Capturing Self-Regulated Learning During Search

Kelsey Urgo^{1,*}, Jaime Arguello¹

¹University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract

Researchers in the learning sciences have demonstrated the benefits of effective self-regulated learning (SRL) in improving learning outcomes. The search-as-learning community aims to improve learning outcomes during search, but offers limited research exploring the impact of SRL on learning during search. Current limited research in search-as-learning explores only *perceptions* of SRL processes *after* the search process [1]. Results from such analyses are limited in that SRL is a dynamic, active process and participant perceptions of SRL can be unreliable [2, 3]. In this paper, we propose the implementation of an SRL coding framework to capture SRL processes as they unfold throughout a search session. Additionally, we offer several implications for future work using the proposed methodology.

Keywords

search-as-learning, self-regulated learning, qualitative coding

1. Introduction

The search-as-learning community was established to address the limitations of current search systems in supporting learning during search [4, 5]. Prior search-as-learning work has focused on several main factors that affect learning during search: (1) the user [6, 7, 8, 9]; (2) the task [10, 11, 12]; or (3) the system [13, 14, 15, 16]. Less work has focused on better understanding the learning *process* during search [12, 8, 17]. More exploration is necessary to uncover when, where, why, and how learning occurs during search. Critical to this understanding is the process of self-regulated learning (SRL) during search.

SRL is an active, reflective process in which a learner monitors and controls their own learning to achieve their learning objectives [18, 19, 20]. For decades, researchers in the learning sciences have shown that effective SRL improves learning outcomes [21, 22, 23, 24, 19, 25, 26, 27, 28]. However, little work has considered the role of SRL in learning during search [1, 29]. Such studies have used questionnaire data to explore perceptions of SRL processes *after* a search session, but arguably no work has explicitly explored SRL processes *during* search.

Learning sciences research has shown the limitations of particular methodologies for capturing SRL processes [30]. SRL is an active, dynamic process that occurs over time. Questionnaire data captures SRL perceptions after the learning session, making the methodology less-suited to capturing the changing, evolving process of SRL. Think-aloud protocols, on the other hand, code

© 0 0222 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Joint Proceedings of the 10th International Workshop on News Recommendation and Analytics (INRA'22) and the Third International Workshop on Investigating Learning During Web Search (IWILDS'22) co-located with the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'22), July 15, 2022, Madrid, Spain *Corresponding author.

kurgo@unc.edu (K. Urgo); jarguello@unc.edu (J. Arguello)

CEUR Workshop Proceedings (CEUR-WS.org)

learning comments and aim to capture specific SRL processes as they unfold across a learning session. In this paper, we propose and apply an SRL coding framework adapted from Greene et al. [3] to an example search-as-learning scenario. Additionally, we discuss how understanding SRL processes during search has several implications for future search-as-learning research.

2. Motivation

Prior search-as-learning research has considered how factors affect learning during search. The majority of this work has investigated the impact of three main factors on learning during search—(1) the user [6, 7, 8, 9]; (2) the task [10, 11, 12]; or (3) the system [13, 14, 15, 16]. Fewer studies have considered the *learning process* during search. Of those that have, Liu et al. [12] investigated knowledge shift patterns during the search process. To capture knowledge shifts, Liu et al. used mind maps. Participants were ask to create a mind map before the task to capture prior knowledge. Participants then modified these initial mind maps throughout the search process to capture how learning evolved. During analysis, the authors categorized different types of changes participants made to their mind maps (e.g., adding, modifying, or deleting nodes). The authors also categorized the location of the change within the mind map (e.g., level 1-2, level 3, or higher level changes). These categories were analyzed to better understand common and uncommon changes to mind maps across participant learning processes (e.g., adding nodes was more common than structural changes to mind maps). Additionally, the changes and locations of changes to mind maps were used to group search sessions (e.g., those learning processes with frequent changes early vs. late in the search session).

Roy et al. [8] also investigated the learning process, exploring the impact of domain knowledge on learning across the search session. While searching, participants were *intermittently* presented with vocabulary learning assessments to measure changes in learning. The authors found that prior knowledge impacted when participants had the highest knowledge gains. Participants with less prior knowledge had greater gains at the beginning of the search session and those with more prior knowledge had greater gains toward the end of the search session.

Urgo & Arguello [17] explored how a searcher's learning objective may impact the learning process during a search session. To manipulate learning objectives, the authors leveraged the Anderson & Krathwohl (A&K) taxonomy [31]. Specifically, learning objectives were situated at the intersection of a specific cognitive process (apply, evaluate, create) and knowledge type (factual, conceptual, procedural). Similarly, the A&K taxonomy was used to analyze the learning *pathways* followed by study participants toward a given objective. Pathways were defined as sequences of learning instances that were also assigned to a cell from the A&K taxonomy. Results found several important trends. First, procedural knowledge objectives had longer pathways, mostly due to participants iterating on create-level processes (e.g., iteratively modifying a procedure based on preferences or constraints). Second, irrespective of the objective, participants tended to iterate more on simple processes (e.g., remember, understand) than complex processes (e.g., analyze, evaluate). Finally, the authors explored common and uncommon cognitive process transitions conditioned on the objective. For example, conceptual objectives had fewer transitions from analyze to evaluate.

Although a small number of studies have investigated the learning process during search, there

are still large gaps in our understanding of when, where, how, and why learning occurs during search. Additionally, very limited research has investigated SRL in search-as-learning [1, 29]. Importantly, these studies have exclusively used questionnaire data to examine participants' post-task *perceptions* of engagement in SRL processes during the search session. In this paper, we argue that search-as-learning research should investigate SRL processes as they unfold across the search session, to better understand the role of SRL on learning during search. We describe an existing SRL coding framework [3] that is well-suited for this purpose. Additionally, we describe how think-aloud data (in conjunction with recorded search activities) can be used to detect and characterize SRL processes during search.

3. SRL Models

Self-regulated learning (SRL) is an active and reflective process that involves a learner monitoring and controlling their learning to achieve specific learning goals [18, 19, 20]. Research in the learning sciences has underscored the important role of effective SRL in improving learning outcomes [21, 22, 23, 24, 19, 25, 26, 27, 28]. From prior work, several models of SRL have emerged [32, 33, 34, 35, 21]. These models originate from various fields (e.g., social foundations of cognition and behavior [36]), theories (e.g., Action Control Theory [37]), and/or motivating factors (e.g., learner motivation). We propose the Winne & Hadwin (W&H) model [23] because it is supported by evidence from much prior work [38, 39, 40, 41, 42, 43, 44] and it emphasizes *metacognitive knowledge* (i.e., a learner's knowledge of their own learning and general knowledge of learning strategies) and *metacognitive skills*. Metacognitive skills include monitoring and control and are integral to the W&H model discussed next.

The W&H model of SRL consists of four phases-(1) task definition; (2) planning and goalsetting; (3) studying tactics; and (4) adaptation. In the task definition phase, a learner generates an understanding of the requirements of the task. In the planning and goal-setting phase, a learner sets goals to monitor progress. In the studying tactics phase, a learner uses strategies (e.g., summarizing, note-taking, selecting sources) to accomplish their goals. Finally, in the adaptation phase, the learner reflects on their choices, progress, successes, and failures to make decisions about what to do next. Conditions (e.g., motivation, task understanding, time, resources), operations (e.g., note-taking, summarizing), and standards (e.g., criteria learner deems important to achieve task) are important components throughout the W&H model. During each phase of the model, a learner uses conditions to make decisions about operations and standards. Metacognitive monitoring and control are the "pivots upon which each of the four phases turn." [45, p. 469] Metacognitive monitoring is the learner's process of using standards to judge what has been learned and produced in order to assess progress toward their learning goals. Metacognitive control is the implementation of strategies based on feedback from monitoring. For example, a learner may read through a section of text and, after monitoring, realize they are not understanding anything. In response, the learner enacts control by selecting a new informational source that may be better suited to their level of understanding. In the next section, we discuss how the W&H model has been operationalized to capture SRL in prior work outside of search-as-learning.

4. Capturing SRL Outside of Search-as-Learning

SRL processes can be difficult to capture because they are dynamic and adaptive [46]. To address this challenge, researchers in the learning sciences have developed two primary means of capturing SRL, using—(1) questionnaires [47, 48, 49]; or (2) coded think-aloud data [50, 51, 3]. While static questionnaire data captures perceptions of SRL *after* the learning session, coded think-aloud data is more suited to capturing the dynamic, adaptive process of SRL by coding processes as they occur *across* the learning session. Greene et al. [30] have proposed a "right tool for the job" approach to collecting SRL data. Greene et al. assert that while "motivational and dispositional aspects of SRL may be best captured by self-report data [...] more transient, dynamic task-specific aspects may be best captured by TAPs [think-aloud protocols]." [30, p. 323] We argue that in search-as-learning research it is precisely the transient, dynamic, task-specific aspects that are unknown and crucial to understanding how best to support learning during search. For this purpose, we propose the Greene et al. framework [3] to understand SRL processes during search.

5. Applying SRL Coding Framework to Search-as-Learning

In response to the gaps left behind by questionnaire data alone, SRL coding frameworks have been developed to analyze think-aloud data exhibited by users of computer-based learning enivironments [52, 53]. Greene et al. developed an SRL coding framework [3] (adapted from [52, 53]) that is rooted in the W&H model of SRL. The framework breaks SRL processes into five macro-SRL processes—(1) planning; (2) monitoring; (3) strategy use; (4) task difficulty & demands; and (5) interest. Each macro-SRL process is associated with one or more components of the W&H model and contains micro-SRL processes that can be coded using think-aloud comments. In this section, we review the macro-SRL processes and the micro-SRL processes contained within each. Many of the descriptions are pulled directly from Greene et al., while some have been slightly modified. Extending the application proposed by Greene et al., we also provide novel example think-aloud comments and search activities that may be indicative of each micro-SRL process. The example, fictional think-aloud comments and search activities are inspired by actual participant comments and behaviors from a learning-oriented search task operationalized in a search-as-learning study: "Determine, which best explains the notion of lift and why: Bernoulli's principle or Newton's laws of motion?" [17] In the study, participants were provided with a search system and word document to take notes (as is common to many search-as-learning studies).

Macro-SRL: Planning The macro-SRL process of *planning* is associated with the second phase of the W&H model: *planning and goal-setting*. Shown in Table 1, there are four micro-SRL processes associated with *planning*. While the examples provided are all think-aloud comments, there may be search activities that are also indicative of these micro-SRL processes. For example, the *subgoals* process may be engaged when a searcher adds an additional heading to their notes or queries "definition of Bernoulli's principle".

Macro-SRL: Strategy Use The macro-SRL process *strategy use* is associated with the third phase of the W&H model *studying tactics*. Shown in Table 2, there are nineteen micro-SRL

Micro-SRL Process	Description	Example
Planning	Stating two or more subgoals simul- taneously	[Writes numbered list of multiple subgoals in text editor.]
Recycle Goal in Working Memory	Restating the goal (e.g., question or parts of a question) in working memory.	"Ok, so I need to understand how Bernoulli's principle is different from Newton's third law of mo- tion."
Subgoals	Learner articulates a specific sub- goal that is relevant to the overall goal.	[Writes "Define Bernoulli's princi- ple in simple terms" in text editor.]
Time Planning	Participant refers to the number of minutes remaining AND indicates whether a goal can be met during this time.	"Ok, I have 5 minutes left and this section is only 3 paragraphs long. Yes, I have time to read it."

Table 1Macro-SRL Process: Planning

processes associated with *strategy use*. Many of the micro-SRL processes associated with *strategy use* quite naturally fit with typical search-as-learning participant behaviors (e.g., *summarization*, *taking notes, select new informational source, manipulate representation*).

We omitted one *strategy use* micro-SRL process from the original Greene et al. framework: *search*. *Search* has been excluded as it arguably encapsulates an entire search-as-learning session and is therefore not relevant to this field as a specific micro-SRL process.

Micro-SRL Process	Description	Example
Comparing & contrasting	Examining two separate representa- tions or ideas (i.e., text, picture, simu- lation, etc.) to determine how they are similar and/or different.	[Navigates back and forth between two im- ages that show examples of Bernoulli's prin- ciple acting on a sailboat's sail versus an airplane's wing]
Coordinating informational sources	Using pointing, highlighting, or ver- balizing the matching elements of two different representations, e.g., drawing and notes. Either representation can be in the environment or in participant's notes.	[Copy/pastes text in webpage to table in word document] "I'm going to add this blurb to the table."
Corroborating sources	Comparing information from two sepa- rate sources, in the search environment, to verify their content as accurate.	[Copy/pastes two or more sources under- neath factual information in notes]
Draw	Making a drawing or diagram to assist in learning.	[Draws diagram of wing with forces acting on it]
Establishing Chronology	Participant determines when a histori- cal event occurred; often in relation to another event but not necessarily.	"Oh, interesting, Newton's laws and Bernoulli's principle were developed <i>before</i> people understood how lift worked."

Table 2	
Macro-SRL Process:	Strategy Use

T-11- 2

Historical Perspective Tak- ing	Participant puts self in position of a his- torical figure; infers that figure's per- spective, thinking, emotions; expresses	"Based on the timeline of when these wer developed, I would guess that Bernoul wasn't trying to apply this idea specificall
	understanding of that figure's decision	to lift."
Hypothesizing	making at that time. Making a tentative conclusion or in-	"I think the paper will move upward whe
51	formed guess (about content relevant	he blows across it because the air will b
	to the task) based upon information ei-	moving faster on the top rather than th
	ther in the environment or from prior knowledge.	bottom of the paper."
Inferences	Drawing a conclusion based on two or	"Ok, so if pressure is important to lift in th
	more pieces of information that were	wing example and the paper example, the
	read, seen, or heard in the search ses- sion.	I think Bernoulli's principle is important t lift."
Inferring Source Content	Participant makes a guess as to the con-	"The snippet [on the SERP] mentions en
	tent available in a source.	ergy in a system, so I think this site shoul be about conservation of energy."
Knowledge elaboration	Making a definitive conclusion by elab-	[Viewing diagram of a wing indicating pre
	orating on what was just read, seen, or	sure, velocity, and lift] "Ok, so if this di
	hear with prior knowledge.	gram were showing forces from Newton third law, then it would show the flow of
		the air here and downwash here from co
		servation of momentum."
Manipulate representation	Using pause, start, rewind, zoom, or	[Rewinds YouTube video of Bernoulli
	other controls with a graphical repre- sentation.	principle explanation]
Memorization	Learner tries to memorize text, diagram,	"Once again without looking, Bernoulli
	etc.	principle is the inverse relationship b tween velocity and pressure of a fluid."
Prior Knowledge Activation	Learner searches memory for relevant	"Oh yes! I do remember that Bernoulli
	prior knowledge either before begin-	principle has something to do with pre
	ning performance of a task or during task performance.	sure"
Reading notes	Learner reads over notes, drawings, etc.	"I'm going to read over my notes." [Read through notes]
Re-reading	Re-reading or revisiting a section of the	"I'm going to read through this section
	search environment.	again."
Self-knowledge activation	The participant verbalizes that they are going to invoke a strategy because it	"I'm going to summarize what I just rea in my notes because that will help me r
	is personally helpful, or that they are	member it better."
	NOT going to invoke a strategy because	
	it is NOT helpful to them, or, they say	
	something about their own knowledge,	
Solaat now informational	beliefs, disposition, etc.	[Deturne to SEDD and alight on a different
Select new informational source	Using the search environment to access a new representation of the desired in-	[Returns to SERP and clicks on a different result]
· · · · · · · · · ·	formation (e.g., navigating to new web-	
2	page).	Fear 1. 7
Summarization	Verbally restating or writing what was	[Writes summary in text editor]
	just read, inspected, or heard in the search session.	
Taking notes	Learner writes down information.	[Writes notes in text editor]

Macro-SRL: Monitoring The macro-SRL process *monitoring* is associated with the central component *metacognitive monitoring* that functions throughout the W&H model. Shown in Table 3, there are twelve micro-SRL processes associated with *monitoring*. While many of these processes are quite intuitive (e.g., *monitoring progress toward subgoals, time monitoring*), there are two important concepts related to *monitoring* that may be less familiar to search-as-learning researchers, *feeling of knowing* and *judgment of learning*. Feeling of knowing (FOK) involves a learner reflecting on whether or not they are familiar with a piece of information. [52, 53]. Judgment of learning (JOL) involves a learner reflecting on whether or not they are two micro-SRL processes associated with JOL: *JOL* and *JOLT*. *JOL* involves a learner expressing that they explicitly do or do not understand something. *JOLT*, on the other hand, involves a learner expressing that they have some understanding until something proves or disproves that their understanding is correct.

Macro-SRL: Task Difficulty & Demands The macro-SRL process *task difficulty & demands* is associated with the *conditions* component of the W&H model. Shown in Table 4, there are three micro-SRL processes associated with *task difficulty & demands*. Such processes offer a more nuanced look at task difficulty than questionnaire methods typically used in search-as-learning [56].

Macro-SRL: Interest The macro-SRL process *task interest* is associated with the *conditions* component of the W&H model. *Task interest* most closely aligns with a subset of conditions called *cognitive conditions*. Cognitive conditions include variables such as prior knowledge, motivation, and task understanding. Shown in Table 5, there is one micro-SRL process, *interest statement*. Similar to *task difficulty & demands*, documenting interest statements may offer a more nuanced look at task interest than questionnaire methods alone [56].

6. Implications

While effective SRL has been shown to improve learning outcomes, little research in searchas-learning has explored where, when, why, and how frequently SRL processes occur while learning during search. The proposed coding framework adapted from Greene et al. affords a nuanced look into SRL processes during search-as-learning studies. We offer five major implications for future search-as-learning work given the proposed methodology.

First, capturing SRL *during* the search process (versus post-search perceptions with questionnaire data) allows researchers to explore the effects of *observed* SRL on learning outcomes. Prior search-as-learning research has not investigated the effects of SRL processes on learning outcomes. Regardless of particular micro- or macro-SRL processes, SRL-coded think-aloud and search activity data may give researchers the opportunity to better understand the overall effect of SRL on learning.

Second, capturing SRL processes during search may enable search-as-learning researchers to better understand the impact of *specific* SRL processes on learning. By coding think-aloud comments and search activities into micro- and macro-SRL processes, researchers can calculate the frequency of each process. This information can then be analyzed to better understand the relationship between particular SRL processes and learning outcomes.

Micro-SRL Process	Description	Example
Content Evaluation	Realization that what was just read and/or seen is or is not useful for the overall goal or subgoal; i.e., recognition of relevance.	[After scanning through results, re formulates query with more spe cific search terms from Bernoulli's principle to Bernoulli's principle ap plied to lift]
Emotion monitoring	Participant realizes that he/she is having an emotional response due to some aspect of the learning task.	"I'm just getting frustrated because this definition is very math heavy.
Emotion regulation	Participant actively attempts to control emotional response to some aspect of the learning task.	"I'm getting frustrated, I just need to take a deep breath and relax."
Evaluate Content as Relevant to Task Goal	Statement that what was just read and/or seen is or is not useful for a <i>specific</i> subgoal.	[After scanning through results, re formulates query with exact term from subgoal in text editor fron Newton's Laws to Newton's Third Law applied to lift]
Expectation of adequacy of content	Expecting that a certain type of rep- resentation will prove either ade- quate or inadequate given the cur- rent goal.	"this section will probably give me the information I need to know whether Bernoulli's principle o Newton's third law makes the mos sense." "I don't think this section on Venturi flow will help me under stand how Bernoulli's principle ap plies to lift."
Feeling of Knowing (FOK)	Learner is aware of having read something in the past and having some understanding of it, but is not able to recall it on demand or learner states this is information not before seen.	"I remember this was on the tes from before the task" "I've neve heard of Venturi flow before."
Judgment of Learning (JOL)	Learner becomes aware that they do or do not know or understand everything they read.	"Oh! I get it now.""I'm not under standing any of this, it's hard."
Judgment of Learning Tentative (JOLT)	Participant has some understand- ing, is not sure that it is accurate, but indicates that s/he will pro- ceed with that understanding un- til further evidence confirms/ dis- confirms it.	"I'm not sure I totally understand Bernoulli's principle from this, bu I'm going to go with it for now."
Monitor progress toward subgoals	Assessing whether learner's previously-set subgoal and/or learner's own standard for under- standing has been met.	"Oh, I said I was going to get 3 ex amples and I only have 2. Let m find one more."
Monitor use of strategies	Participant comments on how use- ful a strategy is/was.	"Yeah, making this table is reall- helping me understand the differ ences between Bernoulli's principl and Newton's third law of motion
Self-Questioning	The participant asks a question rel- evant to the task, but does not ar- ticulate a specific plan to investi- gate the answer. Indicates that the participant has recognized a gap in understanding.	"So, what is the difference between Bernoulli's principle and Newton' third law of motion?"
Time monitoring	Participant refers to the number of minutes remaining.	"Ok, I only have 3 minutes left."

Table 3Macro-SRL Process: Monitoring

Micro-SRL Process	Description	Example
Help-seeking behavior	Learner seeks assistance regarding either the adequacy of their un- derstanding or their learning be- havior, regardless of whether the instructions indicate that the ex- perimenter/tutor will provide assis- tance.	"Why is the lift arrow pointed the wrong way in the diagram?"
Representation difficulty	Learner indicates the representa- tion (i.e., picture, text, simulation) is not clear and/or unusable in gen- eral, regardless of one's learning goal.	"This paragraph about Bernoulli's principle and lift is really confusing I would just like to see a diagram of the forces acting on a wing."
Task difficulty	Learner indicates one of the follow- ing: (1) the task is either easy or difficult, (2) the questions are ei- ther simple or difficult, (3) using the search environment is easier or more difficult than using a book.	"It seems like they are still unde- cided on which best explains lift This is so hard!"

Table 4

Macro-SRL Process: Task Difficulty & Demands

Macro-SRL Process: Interest

Micro-SRL Process	Description	Example
Interest Statement	Learner has or does not have a cer- tain level of interest in the task or in the content domain of the task.	"Oh, this is really interesting." "This is boring."

Third, a major goal of search-as-learning is to develop tools that better support learning during search. Effective SRL is critical for learning. Therefore, future work should develop tools to directly support SRL processes. We propose four types of tools to encourage and support distinct SRL processes during search. One, future work should consider tools that allow searchers to develop subgoals, take notes with respect to subgoals, and mark subgoals as completed. Such tools can encourage and support *planning* and *monitoring*. Two, future work should consider note-taking tools with different types of structures to organize information. Different structures might be able to support different micro-SRL processes within strategy use. For example, tables might support comparing and contrasting, lists might support establishing chronology, concept maps might support drawing inferences, and diagram capabilities might support drawing. Three, future work should consider tools that prompt self-reflection in contextually relevant ways. Such tools might encourage and support both strategy use and monitoring. For example, tools might prompt searchers with various questions: "How does this relate to the article you just read?"; "What do you already know about this topic?"; and "What remaining questions do you still have about this topic?" Finally, future work should consider tools that search for alternate representations of a given piece of information to support task difficulty & demands. For example, such a tool might enable a searcher to highlight a passage of text and search for non-textual representations of the content, such as images, videos, and tables.

Fourth, future search-as-learning research should investigate the relationship between particular SRL processes and search activities that can be logged by a system. In this paper, we offer several potential examples (e.g., a new header in a note-taking tool may suggest *planning*). Better understanding the types of search activities that are associated with particular SRL processes would allow future work to potentially predict the occurrence of SRL simply using search interaction data.

Finally, researchers in the learning sciences assert that the relative importance of particular SRL processes vary based on academic domain (e.g., science versus history) and context (e.g., physical space, time constraints, available resources) [3]. For this reason, future searchas-learning research should investigate whether and how the importance of particular SRL processes vary based on the task domain (e.g., biology, statistics); specific task constraints (e.g., task importance, timeframe); or the learning objective (e.g., cognitive process, knowledge type). For example, undergraduate biology students searching to learn about osmosis and diffusion may need support for different SRL processes than professional data analysts searching to learn about a new statistical method.

7. Conclusion

For decades, researchers in the learning sciences have observed the positive impacts of effective SRL on learning outcomes. Additionally, researchers have developed methods for capturing SRL within computer-based learning environments. Leveraging these existing coding frameworks is important to advancing future search-as-learning research. While prior work has considered the extent to which searchers *perceive* engagement in SRL processes, it is critical to explore when, where, why, and how frequently SRL processes actually occur *during* a search session. Doing so will allow researchers to explore—(1) the overall effect of SRL on learning during search; (2) the impact of particular SRL processes on learning during search; (3) tools that support important SRL processes during search; (4) the relationship between particular SRL processes and search activities; and (5) factors that may impact which SRL processes are most critical to supporting learning during search.

References

- A. Crescenzi, A. R. Ward, Y. Li, R. Capra, Supporting Metacognition during Exploratory Search with the OrgBox, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2021, pp. 1197–1207. URL: http://doi.org/10.1145/3404835.3462955.
- P. H. Winne, D. Jamieson-Noel, Exploring students' calibration of self reports about study tactics and achievement, Contemporary Educational Psychology 27 (2002) 551– 572. URL: https://www.sciencedirect.com/science/article/pii/S0361476X02000061. doi:10. 1016/S0361-476X(02)00006-1.

- [3] J. A. Greene, C. M. Bolick, W. P. Jackson, A. M. Caprino, C. Oswald, M. McVea, Domainspecificity of self-regulated learning processing in science and history, Contemporary Educational Psychology 42 (2015) 111–128. URL: https://linkinghub.elsevier.com/retrieve/ pii/S0361476X15000260. doi:10.1016/j.cedpsych.2015.06.001.
- [4] J. Allan, B. Croft, A. Moffat, M. Sanderson, Frontiers, challenges, and opportunities for information retrieval: Report from SWIRL 2012 the second strategic workshop on information retrieval in Lorne, ACM SIGIR Forum 46 (2012) 2. URL: http://dl.acm.org/ citation.cfm?doid=2215676.2215678. doi:10.1145/2215676.2215678.
- [5] K. Collins-Thompson, P. Hansen, C. Hauff, Search as Learning (Dagstuhl Seminar 17092) (2017). doi:10.4230/dagrep.7.2.135.
- [6] T. Willoughby, S. A. Anderson, E. Wood, J. Mueller, C. Ross, Fast searching for information on the Internet to use in a learning context: The impact of domain knowledge, Computers & Education 52 (2009) 640–648. URL: https://www.sciencedirect.com/science/article/pii/ S0360131508001802. doi:10.1016/j.compedu.2008.11.009.
- [7] H. L. O'Brien, A. Kampen, A. W. Cole, K. Brennan, The Role of Domain Knowledge in Search as Learning, in: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, CHIIR '20, Association for Computing Machinery, Vancouver BC, Canada, 2020, pp. 313–317. URL: http://doi.org/10.1145/3343413.3377989. doi:10.1145/ 3343413.3377989.
- [8] N. Roy, F. Moraes, C. Hauff, Exploring Users' Learning Gains within Search Sessions, in: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, CHIIR '20, Association for Computing Machinery, Vancouver BC, Canada, 2020, pp. 432– 436. URL: http://doi.org/10.1145/3343413.3378012. doi:10.1145/3343413.3378012.
- [9] G. Pardi, J. von Hoyer, P. Holtz, Y. Kammerer, The Role of Cognitive Abilities and Time Spent on Texts and Videos in a Multimodal Searching as Learning Task, in: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, ACM, Vancouver BC Canada, 2020, pp. 378–382. URL: https://dl.acm.org/doi/10.1145/3343413.3378001. doi:10. 1145/3343413.3378001.
- [10] S. Ghosh, M. Rath, C. Shah, Searching As Learning: Exploring Search Behavior and Learning Outcomes in Learning-related Tasks, in: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, CHIIR '18, ACM, New York, NY, USA, 2018, pp. 22–31. URL: http://doi.acm.org/10.1145/3176349.3176386. doi:10.1145/3176349.3176386.
- [11] R. Kalyani, U. Gadiraju, Understanding User Search Behavior Across Varying Cognitive Levels, in: Proceedings of the 30th ACM Conference on Hypertext and Social Media, HT '19, Association for Computing Machinery, New York, NY, USA, 2019, pp. 123–132. URL: http://doi.org/10.1145/3342220.3343643. doi:10.1145/3342220.3343643.
- [12] H. Liu, C. Liu, N. J. Belkin, Investigation of users' knowledge change process in learningrelated search tasks, Proceedings of the Association for Information Science and Technology 56 (2019) 166–175. doi:https://doi.org/10.1002/pra2.63.
- [13] Y. Kammerer, R. Nairn, P. Pirolli, E. H. Chi, Signpost from the masses: learning effects in an exploratory social tag search browser, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '09, Association for Computing Machinery, Boston, MA, USA, 2009, pp. 625–634. URL: http://doi.org/10.1145/1518701.1518797. doi:10. 1145/1518701.1518797.

- [14] L. Freund, R. Kopak, H. O'Brien, The effects of textual environment on reading comprehension: Implications for searching as learning, Journal of Information Science 42 (2016) 79–93. URL: https://doi.org/10.1177/0165551515614472. doi:10.1177/0165551515614472, publisher: SAGE Publications Ltd.
- [15] N. Roy, M. V. Torre, U. Gadiraju, D. Maxwell, C. Hauff, Note the Highlight: Incorporating Active Reading Tools in a Search as Learning Environment, in: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, CHIIR '21, Association for Computing Machinery, New York, NY, USA, 2021, pp. 229–238. URL: http://doi.org/10. 1145/3406522.3446025. doi:10.1145/3406522.3446025.
- [16] A. Câmara, N. Roy, D. Maxwell, C. Hauff, Searching to Learn with Instructional Scaffolding, in: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, CHIIR '21, Association for Computing Machinery, New York, NY, USA, 2021, pp. 209–218. URL: http://doi.org/10.1145/3406522.3446012. doi:10.1145/3406522.3446012.
- [17] K. Urgo, J. Arguello, Understanding the "Pathway" Towards a Searcher's Learning Objective, ACM Transactions on Information Systems 40 (2022) 77:1–77:42. URL: http://doi.org/10. 1145/3495222. doi:10.1145/3495222.
- [18] P. H. Winne, Self-regulated learning viewed from models of information processing, in: Self-regulated learning and academic achievement: Theoretical perspectives, 2nd ed, Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US, 2001, pp. 153–189.
- [19] B. J. Zimmerman, D. H. Schunk, Handbook of self-regulation of learning and performance, Handbook of self-regulation of learning and performance, Routledge/Taylor & Francis Group, New York, NY, US, 2011. Pages: xiv, 484.
- [20] D. H. Schunk, Self-Regulation Through Goal Setting, ERIC Digest (2001) 2.
- [21] M. Boekaerts, M. Zeidner, P. R. Pintrich, P. R. Pintrich, Handbook of Self-Regulation, Elsevier Science & Technology, San Diego, UNITED STATES, 1999. URL: http://ebookcentral. proquest.com/lib/unc/detail.action?docID=300645.
- [22] T. Sitzmann, K. Ely, A meta-analysis of self-regulated learning in work-related training and educational attainment: What we know and where we need to go, Psychological Bulletin 137 (2011) 421–442. doi:10.1037/a0022777, place: US Publisher: American Psychological Association.
- [23] P. H. Winne, A. F. Hadwin, Studying as self-regulated engagement in learning, in: Metacognition in educational theory and practice, 1998.
- [24] D. H. Schunk, C. W. Swartz, Goals and Progress Feedback: Effects on Self-Efficacy and Writing Achievement, Contemporary Educational Psychology 18 (1993) 337– 354. URL: https://www.sciencedirect.com/science/article/pii/S0361476X83710246. doi:10. 1006/ceps.1993.1024.
- [25] B. J. Zimmerman, M. M. Pons, Development of a Structured Interview for Assessing Student Use of Self-Regulated Learning Strategies, American Educational Research Journal 23 (1986) 614–628. URL: https://doi.org/10.3102/00028312023004614. doi:10.3102/ 00028312023004614, publisher: American Educational Research Association.
- [26] B. J. Zimmerman, M. Martinez-Pons, Construct validation of a strategy model of student self-regulated learning, Journal of Educational Psychology 80 (1988) 284–290. doi:10. 1037/0022-0663.80.3.284, place: US Publisher: American Psychological Association.
- [27] D. H. Schunk, Sequential attributional feedback and children's achievement behaviors,

Journal of Educational Psychology 76 (1984) 1159–1169. doi:10.1037/0022-0663.76. 6.1159, place: US Publisher: American Psychological Association.

- [28] D. H. Schunk, Modeling and attributional effects on children's achievement: A self-efficacy analysis, Journal of Educational Psychology 73 (1981) 93–105. doi:10.1037/0022-0663.
 73.1.93, place: US Publisher: American Psychological Association.
- [29] J. F. von Hoyer, J. Kimmerle, P. Holtz, Acquisition of false certainty: Learners increase their confidence in the correctness of incorrect answers after online information search, Journal of Computer Assisted Learning 38 (2022) 833–844. doi:10.1111/jcal.12657.
- [30] J. A. Greene, V. M. Deekens, D. Z. Copeland, S. Yu, Capturing and modeling self-regulated learning using think-aloud protocols, in: Handbook of self-regulation of learning and performance, 2nd ed, Educational psychology handbook series, Routledge/Taylor & Francis Group, New York, NY, US, 2018, pp. 323–337.
- [31] L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A. Cruikshank, R. E. Mayer, P. R. Pintrich, J. Raths, M. C. Wittrock, A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Abridged Edition, 1 edition ed., Pearson, New York, 2000.
- [32] P. H. Winne, N. E. Perry, Measuring self-regulated learning, in: Handbook of self-regulation, Academic Press, San Diego, CA, US, 2000, pp. 531–566. doi:10.1016/ B978-012109890-2/50045-7.
- [33] P. R. Pintrich, Chapter 14 The Role of Goal Orientation in Self-Regulated Learning, in: M. Boekaerts, P. R. Pintrich, M. Zeidner (Eds.), Handbook of Self-Regulation, Academic Press, San Diego, 2000, pp. 451–502. URL: http://www.sciencedirect.com/science/article/ pii/B9780121098902500433. doi:10.1016/B978-012109890-2/50043-3.
- [34] B. J. Zimmerman, Chapter 2 Attaining Self-Regulation: A Social Cognitive Perspective, in: M. Boekaerts, P. R. Pintrich, M. Zeidner (Eds.), Handbook of Self-Regulation, Academic Press, San Diego, 2000, pp. 13–39. URL: http://www.sciencedirect.com/science/article/pii/ B9780121098902500317. doi:10.1016/B978-012109890-2/50031-7.
- [35] B. J. Zimmerman, Becoming a Self-Regulated Learner: An Overview, Theory Into Practice 41 (2002) 64–70. URL: http://www.tandfonline.com/doi/abs/10.1207/s15430421tip4102_2. doi:10.1207/s15430421tip4102_2.
- [36] A. Bandura, Social foundations of thought and action: A social cognitive theory, Social foundations of thought and action: A social cognitive theory, Prentice-Hall, Inc, Englewood Cliffs, NJ, US, 1986. Pages: xiii, 617.
- [37] J. Kuhl, From Cognition to Behavior: Perspectives for Future Research on Action Control, in: J. Kuhl, J. Beckmann (Eds.), Action Control: From Cognition to Behavior, SSSP Springer Series in Social Psychology, Springer, Berlin, Heidelberg, 1985, pp. 267–275. URL: https: //doi.org/10.1007/978-3-642-69746-3_12. doi:10.1007/978-3-642-69746-3_12.
- [38] J. A. Greene, R. Azevedo, A Theoretical Review of Winne and Hadwin's Model of Self-Regulated Learning: New Perspectives and Directions, Review of Educational Research 77 (2007) 334–372. URL: https://doi.org/10.3102/003465430303953. doi:10.3102/ 003465430303953, publisher: American Educational Research Association.

S0959475207000953. doi:10.1016/j.learninstruc.2007.09.003.

- [40] I. Glogger, R. Schwonke, L. Holzäpfel, M. Nückles, A. Renkl, Learning strategies assessed by journal writing: Prediction of learning outcomes by quantity, quality, and combinations of learning strategies, Journal of Educational Psychology 104 (2012) 452–468. doi:10. 1037/a0026683, place: US Publisher: American Psychological Association.
- [41] R. Santhanam, S. Sasidharan, J. Webster, Using Self-Regulatory Learning to Enhance E-Learning-Based Information Technology Training, Information Systems Research 19 (2008) 26–47. URL: https://pubsonline.informs.org/doi/abs/10.1287/isre.1070.0141. doi:10. 1287/isre.1070.0141, publisher: INFORMS.
- [42] M. Bannert, M. Hildebrand, C. Mengelkamp, Effects of a metacognitive support device in learning environments, Computers in Human Behavior 25 (2009) 829–835. URL: http://www.sciencedirect.com/science/article/pii/S0747563208001350. doi:10.1016/ j.chb.2008.07.002.
- [43] S. Kistner, K. Rakoczy, B. Otto, C. Dignath-van Ewijk, G. Büttner, E. Klieme, Promotion of self-regulated learning in classrooms: investigating frequency, quality, and consequences for student performance, Metacognition and Learning 5 (2010) 157–171. URL: https: //doi.org/10.1007/s11409-010-9055-3. doi:10.1007/s11409-010-9055-3.
- [44] R. Azevedo, S. Ragan, J. G. Cromley, S. Pritchett, Do Different Goal-Setting Conditions Facilitate Students' Ability to Regulate Their Learning of Complex Science Topics with RiverWeb?, 2002. URL: https://eric.ed.gov/?id=ED482509.
- [45] P. H. Winne, Students' calibration of knowledge and learning processes: Implications for designing powerful software learning environments, International Journal of Educational Research 41 (2004) 466–488. URL: https://linkinghub.elsevier.com/retrieve/pii/ S0883035505000601. doi:10.1016/j.ijer.2005.08.012.
- [46] J. A. Greene, K. R. Dellinger, B. B. Tüysüzoğlu, L.-J. Costa, A Two-Tiered Approach to Analyzing Self-Regulated Learning Data to Inform the Design of Hypermedia Learning Environments, in: R. Azevedo, V. Aleven (Eds.), International Handbook of Metacognition and Learning Technologies, Springer International Handbooks of Education, Springer, New York, NY, 2013, pp. 117–128. URL: https://doi.org/10.1007/978-1-4419-5546-3_8. doi:10. 1007/978-1-4419-5546-3_8.
- [47] P. R. Pintrich, E. V. de Groot, Motivational and self-regulated learning components of classroom academic performance, Journal of Educational Psychology 82 (1990) 33–40. doi:10.1037/0022-0663.82.1.33, place: US Publisher: American Psychological Association.
- [48] G. Schraw, R. S. Dennison, Assessing Metacognitive Awareness, Contemporary Educational Psychology 19 (1994) 460–475. URL: https://www.sciencedirect.com/science/article/pii/ S0361476X84710332. doi:10.1006/ceps.1994.1033.
- [49] C. Weinstein, D. Palmer, A. Schulte, Learning and Study Strategies Inventory (LASSI), Clearwater, FL: H & H Publishing (1987).
- [50] R. Azevedo, Using Hypermedia as a Metacognitive Tool for Enhancing Student Learning? The Role of Self-Regulated Learning, Educational Psychologist 40 (2005) 199–209. doi:10. 1207/s15326985ep4004_2.
- [51] J. A. Greene, L. A. Hutchison, L.-J. Costa, H. Crompton, Investigating how college students' task definitions and plans relate to self-regulated learning processing and understanding

of a complex science topic, Contemporary Educational Psychology 37 (2012) 307–320. URL: http://www.sciencedirect.com/science/article/pii/S0361476X12000070. doi:10.1016/j.cedpsych.2012.02.002.

- [52] R. Azevedo, J. G. Cromley, Does Training on Self-Regulated Learning Facilitate Students' Learning With Hypermedia?, Journal of Educational Psychology 96 (2004) 523–535. URL: https://auth.lib.unc.edu/ezproxy_auth.php?url=http://search.ebscohost. com/login.aspx?direct=true&db=pdh&AN=2004-18154-011&site=ehost-live&scope=site. doi:10.1037/0022-0663.96.3.523, publisher: American Psychological Association.
- [53] R. Azevedo, J. T. Guthrie, D. Seibert, The Role of Self-Regulated Learning in Fostering Students' Conceptual Understanding of Complex Systems with Hypermedia, Journal of Educational Computing Research 30 (2004) 87–111. URL: http://journals.sagepub.com/doi/ 10.2190/DVWX-GM1T-6THQ-5WC7. doi:10.2190/DVWX-GM1T-6THQ-5WC7.
- [54] R. Ariel, J. D. Karpicke, A. E. Witherby, S. K. Tauber, Do Judgments of Learning Directly Enhance Learning of Educational Materials?, Educational Psychology Review 33 (2021) 693–712. URL: https://link.springer.com/10.1007/s10648-020-09556-8. doi:10.1007/ s10648-020-09556-8.
- [55] J. Dunlosky, A. R. Lipko, Metacomprehension: A Brief History and How to Improve Its Accuracy, Current Directions in Psychological Science 16 (2007) 228–232. URL: https:// doi.org/10.1111/j.1467-8721.2007.00509.x. doi:10.1111/j.1467-8721.2007.00509.x, publisher: SAGE Publications Inc.
- [56] K. Urgo, J. Arguello, R. Capra, The Effects of Learning Objectives on Searchers' Perceptions and Behaviors, in: Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval, ACM, Virtual Event Norway, 2020, pp. 77–84. URL: https://dl.acm.org/doi/10.1145/3409256.3409815. doi:10.1145/3409256.3409815.