
Generating Visual Programming Blocks based on
Semantics in W3C Thing Descriptions
Michael Freund1,∗, Justus Fries1, Thomas Wehr1 and Andreas Harth1,2

1Fraunhofer Institute for Integrated Circuits IIS, Nürnberg, Germany
2Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany

Abstract
We present mappings that leverage the semantic information in W3C Thing Descriptions (TDs) to
generate structure definitions and code generator functions for visual programming blocks. In addition,
we use link following to discover and consume related TDs. This approach extends device support in
low-code IoT environments. Our implementation generates blocks and code generators in 𝑂(𝑛), where
𝑛 is the number of interaction affordances in a consumed TD, and follows links to Thing Descriptions
in 𝑂(𝑛 + 𝑚), where 𝑛 is the number of TDs and 𝑚 the number of links to follow. Specifically, our
implementation can discover 35 TDs with 128 interaction affordances and generate blocks and code in
less than 200 ms, which is considered acceptable for interactive user interfaces.

Keywords
Web of Things, Block Generation, Low Code

1. Introduction

Constrained devices are used in industrial and consumer applications to gather information
about the environment and act on the physical world as needed [1, 2]. The World Wide Web
Consortium’s (W3C) Web of Things (WoT) [3] specification attempts to simplify the interaction
with constrained devices by using a semantic description of the device’s metadata and available
interaction affordances, which are organized into three categories properties, actions, and events.
The W3C recommendations for the WoT typically refer to a constrained device as a Thing,
and to a semantic interface description as a Thing Description (TD) [4]. On the one hand,
experts and programmers can use libraries that implement the WoT Scripting API [5], such
as node-wot1 for the JavaScript programming language, to interact with Things. On the other
hand, simple graphical tools are needed to empower everyday users without programming
expertise to interact with WoT devices. Towards this goal, we developed and introduced an
easy-to-use tool called BLAST [6] for browser-based graphical program creation and execution
targeting WoT environments.

SWoCoT’23: 1st International Workshop on Semantic Web on Constrained Things, 28th May 2023, Hersonissos, Greece,
co-located with 20th Extended Semantic Web Conference (ESWC 2023)
∗Corresponding author.
Envelope-Open michael.freund@iis.fraunhofer.de (M. Freund)
Orcid 00000-0003-1601-9331 (M. Freund); 0000-0003-3433-7245 (J. Fries); 0000-0002-0678-5019 (T. Wehr);
0000-0002-0702-510X (A. Harth)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://github.com/eclipse/thingweb.node-wot

mailto:michael.freund@iis.fraunhofer.de
https://orcid.org/00000-0003-1601-9331
https://orcid.org/0000-0003-3433-7245
https://orcid.org/0000-0002-0678-5019
https://orcid.org/0000-0002-0702-510X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/eclipse/thingweb.node-wot

BLAST and other block-based visual programming environments (VPEs) have the limitation
that the available graphical programming elements require a structural block definition that
describes the layout of the block, and an associated source code generator function that generates
predefined code when a block is dragged into the graphical workspace. In a WoT context, this
means that all available interaction affordances of a Thing require a separate block and source
code definition. Currently, all blocks and code generators must be designed and implemented
by hand, even if the interface of a Thing is already described by a semantic Thing Description.
The high manual design effort for blocks significantly limits the number of supported devices
in VPEs.

Since Thing Descriptions are implemented with machine readability in mind, we propose an
algorithm that maps property keywords of a TD to programming blocks and corresponding
source code generator functions, minimizing the manual implementation effort required to
integrate various graphical programming elements. Such an algorithm can improve the flexibility
of VPEs and allow users to interact with arbitrary constrained devices that are described by a
TD.

The main challenges in automating block generation include defining mappings between
semantics in TDs and block/code generators, processing links to related TDs, and handling
variations in the semantic richness of TDs.

In this work, we present a prototypical implementation of such an algorithm. To design the
algorithm, we analyzed the structure of a ThingDescription, created amapping ofmandatory and
optional property keywords to block structures and code generators, and included functionality
to recursively follow links to consume and generate blocks for multiple related and directly
linked Thing Descriptions. We also implement and evaluate the algorithm as a proof-of-concept.
The contributions of our work are

• the definition of mappings between the semantic information in Thing Descriptions and
block structures with code generators,

• the implementation of a block and code generation algorithm with device discovery using
link following,

• and an analysis of the performance of our proposed algorithms.

2. Related Work

Block generation for IoT devices and hardware has already been explored by Culic et al. [7].
The algorithm presented uses Intel’s libmraa C/C++ library and generates blocks by parsing
the comments used to describe functions. The generated block structure definitions and code
generator functions are stored in a centralized database. In contrast to this approach, we focus
on the W3C Thing Description, which is already a well-structured semantic abstraction layer
to the API of an IoT device. Our approach also excludes the creation of a centralized database
to discover new devices and download previously created block and code definitions. Rather,
users can consume TDs to create blocks and code generators locally, and discover new devices
using link following.
Wang et al. present a block editor called HolonCraft for smart home environments [8].

HolonCraft uses a semantics-based block and code generation algorithm built on the Holon

Ontology. Users of HolonCraft can create a Holon-compliant document of a device and upload
it to a server where the block definitions and code generator functions are created. Both, the
generated blocks and the corresponding code are sent back to the client, where users can
start building programs. Contrary to this approach, we build on and reuse the W3C Thing
Description Ontology, create block and code generators directly in a web application without
the need for a server, and use link following to discover related TDs.
In Node-RED, a package2 can be used to enable support for WoT devices by consuming a

TD, dragging a predefined interaction node into the workspace, and manually selecting the
name of the desired interaction affordance. Device discovery is not supported. Compared to
this approach, we generate blocks for all available interaction affordances and users can select
the block that performs the desired operation and discover devices by following links.

3. From a Thing Description to Blocks and Code

A Thing Description is a document in JSON-LD [9] format, a serialization of RDF. A JSON-LD
document uses property keywords that map to ontology vocabulary terms via a context. The
context is identified by a URI and specified via the @context property keyword. A TD uses
property keywords defined in the Thing Description Ontology3 (td), the Hypermedia Controls
Ontology4 (hctl), and the Dublin Core Metadata Schema5 (dct), for instance, title maps to td:title,
and op maps to hctl:hasOperationType. As long as the context is known, a property keyword
can be easily mapped to a property of an ontology. In the following parts of this paper we will
use the property keywords of TDs (e.g. title) defined in the WoT JSON-LD context6, instead of
the ontology properties (e.g. td:title), to be consistent with the examples presented in the WoT
recommendations.
To develop an algorithm that generates blocks and code generator functions based on the

semantic information in a TD, we must first define mappings. These mappings focus on the
property keywords used in the TD information model, which includes both mandatory and
optional property keywords. The optional elements introduce uncertainty into the level of
semantic detail present in a consumed TD. As a result, the layout and features of generated
blocks will vary depending on the information available. Examples of the aforementioned TD
property keywords include the interaction affordances of a device, a human-readable title, and
security definitions.

The generated blocks and the resulting program structure in a VPE should follow the structure
and interaction abstraction level used in the WoT Scripting API as closely as possible, to ease
the transition to text-based implementations for users already familiar with the graphical
environment [10]. The general abstraction structure for interacting with a Thing using the
Scripting API consists of two distinct phases. In the first phase, the creation phase, a TD is
consumed and a Thing object is created based on the information it contains. In the second phase,
the interaction phase, the Thing object can be used to interact with the Thing by calling functions

2https://flows.nodered.org/node/node-red-contrib-web-of-things
3https://www.w3.org/2019/wot/td
4https://www.w3.org/2019/wot/hypermedia
5http://purl.org/dc/terms/
6https://www.w3.org/2022/wot/td/v1.1

https://flows.nodered.org/node/node-red-contrib-web-of-things
https://www.w3.org/2019/wot/td
https://www.w3.org/2019/wot/hypermedia
http://purl.org/dc/terms/
https://www.w3.org/2022/wot/td/v1.1

Table 1
Mapping of Thing Vocabulary to Thing Blocks.

Block Property TD Property Keyword Additional Notes
Block Name titles or title If available
Block Color - Flexible to choose
Block Output - Output type ’thing’

Tooltip description(s), version, modified, created If available
Help URI support If available

created from its described interaction affordances. The relevant functions for basic interaction
with a Thing are readProperty, writeProperty, invokeAction, and subscribeEvent. More
advanced interaction functions7 are not covered by this work, but can be mapped in a similar
way.

For instance, to read a property affordance of a consumed Thing using the JavaScript imple-
mentation of the Scripting API, the following snippet of source code can be used.

thing.readProperty(’status’);

Where thing is the Thing object, readProperty is the interaction function, and status is the
semantic name of the property affordance to read. From the WoT Scripting API structure, we
can deduce that a consumed TD should result in a Thing object block to specify the Thing, and
various interaction blocks corresponding to available affordances.

In the following subsections, we analyze the mandatory and optional vocabulary terms and
create mappings for blocks and code generators based on the different parts of a TD, namely
the Thing-specific part needed in the Thing object block in section. 3.1, the three interaction
affordances needed in the different interaction blocks in sections 3.2, 3.3 and 3.4, and the link
part used for link following in section 3.5. A TD of a lamp is depicted in Listing 1, which is used
as a running example throughout the paper.

3.1. Mapping of the Thing specific Vocabulary

The Thing’s metadata in a TD contains four mandatory property keywords, these are @context,
title, security, and securityDefinitions. All other property keywords of TDs are optional, which
means that the contained information can only be used in the block generator if a value is
provided or a default value is defined. A sample of a TD containing the relevant Thing-specific
property keywords is shown in Listing 1 from line 1 to line 16.
We use the information contained in the Thing-specific part of a TD to create a block

representing the consumed Thing object, to graphically specify the Thing to interact with. An
example of a generated Thing block with tooltip based on the introduced lamp TD is shown in
Fig. 1. The mapping between the information in a Thing block and the Thing-specific part of a
TD is shown in Table 1.

7https://www.w3.org/TR/wot-thing-description11/#form

https://www.w3.org/TR/wot-thing-description11/#form

1 {
2 ”@context”: ”https://www.w3.org/2022/wot/td/v1.1”,
3 ”@type”: ”Thing”,
4 ”id”: ”urn:dev:ops:32473-WoT-Thing-1234”,
5 ”title”: ”LampThing”,
6 ”titles”: { ”en”: ”LampThing”, ”de”: ”LampenDing”,},
7 ”description”: ”A lamp”,
8 ”descriptions”: { ”en”: ”A lamp”, ”de”: ”Eine Lampe”},
9 ”version”: ”1.0”,
10 ”created”: ”2020-10-10T17:00:00Z”,
11 ”modified”: ”2022-10-10T17:00:00Z”,
12 ”support”: ”https://example.org/lamp”,
13 ”links”: [{”href”: ”http://example.com/related-td”, ”type”: ”application/td+json”}]
14 ”securityDefinitions”: {
15 ”basic_sc”: {”scheme”: ”basic”, ”in”: ”header”} },
16 ”security”: [”basic_sc”],
17 ”properties”: {
18 ”status”: {
19 ”title”: ”status”,
20 ”titles”: {”en”: ”status”, ”de”: ”Zustand”},
21 ”description”: ”Read the status of the lamp”,
22 ”descriptions”: {”en”: ”Read the status of the thing”, ”de”: ”Auslesen des Lampenzustands”},
23 ”type”: ”string”,
24 ”forms”: [...]
25 } },
26 ”actions”: {
27 ”toggle”: {
28 ”title”: ”toggle”,
29 ”titles”: {”en”: ”toggle”, ”de”: ”umschalten”},
30 ”description”: ”Toggle current lamp status”,
31 ”descriptions”: {”en”: ”Toggle current lamp status”, ”de”: ”Umschalten des aktuellen

Lampenstatus”},
32 ”output”: {”type”: ”string”},
33 ”forms”: [...],
34 } },
35 ”events”: {
36 ”overheating”: {
37 ”title”: ”overheating”,
38 ”titles”: {”en”: ”overheating”, ”de”: ”Ueberhitzung”},
39 ”description”: ”An overheating event of the lamp”,
40 ”descriptions”: {”en”: ”An overheating event of the lamp”, ”de”: ”Ein Ueberhitzungs Event der

Lampe”},
41 ”data”: {”type”: ”string”},
42 ”forms”: [...],
43 } },
44 }

Listing 1: Sample Thing Description of a lamp with metadata and three interaction affordances.

(a) Thing Block with en-US locale (b) Thing Block with de-DE locale

Figure 1: Generated Thing block and tooltip based on Thing Description of Listing 1. Note the user
chosen name, ’lamp’ in English and ’Lampe’ in German.

The title and description entries can be available in different languages. If this optional
information is provided, the language of the Thing block name (e.g., LampThing) and the tooltip
can be adapted to the language of the users (e.g., LampenDing). Further optional information
provided by version, created, and modified is also added to the tooltip of the generated block.
The help URI of the Thing block is set to the URI provided by the support field if contained
in the consumed TD, otherwise no help URI is set. The color of the block cannot be derived
from the TD, but must be chosen manually to match the overall theme of the VPE. The output
of the block is defined as type thing, which allows type checking in combination with other
blocks. The generated Thing block must also be associated with the Thing object specified
and generated by the WoT Scripting API to allow interaction with the Thing. The source code
generated by the Thing block returns the blockId, which is used to identify a specific block and
its associated Thing. The @context and id entries are currently not reflected in the generated
Thing block.

In addition to the Things metadata, security definitions are also provided in the Thing specific
part. Based on the mandatory entries for security and securityDefinitions, we can infer the
need for an additional block to set up the security configuration, e.g., to enter a username and
password in case of basic HTTP authentication. The layout of the generated security block
depends on the security definitions, such as NoSecurityScheme, where no block needs to be
generated, or BasicSecurityScheme, which generates a block with three inputs for a username,
its password, and for the Thing that requires the security information.

3.2. Mapping of Property Affordance Vocabulary

The information provided in the property affordance specific part (see Listing 1, lines 17 to
25) is used to generate property affordance blocks. Property affordances are a subclass of the
interaction affordance class and come in two operation types readProperty and writeProperty.
Each of the two property affordance interactions requires a different block structure and code
generator, because a readProperty operation has an output and no input, whereas a writeProperty
operation has an input and no output.
In the property affordance section of a TD, only the forms field is mandatory, which limits

the information that is always available for block creation. However, as described above, TDs
have default values defined. These are the property keywords readOnly, writeOnly, contentType,
and op indicating the operation. The information contained in the default values can also be
used for block generation if no other data is provided. In order to create a meaningful and

Table 2
Mapping of Property Affordance Vocabulary to Property Blocks.

Block Property TD Property Keyword Additional Notes
Block Name titles, title, property affordance name, op If available
Block Color op Dependent on op
Block Output op, type Only if op is read
Block Input op, type, enum Only if op is write
Tooltip description(s), default If available

(a)
(b)

(c)

Figure 2: Layout of possible property affordance blocks, starting with read property affordance (a),
write property affordance (b), and write property affordance with enum (c). The running example would
generate (a).

easy-to-use block, we have also defined additional default values for some block properties in
case the optional information is not available. The defined mappings are shown in Table 2.

The name of a block must indicate its capabilities. To achieve a clear and unique name when
generating a block, a combination of the performed operation (e.g., readProperty) and the title
or name of the target property affordance can be used. This approach results in block names,
such as ”read property ’status’ of” or ”write value {X} to property ’status’ of”.

The color of a block plays an important role in VPEs, indicating the block category to users
[11]. The color of a generated block therefore depends on the interaction affordance and should
match the theme of already existing blocks in the same category.
The layout, inputs, and outputs of a generated property affordance block depend on the

operation specified by op, and, if available, on the enum property keyword, which specifies an
array of allowed values.

The readProperty block consists of an output for the read data, an input for a Thing block, and
the source code to read a property affordance and return the decoded value. The writeProperty
block has two possible layouts, depending on the enum property keyword of the consumed TD.
The first variant, without enum, has no output, but an input for a value to send and an input
for a Thing block. The second variant, with enum, has the same layout except that the value
input which is replaced by a drop-down menu containing all the allowed values specified by
the enum array. The source code for both writeProperty blocks performs a write operation on
the specified property affordance. The three resulting blocks are shown in the following Fig. 2.

The type property keyword in a TD contains important datatype information about the input
or output data, which is used for type checking. Type-checking restricts the connection of
the generated block to other existing blocks. Blocks can only be connected to each other if
the output datatype of one block matches the input datatype of another block. Since the type

Table 3
Mapping of Action Affordance Vocabulary to Action Blocks.

Block Property TD Property Keyword Additional Notes
Block Name titles, title, action affordance name, op If available
Block Color op Dependent on op
Block Output output, type If output provided
Block Input input, type If input provided
Tooltip description(s), default If available

property keyword is optional, not all generated blocks have type checking.
The tooltip of the generated property block is based on either the optional localized description,

the general description, or on a default sentence. The default tooltip sentence is generated
from the two mandatory property keywords op, deviceName and propertyName, resulting in
the template sentence ”{part of op} the {propertyName} property of {deviceName}” which, for
instance, can lead to ”read the status property of LampThing” followed by a supported Thing
block.

3.3. Mapping of Action Affordance Vocabulary

Action blocks are generated from the action affordance section of a TD (see Listing 1, lines
26-34). An action affordance is a subclass of the interaction affordance class, with only the
mandatory forms property keyword, but in combination with the default values listed in section
3.2, meaningful blocks are generated.
The mappings between the information contained in a TD and the generated blocks are

similar to the mappings for property affordances. The main difference is the structure of the
generated blocks. An invokeAction block can generally have four different layouts, since actions
can only have one input, only one output, both, or neither. Each of the four possible block
variants comes with different source code generator functions. For instance, if an action only
has one output and no input, the corresponding source code will invoke the action and decode
the received value. The four possible block structures are shown in Fig. 3 and the overall action
affordance mapping is displayed in Table 3.
The name of the four action block variations is generated from the title or the name of the

action, resulting either in ”invoke {actionName} action of” for the no input and no output case,
and the one output and no input case, or in ”invoke {actionName} action with value {X} of” for
the one input and no output case, and the one input and one output case.

The color of the generated action block must be set to the color of the action category already
in use and the tooltip of the block is either the description in the browser language, the default
description, or the default phrase ”Invoke {actionName} action of {deviceName}” resulting, for
instance, in ”Invoke toggle action of LampThing”, which wil be used if no other optional
information is provided. All inputs and outputs of the generated action blocks are typed if
possible, depending on the information available in the consumed TD.

(a)

(b)

(c)

(d)

Figure 3: Layout of generated action affordance blocks, starting with a block with an input and an
output (a), a block with an input and no output (b), a block with no input and no output (c), and a block
with no input but an output (d). The running example would generate (d).

Figure 4: Layout of the generated event affordance block with statement input, using the running TD
example.

Table 4
Mapping of Event Affordance Vocabulary to Event Blocks.

Block Property TD Property Keyword Additional Notes
Block Name titles, title, event affordance name, op If available
Block Color op Dependent on op
Tooltip descrioption(s), default If available

3.4. Mapping of Event Affordance Vocabulary

Event affordances are the last of the three subclasses of the interaction affordance class. As a
result of this subclass relationship, only the forms property keyword is mandatory and the same
default values as for property and action affordances are available. An example of the event
affordance part of a TD can be seen in Listing 1 from lines 37 to 45.
The structure of generated event blocks differs from the structure of the other introduced

blocks since event blocks consist of statement inputs instead of the value inputs used by property
and action blocks. A statement input allows users to add programming blocks within an event
block, as shown in Fig. 4. When a subscribed event is triggered, the received event data is
passed to the event block as a variable, and the enclosed blocks are executed. The information
provided by the optional data property keyword can be used to add a type to the received event
data. The mappings for event affordances are shown in table 4.
The name and color of the event block are generated, as with the property and event affor-

dances, using the title in the browser language, the default title if available, or simply the name
of the event. The block color should match already existing event blocks.

3.5. Link Following Vocabulary

A fundamental aspect of Web browsing is the concept of link following in hypertext, which
enables users or a user agent to find and explore related Web resources by dereferencing URIs.
The same concept can be applied to the Web of Things by using the links property keyword
in a TD to link to related TDs using standard Web technologies. By allowing the generator
algorithm to follow available links in a consumed TD, users can consume multiple devices at
once, such as a light bulb TD and the corresponding light switch TD or all the TDs of WoT
Things contained in a given room. Direct links from a Thing Description to other TDs can be
achieved by using the links property keyword and specifying a link target via the mandatory
href property keyword. Additional semantic information can be provided by using the two
optional property keywords type and rel to define the content type of the target and the link
relation type.

A crawler algorithm can use the optional type property keyword to check if the link target is
a TD, or if no optional semantic information is provided by the TD use a HTTP HEAD request
to check the content type of the link target.

1 function addConsumedDevice(deviceName,td):
2 generateThingBlock(deviceName, td.description, td);
3 generateThingCode(deviceName);
4 genSecurityBlock(deviceName,td);
5 genSecurityCode(deviceName,td):
6
7 for [propertyName, operation] of td.properties:
8 if operation == ’readproperty’:
9 genReadPropBlock(propertyName,deviceName);
10 genReadPropCode(propertyName,deviceName);
11 if operation == ’writeproperty’:
12 genWritePropBlock(propertyName,deviceName,td);
13 genWritePropCode(propertyName,deviceName,td);
14
15 function genReadPropBlock(propertyName,deviceName,td):
16 langTag = getLanguage();
17 blockName = generateBlockName(td,langTag);
18 new Block[${deviceName}_readPropBlock_${propertyName}] = {
19 ValueInput(’thing’).setCheck(’Thing’).append(‘read property ”${propertyName}” of‘);
20 setOutput(true, td.properties.type || null);
21 setColour(255);
22 setTooltip(generateToolTip()); }
23
24 function genReadPropCode(propertyName,deviceName):
25 new Code[${deviceName}_readPropBlock_${propertyName}] = function(block){
26 blockId = getInputBlock(block);
27 thing = getBlockById(blockId).thing;
28 return ”await (await thing.readProperty(propertyName)).value()”; }

Listing 2: Pseudocode of generator algorithm for ThingBlock and property affordances.

4. Mapping Algorithm

To demonstrate the theoretical approaches presented in the previous section, we implemented
a proof-of-concept using JavaScript and the defined mappings to generate blocks and source
code based on discovered and consumed TDs. The structure of the generated blocks is in
the JavaScript block format of Google’s Blockly8 library, and the generated code is based
on node-wot. We implemented the algorithm as a standalone application for benchmarking
purposes.
The pseudocode in Listing 2 outlines the algorithm for generating ThingBlocks and corre-

sponding readProperty affordances. It begins with the addConsumedDevice function (Lines
1-13), which parses the input Thing Description to identify generatable blocks and code, and
calls the appropriate generator functions for the ThingBlock, the security block, and the various
affordance blocks. The genReadPropBlock algorithm from Lines 15–22 contains the function for
creating the block structure of readProperty affordances, and the genReadPropCode function
(Lines 24 - 28) contains the source code generator function for the blocks.

The algorithm also consists of a simple crawler that relies on the focused crawling tech-
nique [12] to search only for TD documents. The crawler searches within an initial Thing
Description for links to other TDs, either by finding links with the specified content type
application/td+json or by following links without specified content type using an HTTP
HEAD request to check if the response object is a TD. The crawler algorithm then follows the
found links, consumes the TDs at the target address and searches recursively for more links
within the newly consumed TDs. Users can disable link following or limit the search depth
when providing an initial TD URI to the generator algorithm.

While the current implementation of the algorithm is fully functional, it has several limitations.
These include the missing ability to load and save created block definitions, no support for
protocols other than HTTP, and limited crawler functionality. In particular, only links described
by the links property keyword of the TD Ontology can be followed.

5. Performance Evaluation

In this section we present an evaluation of the implemented algorithm. First, we analyze the
performance of the block and code generator, followed by an analysis of the TD crawler. Finally,
we evaluate the performance of both algorithms in combination.

All empirical timing measurements were performed on consumer hardware (i7-10610U, 16 GB
RAM) running Windows 10 21H2 using node.js and the command performance.now()9 which
provides millisecond time resolution.

5.1. Performance of Block and Code Generator

To determine the relationship between the size of the input TD and the performance of the
generator algorithm, we analyzed the time complexity by focusing on the code responsible for

8https://developers.google.com/blockly/guides/create-custom-blocks/define-blocks
9https://nodejs.org/api/perf_hooks.html#performancenow

https://developers.google.com/blockly/guides/create-custom-blocks/define-blocks
https://nodejs.org/api/perf_hooks.html#performancenow

generating the property affordance blocks introduced in Listing 2, since the steps required for
actions and events are largely similar.
The algorithm is composed of three functions, the genReadPropBlock function, the genRead-

PropCode function, and the addConsumedDevice function. The latter function calls the two
generator functions. The genReadPropBlock function sets the block name and creates the block
object, resulting in a constant time complexity or 𝑂(1). Similarly, the genReadPropCode function
also has a constant time complexity or 𝑂(1), as it does not iterate over any data structures,
but rather performs a constant number of operations such as variable assignments. The ad-
dConsumedDevice function has a linear time complexity or 𝑂(𝑛), where 𝑛 is the number of
property affordances in the input TD since the function contains one for loop iterating over
td.properties . All other operations contained in the addConsumedDevice function are executed
in constant time. Overall, the time complexity of the shown algorithm can be seen as a combi-
nation of the time complexities of these three functions, resulting in 𝑂(𝑛 ⋅ (1 + 1)) = 𝑂(𝑛). Since
similar operations are performed for action and event affordances, the entire algorithm also has
linear time complexity.

5.2. Performance of TD Crawler

To assess the performance of the TD crawler, we conducted a combined analysis of the algorithm
structure and empirical measurements of the execution time while interacting with an increasing
number of TDs.

The implemented crawler algorithm performs a breadth-first search (BFS) of Thing Descrip-
tions, adding each newly discovered TD and its links to a queue and fetching all discovered
links using asynchronous functionalities until no more unvisited links are found or until the
maximum depth is reached. The execution time of the TD crawler based on BFS depends on the
number of TDs 𝑛 and links 𝑚 in the searched link structure, and thus on the size and complexity
of the TDs to be crawled. Therefore, the time complexity of the crawler algorithm is 𝑂(𝑛 + 𝑚).
However, in a real-world application, the performance of the TD crawler depends on many

factors, including network latency and bandwidth, and the use of techniques such as caching,
parallelization, or asynchronous operations. Therefore, we also performed an empirical evalua-
tion of the crawler using two types of TDs: TDs containing only one new link, forming a chain
structure, and TDs containing two new links, forming a tree structure. The results are shown
in Fig. 5.

5.3. Combined Performance of Both Algorithms

We use an express.js server to host Thing Descriptions and evaluate the performance of the
combination of the two algorithms presented under real-world conditions. Our goal was to
achieve a response time of no more than 200 ms, which is widely considered the maximum
acceptable response time for interactive user interfaces [13]. To ensure controlled test conditions,
we limited the algorithm to a maximum of 40 TDs, each containing only one link. To investigate
the performance of the algorithm in different scenarios, we varied the number of interaction
affordances in the discovered TDs and ran the experiment with 32, 128, and 512 affordances,
respectively. The results of the experiments are shown in Fig. 6.

0.01 0.1 1 10

1

10

100

1,000

Time [s]

D
is
co
ve
re
d
TD

s

TDs with 2 new links
TDs with 1 new link

Figure 5: Average runtime of 10 runs in seconds, depending on discovered TDs.

0 100 200 300 400 500

0

10

20

30

40

Time [ms]

D
is
co
ve
re
d
an

d
A
na

ly
ze
d
TD

s

32 Affordances
128 Affordances
512 Affordances

Figure 6: Average time to discover TDs and generate blocks and code from 10 runs in milliseconds with
varying number of interaction affordances.

The algorithm performs well within the target response time of 200 ms, as users can use it, for
example, to discover 35 Thing Descriptions with 128 interaction affordances in less than 200 ms.
This is especially relevant considering that the average number of IoT devices in US households
is 22, according to a 2022 market study by Deloitte10. Thus, our algorithm can be a solution for
discovering and generating visual blocks and code in a typical smart home environment.

10https://www2.deloitte.com/us/en/insights/industry/telecommunications/connectivity-mobile-trends-survey.html

https://www2.deloitte.com/us/en/insights/industry/telecommunications/connectivity-mobile-trends-survey.html

6. Conclusion and Future Work

To improve the extensibility of VPEs, we introduced mappings to generate various block
structure definitions and code generator functions based on the semantics provided by W3C
Thing Descriptions. We implemented a proof-of-concept algorithm based on JavaScript and the
node-wot library. Through our evaluation of the algorithms, we found that the block and code
generator has an upper bound of 𝑂(𝑛), where 𝑛 is the number of interaction affordances in a
TD, while the crawler has an upper bound of 𝑂(𝑛 + 𝑚), where 𝑛 is the number of TDs and 𝑚 the
number of links. When used in combination, the algorithms were able to discover and generate
blocks and code for 35 TDs with 128 interaction affordances each in less than 200 ms, which
is sufficient for a typical smart home environment and considered usable in interactive user
interfaces. As a next step, we plan to further investigate the link-following concept in TDs and
perform usability tests to evaluate the ease of use of our approach.

Acknowledgements

This work was funded by the the Bavarian State Ministry of Economic Affairs and Media, Energy
and Technology through the AI-Nalyze project (grant no. DIK0134/01).

References

[1] C. Cimino, E. Negri, L. Fumagalli, Review of digital twin applications in manufacturing,
Computers in Industry 113 (2019) 103130.

[2] A. Khanna, S. Kaur, Internet of things (iot), applications and challenges: a comprehensive
review, Wireless Personal Communications 114 (2020) 1687–1762.

[3] M. Lagally, R. Matsukura, M. McCool, K. Toumura, K. Kajimoto, T. Kawaguchi, M. Kovatsch,
Web of things (wot) architecture 1.1, https://www.w3.org/TR/wot-architecture/, 2023.
Accessed: 2023-02-09.

[4] S. Kaebisch, M. McCool, E. Korkan, T. Kamiya, V. Charpenay, M. Kovatsch, Web of things
(wot) thing description 1.1, https://www.w3.org/TR/wot-thing-description/, 2023. Ac-
cessed: 2023-02-09.

[5] Z. Kis, D. Peintner, C. Aguzzi, J. Hund, K. Nimura, Web of things (wot) scripting api,
https://www.w3.org/TR/wot-scripting-api/, 2020. Accessed: 2023-02-09.

[6] M. Freund, T. Wehr, A. Harth, Blast: Block applications for things, in: The Semantic Web:
ESWC 2022 Satellite Events: Hersonissos, Crete, Greece, May 29–June 2, 2022, Proceedings,
Springer, 2022, pp. 68–72.

[7] I. Culic, A. Radovici, L. M. Vasilescu, Auto-generating google blockly visual programming
elements for peripheral hardware, in: 2015 14th RoEduNet International Conference-
Networking in Education and Research (RoEduNet NER), IEEE, 2015, pp. 94–98.

[8] Z. Wang, Y. Elkhatib, A. Elhabbash, Holoncraft–an architecture for dynamic construction
of smart home workflows, in: 2022 9th International Conference on Future Internet of
Things and Cloud (FiCloud), IEEE, 2022, pp. 213–220.

[9] G. Kellogg, P.-A. Champin, D. Longley, Json-ld 1.1, W3C Rec (2020).

https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-scripting-api/

[10] C. Kelleher, R. Pausch, Lowering the barriers to programming: A taxonomy of program-
ming environments and languages for novice programmers, ACM Computing Surveys 37
(2005) 83–137.

[11] E. Pasternak, R. Fenichel, A. N. Marshall, Tips for creating a block language with blockly,
in: IEEE Blocks and Beyond Workshop, 2017, pp. 21–24.

[12] M. A. Kausar, V. Dhaka, S. K. Singh, Web crawler: a review, International Journal of
Computer Applications 63 (2013) 31–36.

[13] R. B. Miller, Response time in man-computer conversational transactions, in: Proceedings
of the December 9-11, 1968, fall joint computer conference, part I, 1968, pp. 267–277.

	1 Introduction
	2 Related Work
	3 From a Thing Description to Blocks and Code
	3.1 Mapping of the Thing specific Vocabulary
	3.2 Mapping of Property Affordance Vocabulary
	3.3 Mapping of Action Affordance Vocabulary
	3.4 Mapping of Event Affordance Vocabulary
	3.5 Link Following Vocabulary

	4 Mapping Algorithm
	5 Performance Evaluation
	5.1 Performance of Block and Code Generator
	5.2 Performance of TD Crawler
	5.3 Combined Performance of Both Algorithms

	6 Conclusion and Future Work

