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Abstract
Knowledge graphs (KGs) are typically highly incomplete. Therefore substantial research has been
directed toward typically machine-learning-based approaches for knowledge graph completion (KGC),
i.e., predicting missing triples from the data stored in the KG. KG embedding models (KGEs) have yielded
promising results for KGC. In practice, the data management community typically represents major
properties of data through constraints, axioms, or dependencies expressed as logical rules. However, any
current KGE cannot capture vital logical rules, i.e., infer missing triples while adhering to such rules. For
instance, correctly capturing general composition and jointly capturing composition and hierarchy rules
is still an open problem. This work introduces the ExpressivE model that bridges this gap between the
data management and machine learning community. ExpressivE embeds pairs of entities as points and
relations as hyper-parallelograms in the virtual triple space R2𝑑. This model design allows ExpressivE
to capture a rich set of logical rules jointly and display any supported rule through the spatial relation
of hyper-parallelograms, additionally offering an intuitive and consistent geometric interpretation of
ExpressivE embeddings and captured rules. Experimental results on standard KGC benchmarks reveal
that ExpressivE is competitive with state-of-the-art KGEs and even significantly outperforms them on
WN18RR. This short paper is based on our recently published ICLR 2023 paper [1].
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1. Introduction

One of the key challenges in the data management community is to bring together machine
learning models and – typically logic-based – data management approaches. This challenge
is especially apparent in the field of graph data management, particularly when considering
knowledge graphs (KGs) that are typically highly incomplete [2]: On the one hand, the use
of machine learning models, called knowledge graph embedding models (KGEs), has achieved
promising results for knowledge graph completion (KGC) [3], i.e., for automatically predicting
missing triples. On the other hand, the data management community typically represents major
properties of data through constraints, axioms, or dependencies expressed as logical rules.

However, there is a major challenge in this: Many KGEs cannot respect vital logical rules
– termed capturing rules – which describes a KGE’s ability to infer missing triples while ad-
hering to such logical rules. Composition of relations is a particularly important constraint or
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dependency for data management – even more so in graph data management, where it allows
to describe paths. Recently, however, it was discovered that existing KGEs only capture a fairly
limited notion of composition [4, 5, 6, 7], solely capturing compositional definition, not general
composition (see Table 1 for the defining formulas). Even more, while existing KGEs capture
hierarchy [8, 9, 10, 5] and compositional definition [11, 12, 4, 6] individually, they cannot capture
both rules simultaneously (see Table 1).

Table 1
This table lists logical rules that several KGEs can capture, where ✓ represents that the rule is supported
and ✗ that it is not supported.

Logical Rule ExpressivE BoxE RotatE TransE DistMult ComplEx

Symmetry: 𝑟1(𝑋,𝑌 ) ⇒ 𝑟1(𝑌,𝑋) ✓ ✓ ✓ ✗ ✓ ✓
Anti-symmetry: 𝑟1(𝑋,𝑌 ) ⇒ ¬𝑟1(𝑌,𝑋) ✓ ✓ ✓ ✓ ✗ ✓
Inversion: 𝑟1(𝑋,𝑌 ) ⇔ 𝑟2(𝑌,𝑋) ✓ ✓ ✓ ✓ ✗ ✓
Comp. def.: 𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑌,𝑍) ⇔ 𝑟3(𝑋,𝑍) ✓ ✗ ✓ ✓ ✗ ✗
Gen. comp.: 𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑌,𝑍) ⇒ 𝑟3(𝑋,𝑍) ✓ ✗ ✗ ✗ ✗ ✗
Hierarchy: 𝑟1(𝑋,𝑌 ) ⇒ 𝑟2(𝑋,𝑌 ) ✓ ✓ ✗ ✗ ✓ ✓
Intersection: 𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑋,𝑌 ) ⇒ 𝑟3(𝑋,𝑌 ) ✓ ✓ ✓ ✓ ✗ ✗
Mutual exclusion: 𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑋,𝑌 ) ⇒ ⊥ ✓ ✓ ✓ ✓ ✓ ✓

While the extensive research on composition [11, 12, 4, 6] and hierarchy [8, 10, 9, 5] highlights
their importance, any KGE so far is incapable of: (1) capturing general composition, (2) capturing
composition and hierarchy jointly, and (3) providing an intuitive geometric interpretation of
captured rules. Thus, in this paper, our goal is to overcome these limitations by introducing a
KGE that captures a wide range of logical rules relevant to the data management community:

• We introduce the ExpressivE model and the virtual triple space it is based on, which
allows for an intuitive geometric interpretation of captured rules.

• We prove that our model captures any rule in Table 1, the first such KGE.

• We evaluate ExpressivE on KGC, finding that it is competitive with state-of-the-art (SOTA)
KGEs, even significantly outperforming them on some datasets.

2. Preliminaries

KGs can be represented as large collections of triples 𝑟𝑖(𝑒ℎ, 𝑒𝑡) over a finite set of relations
𝑟𝑖 ∈ R and entities 𝑒ℎ, 𝑒𝑡 ∈ E, where we call 𝑒ℎ the triple’s head and 𝑒𝑡 its tail. In what follows,
we assume the standard definition of capturing logical rules [12, 5, 1]. This means intuitively
that a KGE captures a rule if a set of parameters exists such that the logical rule is captured
exactly (i.e., any logically inferrable triple is predicted by the KGE) and exclusively (i.e., no
unwanted rule is supported by the KGE’s predictions).



3. ExpressivE and the Virtual Triple Space

ExpressivE embeds entities 𝑒𝑗 ∈ 𝐸 via a vector 𝑒𝑗 ∈ R𝑑, representing points in the embedding
space R𝑑 and relations 𝑟𝑖 ∈ 𝑅 as hyper-parallelograms in the virtual triple space R2𝑑 (see
Figure 1a for a visual representation). More specifically, ExpressivE assigns to a relation 𝑟𝑖 for
each of its arity positions 𝑝 ∈ {ℎ, 𝑡}: (1) a slope vector 𝑟𝑝𝑖 ∈ R𝑑, (2) a center vector 𝑐𝑝𝑖 ∈ R𝑑,
and (3) a width vector 𝑑𝑝

𝑖 ∈ (R≥0)
𝑑. Intuitively, these vectors define the slope 𝑟𝑝𝑖 of the hyper-

parallelogram’s boundaries, its center 𝑐𝑝𝑖 , and width 𝑑𝑝
𝑖 . A triple 𝑟𝑖(𝑒ℎ, 𝑒𝑡) is captured to be true

in an ExpressivE model if its relation and entity embeddings satisfy the following inequalities:

(𝑒ℎ − 𝑐ℎ𝑖 − 𝑟𝑡𝑖 ⊙ 𝑒𝑡)
|.| ⪯ 𝑑ℎ

𝑖 (1)

(𝑒𝑡 − 𝑐𝑡𝑖 − 𝑟ℎ𝑖 ⊙ 𝑒ℎ)
|.| ⪯ 𝑑𝑡

𝑖 (2)

Where 𝑥|.| represents the element-wise absolute value of a vector 𝑥, ⊙ represents the
Hadamard product, and ⪯ represents the element-wise less or equal operator. As it is very
complex to interpret this model in the embedding space R𝑑, we introduce the virtual triple space
R2𝑑 next that eases reasoning about ExpressivE’s parameters and inference capabilities.

(a) (b)

Figure 1: (a) Interpretation of relation parameters (orange dashed) as a parallelogram (green solid) in the
𝑗-th correlation subspace; (b)Multiple relation embeddings with the following properties: Symmetry (𝑟𝐵),
Anti-Symmetry (𝑟𝐴, 𝑟𝐷 , 𝑟𝐸 , 𝑟𝐹 ), Inversion (𝑟𝐷 = 𝑟−1

𝐴 ), Hierarchy 𝑟𝐴(𝑋,𝑌 ) ⇒ 𝑟𝐶(𝑋,𝑌 ), Intersection
𝑟𝐷(𝑋,𝑌 ) ∧ 𝑟𝐸(𝑋,𝑌 ) ⇒ 𝑟𝐹 (𝑋,𝑌 ), Mutual Exclusion (e.g., 𝑟𝐴(𝑋,𝑌 ) ∧ 𝑟𝐵(𝑋,𝑌 ) ⇒ ⊥).

Interpretation. We construct the virtual triple space R2𝑑 by concatenating the head 𝑒ℎ
and tail embeddings 𝑒𝑡. We call the 2-dimensional sub-space of R2𝑑, created from the 𝑗-th
dimension of 𝑒ℎ and 𝑒𝑡, the 𝑗-th correlation subspace, as it visualizes the captured logical rules of
this dimension. As visualized in Figure 1a, the relation parameters define a hyper-parallelogram
in R2𝑑. Using these notions, we analyze ExpressivE’s theoretical capabilities next.

4. Theoretical and Empirical Results

Expressiveness. It is vital for a KGE to be fully expressive [5], i.e., to be able to represent any
graph 𝐺 over 𝑅 and 𝐸, as otherwise, the KGE may underfit certain KGs severely. Theorem 4.1
proves that ExpressivE is fully expressive.



Theorem 4.1 (Expressive Power). ExpressivE can capture any arbitrary graph 𝐺 over 𝑅 and
𝐸 if the embedding dimensionality 𝑑 is at least in 𝑂(|𝐸| * |𝑅|).

Proof Sketch. Theorem 4.1 is proven by induction, starting with an ExpressivE embedding that
captures the complete graph, i.e., any triple over 𝐸 and 𝑅 is true. Each induction step shows
that we can alter the ExpressivE embedding to make an arbitrarily picked triple of the form
𝑟𝑖(𝑒𝑗 , 𝑒𝑘) with 𝑟𝑖 ∈ 𝑅, 𝑒𝑗 , 𝑒𝑘 ∈ 𝐸 and 𝑒𝑗 ̸= 𝑒𝑘 false. Finally, we add |𝐸| * |𝑅| dimensions to
make any self-loop – i.e., any triple of the form 𝑟𝑖(𝑒𝑗 , 𝑒𝑗) with 𝑟𝑖 ∈ 𝑅 and 𝑒𝑗 ∈ 𝐸 – false. □

Logical Rules. Theorem 4.2 reveals that ExpressivE can capture any of the most prominently
analyzed rules [11, 12, 8, 10, 9, 5] listed in Table 1.

Theorem 4.2. ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy,
(e) intersection, (f) mutual exclusion, (g) general composition, and (h) compositional definition.

Figure 1b shows how several one-dimensional ExpressivE embeddings capture rules (a)-(f).
ExpressivE captures: (a) symmetry via symmetric hyper-parallelograms, (b) anti-symmetry
via hyper-parallelograms that do not overlap with their mirror image, (c) inversion via 𝑟2’s
hyper-parallelogram being the mirror image of 𝑟1’s, (d) hierarchy via 𝑟2’s hyper-parallelogram
subsuming 𝑟1’s, (e) intersection via 𝑟3’s hyper-parallelogram subsuming the intersection of 𝑟1’s
and 𝑟2’s, and (f) mutual exclusion via non-overlapping hyper-parallelograms.

Composition. Capturing rules (g)-(h) is more complex. In particular, compositional definition
is of the form 𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑌, 𝑍) ⇔ 𝑟𝑑(𝑋,𝑍), where we call 𝑟𝑑 the compositionally defined
relation. This rule defines a relation 𝑟𝑑 that describes the start and end entities of a path
𝑋

𝑟1−→ 𝑌
𝑟2−→ 𝑍 . Since any two 𝑟1 and 𝑟2 can instantiate the body of a compositional definition

rule, any such pair may produce a new 𝑟𝑑. Interestingly, compositional definition translates
analogously into the virtual triple space: Intuitively, this means that the embeddings of any two
𝑟1 and 𝑟2 define for 𝑟𝑑 a convex region — which we call the compositionally defined region —
that captures 𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑌,𝑍) ⇔ 𝑟𝑑(𝑋,𝑍), leading to Theorem 4.3. Based on this insight,
ExpressivE captures compositional definition by embedding 𝑟𝑑 with the compositionally defined
region, defined by the embeddings of 𝑟1 and 𝑟2. Furthermore, ExpressivE captures general
composition by embedding 𝑟𝑑 with a hyper-parallelogram that subsumes the compositionally
defined region. Finally, capturing composition through the subsumption of spatial regions
allows ExpressivE to provably capture composition for 1-N, N-1, and N-M relations.

Theorem 4.3. Let 𝑟1, 𝑟2, 𝑟𝑑 ∈ 𝑅 be relations, 𝑠1, 𝑠2 be their ExpressivE embeddings, and assume
𝑟1(𝑋,𝑌 ) ∧ 𝑟2(𝑌, 𝑍) ⇔ 𝑟𝑑(𝑋,𝑍) holds. Then there exists a region 𝑠𝑑 in the virtual triple space
R2𝑑 such that (i) 𝑠1, 𝑠2, and 𝑠𝑑 capture 𝑟1(𝑋,𝑌 )∧ 𝑟2(𝑌,𝑍) ⇔ 𝑟𝑑(𝑋,𝑍) and (ii) 𝑠𝑑 is convex.

KGE Families. Interpretable KGEs consist of three families [1]: Functional KGEs, embedding
relations as functions; bilinear KGEs, embedding relations as bilinear products; and spatial KGEs,
embedding relations as regions. ExpressivE is the first KGE belonging to both the spatial and
functional family. BoxE [5] is its closest spatial, and RotatE [12] is its closest functional relative.
Space Complexity. For a 𝑑-dimensional embedding, RotatE and BoxE have each (2|𝐸|+

2|𝑅|)𝑑, whereas ExpressivE has (|𝐸|+ 6|𝑅|)𝑑 parameters, where |𝐸| is the number of entities
and |𝑅| the number of relations. Since |𝑅| << |𝐸| in most graphs, ExpressivE almost halves
the number of parameters for a 𝑑-dimensional embedding compared to BoxE and RotatE.



Table 2
KGC performance of ExpressivE and SOTA KGEs.

Family Model WN18RR FB15k-237
Fu

nc
./

Sp
at
. H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

ExpressivE .464 .522 .597 .508 .256 .387 .535 .350
BoxE [5] .400 .472 .541 .451 .238 .374 .538 .337
RotatE [12] .428 .492 .571 .476 .241 .375 .533 .338
TransE [12] .013 .401 .529 .223 .233 .372 .531 .332

B
ili
ne
ar DistMult [13, 14] - - .531 .452 - - .531 .343

ComplEx [13, 14] - - .547 .475 - - .536 .348
TuckER [15] .443 .482 .526 .470 .266 .394 .544 .358

Benchmark Results. Table 2 reveals that ExpressivE, with only half the number of pa-
rameters of BoxE and RotatE, performs best among its own model family on FB15k-237 and
is competitive with TuckER, especially in MRR. Even more, ExpressivE outperforms all com-
peting KGEs significantly on WN18RR. The significant performance increase of ExpressivE on
WN18RR is likely due to WN18RR containing both hierarchy and composition rules in contrast
to FB15k-237 (similar to the discussion of [5]). Thus, ExpressivE is highly parameter efficient
compared to related KGEs while reaching competitive performance on FB15k-237 and even new
SOTA performance on WN18RR, supporting the extensive theoretical results of our paper.

5. Conclusion

In this work, we have introduced ExpressivE, a KGE that (1) captures a wide range of logical
rules relevant to data management (including general composition and hierarchy), (2) provides
an intuitive geometric interpretation of captured rules, and (3) brings together the ability to
capture important types of rules with SOTA KGC performance. To facilitate reproducibility and
reusability, we provide ExpressivE’s code in a public GitHub repository1.
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