each combination
of values defines a group of tuples over (𝑝, 𝑐, 𝑜, 𝑔, 𝑡) and Count() counts the tuples in the group.

CQs with some common aggregate functions can be translated into ordinary CQs over
annotated databases [5, 6]. We adopt the well-known framework of provenance semiring [7] and
phrase the query as an ordinary CQ with the annotation carrying the aggregate value (number
of goals in our example). To design direct-access evaluation, we found it more elegant, general,
and insightful to support annotation rather than SQL-like aggregate functions. For illustration,
we can phrase 𝑄2 as the following query.

𝑄3(𝑐, ⋆, 𝑜, 𝑝) ∶− Teams(𝑝, 𝑐), Sponsors(𝑜, 𝑐),Goals(𝑔, 𝑝, 𝑡)

Ignoring the ⋆ symbol, this is an ordinary CQ applied when the database is annotated by
elements from the domain 𝕂 of a commutative semiring (𝕂,⊕,⊗, 0̄, 1̄). In a nutshell, the idea is
that each tuple is annotated with an element of the semiring, the annotation of each tuple in
the group is the product of the participating tuple annotations, and the annotation of the whole
group is the sum of all tuple annotations in the group’s tuples. We can use different semirings
and annotations to compute different aggregate functions like sum, min, and max. In the case
of 𝑄3, for instance, the semiring is (ℤ, +, ⋅, 0, 1) and each tuple is annotated simply with the



number 1. Moreover, we order by 𝑐, then by the annotation, and then by 𝑜 and 𝑝. Notationally,
we specify the annotation position by the symbol ⋆ and refer to the query as a CQ⋆, which
is defined similarly to a CQ but with ⋆ added to the head. More precisely, we write a CQ⋆ as
𝑄(𝑥, ⋆, 𝑧) to denote that ⋆ is between the (possibly empty) sequences 𝑥 and 𝑧 of head variables.

3. Complexity Results

We now describe our results on direct access for CQ⋆s. As conventionally done in fine-grained
analysis of queries, we use the RAM model [8]. We assume logarithmic space for representing
each element of the semiring, and constant time for the operations ⊕ and ⊗. We also assume
that the semiring domain is ordered, and comparison is in constant time.

We begin with the case where the order does not involve the annotation. Equivalently, we
discuss CQ⋆s of the form 𝑄(𝑥, ⋆). The following theorem states that, in this case, the results of
Carmeli et al. [4] continue to hold for annotated databases. The theorem refers to the HYPER-
CLIQUE and SparseBMM hypotheses, which are common assumptions of lower bounds in
fine-grained complexity. (We refer the reader to Carmeli et al. [4] for details.)

Theorem 1. Let (𝕂,⊕,⊗, 0̄, 1̄) be a commutative semiring and 𝑄(𝑥, ⋆) a CQ⋆.

1. If 𝑄 is free-connex and with no disruptive trio, then direct access for 𝑄 is in ⟨loglinear, log⟩
on 𝕂-databases.

2. Otherwise, if 𝑄 is also self-join-free, then direct access for 𝑄 is not in ⟨loglinear, log⟩, assuming
the HYPERCLIQUE hypothesis (in case 𝑄 is cyclic) and the SparseBMM hypothesis (in case
𝑄 is acyclic).

The following theorem states a lower bound in an extremely simple query (Cartesian product)
for the semirings used to compute the aggregates count, sum, min, and max, assuming the
3SUM conjecture [9, 10].

Theorem 2. Let (𝕂,⊕,⊗, 0̄, 1̄) be one of the counting, numerical, max tropical, or min tropical
semirings. Direct access for the CQ⋆ 𝑄(⋆, 𝑥, 𝑦) ∶−𝑅(𝑥), 𝑆(𝑦) is not in ⟨loglinear, log⟩ over 𝕂-
databases, assuming the 3SUM conjecture.

Theorem 2 implies that, to obtain evaluation algorithms in ⟨loglinear, log⟩while incorporating
the annotation in the order, we need to restrict the class of CQ⋆s or make assumptions on the
annotated database. In the following theorem, we restrict the structure of the CQ⋆. We also
make the mild assumption that the semiring is ⊗-monotone, that is, the function 𝑓𝑐 is monotone
for every 𝑐 ∈ 𝕂, where 𝑓𝑐 ∶ 𝕂 → 𝕂 is defined by 𝑓𝑐(𝑦) = 𝑐 ⊗ 𝑦.

Theorem 3. Let (𝕂,⊕,⊗, 0̄, 1̄) be a ⊗-monotone commutative semiring, and 𝑄(𝑥, ⋆, 𝑧) a free-
connex CQ⋆ with no disruptive trio. If every atom of 𝑄 contains either all variables of 𝑧 or none of
them, then direct access for 𝑄 is in ⟨loglinear, log⟩.

As an example, the CQ⋆ 𝑄(𝑤, 𝑥, ⋆, 𝑦 , 𝑧) ∶−𝑅(𝑤, 𝑥), 𝑆(𝑥, 𝑦 , 𝑧), 𝑇 (𝑦 , 𝑧) is in ⟨loglinear, log⟩ over
databases annotated with the numerical semiring.



The final result that we explain in this section holds under two assumptions that we explain
next. For the first assumption, consider the aggregate query

𝑄(Max(𝑤), 𝑥, 𝑦) ∶−𝑅(𝑥, 𝑤), 𝑆(𝑦)

When translating 𝑄 into a CQ⋆, we obtain 𝑄(⋆, 𝑥, 𝑦) ∶−𝑅(𝑥), 𝑆(𝑦) overℚ-databases annotated by
themax tropical semiring (ℚ∪{−∞},max, +, −∞, 0). Hence, according to Theorem 2, we translate
the problem into an intractable one. Nevertheless, direct access for 𝑄 by (⋆, 𝑥, 𝑦) is, in fact, in
⟨loglinear, log⟩. This discrepancy stems from the fact that the hardness in Theorem 2 relies on
the annotation of tuples from both 𝑅 and 𝑆. Yet, in our translation, all 𝑆-facts are annotated by 1.
The resulting 𝕂-database is such that every fact is annotated by 1̄ (the multiplicative identity),
with the exception of one relation. We call such a 𝕂-database 𝑅-annotated.

The second assumption is that the operation⊕ is idempotent, that is, for every 𝑎 in the domain
𝕂 we have that 𝑎 ⊕ 𝑎 = 𝑎. This is the case when we start with the aggregate functions min and
max, for example.

The following theorem states that, under the above assumptions, we can effectively classify
every CQ⋆ without self-joins into two categories:

1. CQ⋆s with direct access in ⟨loglinear, log⟩;
2. CQ⋆s where direct access is not in ⟨loglinear, log⟩ under standard complexity assumptions

and under the assumption that the domain 𝕂 contains the domain of natural numbers.
(In fact, it suffices that we can generate an infinite increasing sequence of elements in 𝕂.)

This is done by converting the CQ⋆ 𝑄 into an ordinary CQ 𝑄0, so that direct access for the two
is computationally equivalent. We can then use previous results [4] to determine the feasibility
of efficient direct access.

Theorem4. Let (𝕂,⊕,⊗, 0̄, 1̄) be a⊕-idempotent commutative semiring. There exists a polynomial-
time algorithm that takes as input a free-connex CQ⋆ 𝑄 without self-joins and a relation symbol 𝑅
of 𝑄, and produces a full acyclic CQ 𝑄0 without self-joins, so that the following hold.

1. If 𝑄0 has no disruptive trio, then direct access for 𝑄 over 𝑅-annotated 𝕂-databases is in
⟨loglinear, log⟩.

2. Otherwise, in the case where ℕ ⊆ 𝕂, direct access for 𝑄 over 𝑅-annotated 𝕂-databases is not
in ⟨loglinear, log⟩, assuming the SparseBMM hypothesis.

As an example, consider the following CQ⋆:

𝑄(⋆, 𝑥1, 𝑥2, 𝑥3) ∶−𝑅(𝑥1, 𝑥3, 𝑤3), 𝑆(𝑥2, 𝑥3), 𝑇 (𝑥3, 𝑤1), 𝑈 (𝑤1, 𝑤2)

The translation of theorem 4 reduces direct access for 𝑄 on 𝑈-annotated 𝕂-databases to direct
access for the following CQ:

𝑄0(𝑦 , 𝑥1, 𝑥2, 𝑥3) ∶−𝑅′(𝑥1, 𝑥3, 𝑦), 𝑆′(𝑥2, 𝑥3, 𝑦), 𝑇 ′(𝑥3, 𝑦)

Since 𝑄0 does not have a disruptive trio, direct access for 𝑄0 is in ⟨loglinear, log⟩, and therefore,
so is direct access for 𝑄 on 𝑈-annotated 𝕂-databases.

See the full version of this paper [11] for more details about the results described here.
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