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Abstract
Many data-intensive applications, including smart logistics, smart cities, intelligent factories, etc. have
been made possible by the Internet of Things (IoT). Due to the large amounts of data produced, it is
no longer viable to upload all data to the cloud, as it results in network congestion, low throughput,
high latency, and privacy issues. Edge processing provides a solution to these problems and aims to
process data as close to the source. However, a generic approach to edge processing that can decide
which components to offload is still missing. Cascading Reasoning (CR) is a vision that aims to realize
highly expressive reasoning over high-frequency data by introducing a layered approach. The lowest
layers employ low-complexity techniques and select relevant parts of the data. Going up in the layers,
the complexity increases while the data volume decreases as each layer selects relevant parts for further
processing. CR aligns with Edge processing, as lower layers can be processed closer to the source, i.e. the
Edge, and the expressive reasoning allows to handle the data variety and domain knowledge imposed by
the IoT. However, until now, CR approaches required to manually define the various layers. In this paper,
we propose a generic CR Edge processing platform that can decide which parts of the queries to offload
to the Edge and how to optimize the queries and reasoning rules for efficient Edge processing.
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1. Introduction

The Internet of Things (IoT) has given rise to many data-intensive applications such as smart
logistics, smart cities, pervasive health, intelligent factories, etc. [1]. Many of these applications
deploy large quantities of sensors and have low tolerance for delays [1]. Even with the rise
of 5G networks, it has become unfeasible to upload all data to the cloud for processing as too
much bandwidth will be consumed, the operational cost will rise and the overall latency will be
too high [1]. Furthermore, critical and time-sensitive tasks such as emergency shutdowns in
smart factories or monitoring of critical patients cannot rely on the connection with the cloud
to make local decisions [1]. Edge processing provides a solution to the problems described
above by processing the data as close to its source as possible [2]. However, deciding which
parts of the processing can be offloaded to the Edge for processing is to date only possible
for tailored applications that have been hard-coded to enable edge computing [2]. A generic
approach towards edge computing is still missing.

$ pieter.bonte@ugent.be (P. Bonte)
� 0000-0002-8931-8343 (P. Bonte); 0000-0003-2529-5477 (F. Ongenae)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:pieter.bonte@ugent.be
https://orcid.org/0000-0002-8931-8343
https://orcid.org/0000-0003-2529-5477
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


The generated data in the IoT imposes data variety, as it results from a range of different
sources, each possibly describing their data differently on both structural, syntactical and
semantical level [3]. Semantic Web technologies are the preferred technology to solve this
data integration problem [4]. Semantic reasoning is often required to interpret the domain
knowledge, something very prominent in the IoT [5]. However, there is a mismatch between
the complexity of reasoning algorithms and the rate data is produced in the IoT. The Stream
Reasoning community and more particular the RDF Stream Processing (RSP) community have
focused on processing RDF streams through the use of continuous declarative queries, such as
dialects of SPARQL [6], disregarding much of the reasoning challenges. Cascading Reasoning
(CR) is a vision that emerged from the Stream Reasoning community to tackle this mismatch
between reasoning complexity and frequency of changes in data streams [7]. CR proposes a
layered approach where starting from the lowest layers, close to where data is produced, low
complexity techniques are employed that can handle huge amounts of data and high velocity
updates, going up the the layers, each layer selects parts of the data that might be of interest
and process this selection with techniques that increase in complexity. At the highest layers,
techniques that use highly complex reasoning algorithms can be employed as the lower layers
already filtered out the majority of data. From a top-down perspective, high-level queries, using
abstracted concepts are issued to the CR platform. The CR vision aligns nicely with the Edge
processing paradigm as lower layers can be employed at the Edge and Fog. However, deciding
how to automatically split up the high-level queries and offload part to the Edge, i.e. lower
layers, is still an open problem. CR solutions have so far relied on an manual definition of the
different layers [4].

In this paper we propose a generic CR Edge processing platform that can decide how to offload
the processing to the Edge by analyzing both the queries and the data produced at the Edge. In
order to achieve semantic interoperability, an annotation step is required to convert the raw data
produced by the sensors to semantic data, e.g. through the use of RML. Recent developments in
annotation research allows to extract the shape of these mapping [8], which allows to interpret
what kind of data will be produced by certain streams. By combining a bottom-up and top-down
analysis, i.e. analyzing the shapes of the data and the queries registered to the platform, the
platform can really understand the data generated and requested by the user. This unique
situation allows to optimize the Edge data processing pipeline and by understanding both data
generated and queries, optimizing the offloading towards the cloud of the registered queries.

This paper is structured as follows: Section 2 introduces the needed background to understand
the remainder of the paper, while Section 3 introduces a running example. Section 4 discusses
our proposed CR approach and Section 5 details the evaluation. Section 6 discusses the related
work and Section 7 concludes the work and discusses future work directions.

2. Background

In this section, we summarize the knowledge necessary to understand the remainder of this
paper. We start with the definition of an (RDF) stream:

Definition 1. A data stream S is a possibly infinite multiset of elements ⟨𝑠, 𝜏⟩, where 𝑠 is a
data item and 𝜏 ∈ 𝒯 is a timestamp of the element, with 𝒯 a time domain. An RDF Stream is



Figure 1: Left (a): Overview of the running example when pushing all data to the cloud. Right (b):
Overview of the running example when most data is processed at the Edge

a stream where the data item 𝑠 is an RDF object.
Every element in a (RDF) stream is also called an event. Processing these (RDF) streams

requires a special class of queries that run under continuous semantics:
Definition 2. Under continuous semantics, the result of a query is the set of results that would
be returned if the query were executed at every instant in time.

We call this class of queries continuous queries or registered queries as they are registered
upfront and continuously evaluated. As streams are possible infinite, special mechanisms are
needed to cut these streams in processable chunks. Time-based windows allow to extract parts
of these streams for processing:
Definition 3. The time-based window operator 𝒲 is a triple (𝛼, 𝛽, 𝑡0) that defines a series of
windows of width (𝛼) and that slide of (𝛽) starting at 𝑡0.

Events in a stream typically describe a minimal information unit, as transmission can be
costly. Therefore, streaming data often needs to be combined with static data that describes
contextual information related to the event that does not change very frequently over time.
This process is called Enrichment and requires a join between events in the stream and static
data [9].

To describe the domain knowledge, we focus on Datalog, i.e. if-then rules, where the if-part
is called the body of the rule and the then-part the head of the rule. We focus on rules that do
not introduce new variables or disjunctions in the head of the rule and no support for negation.
We will use a subset of Notation3 rules1 that relate to the expressivity of Datalog. Notation3
(N3) is a superset of RDF that allows the definition of rules in the following syntax: {body of the
rule.}=>{head of the rule} where both body and head can define triple patterns.

3. Running Example

A Smart Building use case will be used as running example. Each room is equipped with various
sensor, each measuring comfort parameters such as temperature, humidity, loudness and CO2
1https://w3c.github.io/N3/spec/
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values. Each room contains a local sensor gateway that has some processing capabilities. In
the cloud scenario, the gateway annotates the raw sensor data to the semantic model and
transmits the sensed values to the cloud. A CO2 sensor produces the following raw sensor data
in JSON-format:

{ " s e n s o r I D " : " 1 2 3 4 " ,
" o b s e r v a t i o n I D " : " 5 6 7 4 " ,
" v a l u e " : 765 }

Listing 1: Raw CO2 sensor data in JSON

Detailing the ID of the sensor, the ID of the observation and the actual sensed value. Note
that the observed property, i.e. CO2, is not part of the event as it does not change over time.
Therefore it is described in the static data.

In order to convert the raw sensor data to RDF, typically an annotation step is defined using
some sort of mapping language. In this example we are using YARRRML [10], i.e. a human
readable text-based representation of RML.

mappings :
s e n s o r :

s o u r c e s :
s : i o t : $ ( o b s e r v a t i o n I D )
po :

− [ a , s sn : O b s e r v a t i o n ]
− [ s sn : madeBySensor , i o t : $ ( s e n s o r I D ) ]
− [ s o s a : h a s S i m p l e R e s u l t , $ ( v a l u e ) ]

Listing 2: YARRRML mapping file describing the annotation to RDF

The mapping defines how the JSON data can be converted to the SSN ontology, creating an
Observation with a certain value that was made by a certain Sensor. The various streams can
be described and discovered using VoCaLS [11], i.e. a vocabulary for describing RDF stream
meta-data. We envision that the annotation as described above is part of said meta-data.

Static and contextual information is stored in the cloud and describes various properties of
the different rooms of the building, which sensors are installed in each room, what kind of
activities does each room host, the layout of the room, the positioning of each room within the
larger building, etc. For example:

. . .
: sensorX a s o s a : Sensor ;

s o s a : o b s e r v e s : temp , : l oudness , : co2 , humid i ty ;
: h a s L o c a t i o n : o f f i c e Y .

: o f f i c e Y : connectedTo : o f f i c e Z , o f f i c e Q ;
: hasName " 2 0 0 . 0 0 9 " ^ ^ xsd : s t r i n g .

. . .

Listing 3: Extract of static data

The building manager wants a unified view over all data produced by various heterogeneous
IoT sensors. For example, the following query (Query1) retrieves all observations from a specific
room. In order to evaluate this query, the data from the sensor streams needs to be combined
with the static data:



? obs a O b s e r v a t i o n ; / / s t ream
h a s S i m p l e R e s u l t ? v a l u e ; / / s t ream
madeBySensor ? s e n s o r . / / s t ream

? s e n s o r h a s L o c a t i o n ? l o c . / / s t a t i c
? l o c hasName " 2 0 0 . 0 0 9 " / / s t a t i c

Listing 4: Query1: retrieve all sensor data for a particular room

Query2 retrieves all Comfort Observations, which is defined as a high-level definition in the
domain knowledge:
? obs a Comfor tObse rva t ion ; / / s t ream + domain knowledge

h a s S i m p l e R e s u l t ? v a l u e . / / s t ream

Listing 5: Query2: retrieve all CO2 sensor data

Where the domain knowledge is defined through the following N3 rules:
R1 : { ? x a : TempObservat ion } => { ? x a : Comfor tObse rva t i on }
R2 : { ? x a : L o u d n e s s O b s e r v a t i o n } => { ? x a : Comfor tObse rva t i on }
R3 : { ? x a : Obse rva t ion , ? x : madeBySensor ? s , ? s a : TempSensor }

=> { ? x a : TempObservat ion }
R4 : { ? x a : Obse rva t ion , ? x : madeBySensor ? s , ? s a : LoudnessSensor }

=> { ? x a : L o u d n e s s O b s e r v a t i o n }
R5 : { ? s a : Sensor , ? s : o b s e r v e s ?p , ?p a : Temperature }

=> { ? s a : TempSensor }
R6 : { ? s a : Sensor , ? s : o b s e r v e s ?p , ?p a : Loudness }

=> { ? s a : LoudnessSensor }

Listing 6: Domain knowledge defined in N3 rules

The domain knowledge defines that both TempObservation and LoudnessObservation are types
of ComfortObservation and further defines what a TempObservation or LoudnessObservation
is. The former is an Observation made by a TempSensor, while the later is made by a Loud-
nessSensor. Furthermore, a TempSensor is a Sensor that observes the property Temperature and a
LoudnessSensor is a Sensor that observes the property Loudness.

Instead of uploading all the sensor data to the cloud, enrich it with static data and interpret
the domain knowledge, the building manager want to process as much as possible at the Edge,
i.e. on the local sensor gateways, in order to ensure privacy, lower latency, reduce network
congestion and decrease the load on the cloud infrastructure. Figure 1 a) visualizes the flow
when pushing the data to the cloud, while Figure 1 b) visualizes the desired scenario where
most data is processed at the Edge.

4. Cascading Reasoning for Edge Processing

In order to enable CR for Edge processing, a combination of a bottom-up and top-down opti-
mization is proposed. Section 4.1 describes the first step needed for the bottom-up analysis. This
first step fixes the structure of the events in the streams. Section 4.2 uses this extracted structure
and introduces the first step of the top-down analysis which starts from the registered queries,
available static data and the extracted event structures to rewrite queries to be optimized to be
evaluated at the Edge. Section 4.3 extend the algorithm of Section 4.2 to realize the optimized
evaluation of the defined domain knowledge through rules.



4.1. Shape extraction from Annotation

In the first phase, an interpretation is done of what shape data resulting from the stream
will have. This can be done as a pre-processing step by analyzing the RML mappings from
the annotation phase. Through the use of recent developments, these RML mappings can be
converted to SHACL shapes [8]. Once the shape has been extracted, a so-called blueprint of the
events in the stream is created, e.g. a blueprint of the sensor observations. We define N3 rules
to define how the blueprint should be extracted from the converted shapes:

{ ? x a NodeShape . ? x t a r g e t C l a s s ? c l s s } => { _ : t a ? c l s s }
{ ? x a NodeShape . ? x sh : p r o p e r t y [ sh : path ? prop ] }

=> { _ : s ? prop _ : o }
. . .

Executing the conversion rules with creates the following blueprint:
_ : t a s sn : O b s e r v a t i o n
_ : t s sn : madeBySensor _ : q
_ : t s o s a : h a s S i m p l e R e s u l t _ : z
_ : t : o b s e r v e d P r o p e r t y _ : p

This blueprint fixes the structure of the events and will be used in the top-down optimizations.
Note that the blank nodes follow the original interpretation of blank nodes in RDF and can be
seen as existential quantifiers or variables [12].

4.2. Query rewriting

Algorithm 1 Query Rewrite Algorithm rewriteBody
Require: Static Data 𝑆, BluePrint 𝐵𝑃 , Query 𝑄
1: 𝐵𝑎𝑙𝑙 ← [] ◁ Stores the bindings of the query evaluation
2: 𝐵𝑜𝑟𝑖𝑔𝑖𝑛 ← [] ◁ Stores the origin of the bindings, either static or streaming data
3: 𝑄𝑛𝑒𝑤 ← [] ◁ Stores the rewritten triples patterns of the Query
4: for TP in Q do ◁ First bindings and their origin are retrieved
5: 𝐵 ← 𝑒𝑣𝑎𝑙(𝑇𝑃, 𝑆,𝐵𝑃 ) ◁ Evaluates the Triple Pattern (TP)
6: 𝐵𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝐵𝑜𝑟𝑖𝑔𝑖𝑛 ∪ 𝑔𝑒𝑡𝑂𝑟𝑖𝑔𝑖𝑛(𝐵,𝑆,𝐵𝑃 ) ◁ Retrieves the origin of the bindings
7: 𝐵𝑎𝑙𝑙 ← 𝐵𝑎𝑙𝑙 ◁▷ 𝐵 ◁ Joins the bindings
8: end for
9: for TP in Q do ◁ Patterns on static data are dropped, on streaming data are kept and that joins static and streaming data are

rewritten
10: 𝐵𝑡𝑝 ← 𝐵𝑎𝑙𝑙[𝑇𝑃 ] ◁ Retrieve the bindings for the TP
11: if 𝑖𝑠𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑡𝑟𝑒𝑎𝑚𝐽𝑜𝑖𝑛(𝐵𝑜𝑟𝑖𝑔𝑖𝑛, 𝐵𝑡𝑝 then
12: 𝑇𝑃 ′ ← 𝑖𝑛𝑗𝑒𝑐𝑡𝑆𝑡𝑎𝑡𝑖𝑐(𝑇𝑃,𝐵𝑜𝑟𝑖𝑔𝑖𝑛, 𝐵𝑡𝑝) ◁ Inject static data in TP
13: 𝑄𝑛𝑒𝑤 ← 𝑄𝑛𝑒𝑤 ∪ 𝑇𝑃 ′

14: end if
15: if 𝑖𝑠𝑆𝑡𝑟𝑒𝑎𝑚𝑂𝑛𝑙𝑦(𝐵𝑜𝑟𝑖𝑔𝑖𝑛, 𝐵𝑡𝑝 then
16: 𝑄𝑛𝑒𝑤 ← 𝑄𝑛𝑒𝑤 ∪ 𝑇𝑃 ◁ Patterns on streaming data only are kept
17: end if
18: end for
19: return 𝑄𝑛𝑒𝑤

Once the event blueprint has been extracted, we can optimize the registered queries. The
RSP-QL query language makes a clear distinction between what is executed on either static or
streaming data, however, not all RSP dialects do. For example, in the CSPARQL language [13]
this distinction is not explicit, nor is it in Streaming MASSIF [4]. Thus as a first step, it is



?obs ?value ?sensor ?loc
value _:t _:z :sensorX :officeY
origin event event event/static static

Table 1
Bindings static query evaluation
necessary to extract which parts of the query need to be evaluated on the static data and which
parts on the streaming data. Since the static data is typically available during a pre-processing
phase and the blueprint of the sensors observations have been extracted, it is possible to split up
the query in a streaming and static evaluation. This approach is similar to the basic federated
querying algorithms [14] where each triple pattern is evaluated on the available data sources.
In our case, each triple pattern is valuated on the static data set and the blueprints. Algorithm 1
shows the query rewrite algorithm in pseudo code. It takes the static data (𝑆), the blueprint (𝐵)
and the query (𝑄) and returns the optimized query. Line 4 till 7 evaluates all triple patterns and
retrieves the origin that correspond with the bindings that resulted from the evaluation of each
triple pattern. Note that the blank nodes in the data are treated as existential variables. Thus
while performing the joins between the bindings (line 7), blank nodes do not require an exact
match but are treated as existential variables. Next, we try to rewrite the query such that as
much of the part that needs to be evaluated on the static data can be injected directly in the
query (starting at line 9). This can be done by identifying the query variables (or bindings) that
require a join between the streaming and static data (line 11). Once these variables have been
identified, the bindings can be inspected and if the number of bindings is low, this information
can be directly injected in the query (line 12). Triple patterns that are evaluated only on the
blueprint are kept (line 15), and those evaluated on the static data are dropped. This results
in a query that can be evaluated directly on the stream, disregarding the need to combine the
streaming data with the static data. This also means that this query can be directly evaluated at
the Edge.

Example 1 (Rewriting). Evaluating the triple patterns from Query1, results in the following
bindings, showing the binding values and the origin, i.e. static, streaming or a join between
both:

Since ?sensor has been identified as a variable that joins static and streaming data, its bindings
can be injected in the query. This results in an optimized query that can be evaluated directly
on the stream and thus on the Edge:

? obs a O b s e r v a t i o n ; / / s t ream
madeBySensor : sensorX ; / / s t ream ( s t a t i c i n j e c t i o n )
h a s S i m p l e R e s u l t ? v a l u e ; / / s t ream

Listing 7: Query1-Edge: rewritten query that retrieve all sensor data for a particular room where
:sensorX is installed.

4.3. Reasoning-enabled rewriting
Rewriting becomes more challenging when inference rules are in place. Our platform supports
rewriting for standard Datalog rules, i.e. rules without negation and no introduction of new
variables in the head of the rule. The goal is to identify a minimal subset of necessary rules
required to successfully evaluate the registered query, given the stream blueprint, the static data



Algorithm 2 Rule Rewrite Algorithm rewriteRule
Require: Static Data 𝑆, BluePrint 𝐵𝑃 , Rule set 𝑅, Rule Rewrite Candidate 𝑟, Pruned Rules 𝑅𝑛𝑒𝑤

1: 𝐵𝑎𝑙𝑙 ← [] ◁ Stores the bindings of the rule evaluation
2: for TP in body(r) do
3: if TP in RuleHeads(R) then
4: 𝑟𝑇𝑃 ← 𝑟𝑢𝑙𝑒𝐹𝑜𝑟𝐻𝑒𝑎𝑑(𝑇𝑃 )
5: 𝐵 ← 𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝑅𝑢𝑙𝑒(𝑆,𝐵𝑃,𝑅, 𝑟𝑇𝑃 , 𝑅𝑛𝑒𝑤) ◁ Recursion call
6: if 𝑖𝑠𝐻𝑒𝑎𝑑𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝐵𝑜𝑢𝑛𝑑𝑇𝑜𝑆𝑡𝑟𝑒𝑎𝑚(𝐵, ℎ𝑒𝑎𝑑(𝑟𝑇𝑃 )) then
7: 𝑏𝑜𝑑𝑦′ ← 𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝐵𝑜𝑑𝑦(𝑆,𝐵𝑃, 𝑏𝑜𝑑𝑦(𝑟𝑇𝑃 )) ◁ Rewrites body
8: 𝑅𝑛𝑒𝑤 ← 𝑅𝑛𝑒𝑤 ∪ 𝑏𝑜𝑑𝑦′ → ℎ𝑒𝑎𝑑(𝑟𝑇𝑃 )
9: end if

10: 𝐵𝑎𝑙𝑙 ← 𝐵𝑎𝑙𝑙 ◁▷ 𝐵(ℎ𝑒𝑎𝑑(𝑟𝑇𝑃 )) ◁ Joins the bindings for the head of the rule
11: else
12: 𝐵 ← 𝑒𝑣𝑎𝑙(𝑇𝑃, 𝑆,𝐵𝑃 )
13: 𝐵𝑎𝑙𝑙 ← 𝐵𝑎𝑙𝑙 ◁▷ 𝐵
14: end if
15: end for
16: return 𝐵𝑎𝑙𝑙

and the whole set of rules. First the relevant rules are identified through a backward chaining
process, i.e. the query is analyzed and each concept/property in the query is matched against
the heads of the various rules. Algorithm 2 provides the algorithm for the rewriting of the
identified rules, which uses the algorithm of Section 4.2 to rewrite certain rule bodies. For each
of the identified rules, the process investigates the patterns in the body of the rule (line 2) and
either expands the pattern in another rule through a recursion call if the pattern is also a head
of another rule (line 3-5). When the recursion returns and we can identify that the resulting
bindings that correspond to the variables in the head of the rule are bound to data from the
stream blueprint, we rewrite the rule body such that the bindings from the body related to
static data can be injected in the rule body and add the new rule (line 6-8). For the rewriting
process, the algorithm from Section 4.2 is used. When the variables in the head relate to the
static data, this rule is skipped and only the resulting head bindings are further used in the
recursive process (line 10). If the pattern in the body is not also a rule head, no recursion is
needed and we can simply evaluate the pattern and try to make the join with the previous
available bindings (line 11-13).

We thus make a distinction between rules where the head contains variables that are bound
to static data or to data from the stream blueprint. Only rules with head variables bound to data
from the stream blueprint are kept and rewritten such that the static data is injected in the rules,
similar as for the queries as described in Section 4.2.

Example 2. For this example, we will use the rules as defined in the running example and use
abstract query Query2, that asks for all ComfortObservations instead of defining each of their
low level details.

The process starts by analyzing the query and finds the concept ComfortObservation as
the head of rules R1 and R2 which can be used in the backward chaining process. Doing so,
both TempObservation and LoudnessObservation need to be verified in the recursive call. First,
evidence for any TempObservation is checked directly in the data, as there are none, the process
tries to recursively unfold the TempObservation as it is also the head of R3 into ?x a Observation,
?x madeBySensor ?s, ?s a TempSensor. Evidence for ?x a Observation, ?x madeBySensor ?s can be



detected in the blueprint, but for the triple pattern ?s a TempSensor, the process has to further
unfold as the pattern is also the head of rule R5 which can be unfolded into ?s a Sensor, ?s observes
?p, ?p a Temperature, for which evidence is found in the static data. The backward process can
bind :sensorX to the variable ?s and thus infer :sensorX as a TempSensor. As the variables in
the head of this rule are not bound to any data from the stream blueprint, the rule is not kept
but the bindings are used as a return value for the recursive backward chaining process. This
allows to completely evaluate the body of the TempObservation rule (R3). As for this rule, the
variables in the head of the rule are bound to the data from the stream blueprint, the body of
the rule is rewritten as described in Section 4.2 and added to the resulting rule set. This results
in the following rules:

R1 : { ? x a TempObservat ion } => { ? x a Comfor tObse rva t i on }
R3 ’ : { ? x a Obse rva t ion , ? x madeBySensor : sensorX . }

=> { ? x a TempObservat ion }

Listing 8: Identified and Rewritten rules

As a final step, the rules are further pruned to simplify the resulting rules. A process similar
to the C-Sprite algorithm [15] is used to prune rules such that intermediate results that do not
directly contribute to answering the query are removed, this results resuls in further pruned
rule:

R3 ’ ’ : { ? x a Obse rva t ion , ? x madeBySensor : sensorX . }
=> { ? x a Comfor tObse rva t i on }

Listing 9: Pruned rules

If only a small number of rules remain, these can be directly injected in the query, which
allows to extract the following query:

? obs a : O b s e r v a t i o n ;
madeBySensor : sensorX ;
h a s S i m p l e R e s u l t ? v a l .

Listing 10: Query2-Edge: rewritten query based on optimized rules.

This query can be pushed to the Edge, without the need for any additional inference rules are
combination with static data.

4.4. Implementation

We have implemented the rewriting algorithms on top of our RoXi reasoner [16]2, i.e. a modular
reasoner that focuses on reactive reasoning applications. RoXi is written in Rust and thus ideal
to run both on low resource devices, as found at the Edge and in the cloud, while using the
same code base. We reused the forward and backward chaining algorithms from RoXi and built
the rewriting algorithms presented in Section 1 and Section 2 on top. The resulting algorithms
can be found on our Github page3.

2https://github.com/pbonte/roxi
3https://github.com/pbonte/SHAROQ

https://github.com/pbonte/roxi
https://github.com/pbonte/SHAROQ


Figure 2: Scalability evaluation when increasing the static data, i.e. the number of offices.

5. Evaluation

For the evaluation, we focus on the scalability in function of the response time in a cloud
environment compared to offloading to the Edge. The evaluation is naive in the sense that we do
not take network delays, or any heterogeneity in the available resources at the Edge into account.
The main focus is demonstrating that the proposed algorithms can rewrite queries/rules and
inject the needed static data directly inside the queries/rules such that the query evaluation
can be directly done on the data produced at the Edge and thus improving scalability. We focus
on three scalability investigations: 1) increasing the static data, 2) increasing the number of
concurrent observations and 3) increasing the reasoning complexity. All evaluations, both cloud
and Edge, were done on a MacBook Pro, running Big Sur, with 2,7 GHz Quad-Core Intel Core i7
CPU and 16GB of RAM.

5.1. Static Data Increase

In order to increase the size of the static data, we have generated buildings with increasing
number of rooms. Each room has a number of properties, the rooms it is adjacent to, the function
of the room, its name, etc. Note that even though we generated data for this evaluation, all
data is inspired on real building data [17]. The generation process is to simplify the scalability
evaluation. We use Query1 for the cloud evaluation and the rewritten query Query1-Edge from
Section 4.2 is used for the Edge evaluation. Figure 2 shows the response time in nano seconds,
in log scale, when increasing the number of offices. The figure compares the query evaluation
time for a cloud scenario compared to the query evaluation time for the rewritten query at the
Edge. We can clearly see that the Edge scenario is not subject to any performance degradation
due to the increase of the static data set. This is because the subset needed static data is injected
directly inside the Edge query. We note that this is the response time for a single Edge device.
However, as the evaluation at the Edge can be done in parallel when multiple Edge devices are
present, the comparison still holds.

5.2. Sensor Observations Increase

This evaluation investigates the influence of installing more sensors that are producing more
observations. In RSP, we typically use some kind of windowing to cut the streams in processable
chunks. As more sensors are being installed and more observations are being transmitted to



Figure 3: Scalability evaluation when increasing the number of sensor observations.

Figure 4: Scalability evaluation when increasing the number of reasoning rules.

the cloud, these windows will contain larger amounts of observations, resulting in performance
degradation. In this evaluation we scale the number of sensors and transmitted observations
and compare the query evaluation time for the cloud and Edge scenario. We will use Query1
and Query1-Edge again for this evaluation. Figure 3 shows the response time in nano seconds,
in log scale, when increasing the number of concurrent observations. We can clearly see that
the Edge scenario is in this case also not subject to any performance degradation, because it
does not require to combine the observations from all sensors and can filter the data produced
by a single sensor. We note that we assumed that each sensor would have its own gateway that
is able to perform the offloaded processing.

5.3. Reasoning Complexity Increase

The last evaluation investigates the influence of increasing the reasoning complexity by increas-
ing the number of rules that need to trigger in order to correctly evaluate Query2. This part
of the evaluation focuses on the rewriting of the rules, as presented in Section 4.3. In order to
increase the number of rules that trigger, we artificially generate a hierarchy of concepts that is
evaluated on the data from the sensors. This is done by injecting a hierarchy of variable length
between the LoudnessObservation and ComfortObservation concepts. As the latter concept is
being queried in Query2, the whole hierarchy needs to be evaluated, regardless of using forward
or backward chaining. Figure 4 shows the response time in nano seconds, in log scale, when
increasing the number the number of reasoning rules. The figure compares the reasoning and
query evaluation time for a cloud scenario compared to the reasoning and query evaluation time



for the rewritten rules/query at the Edge. Note that for this evaluation, we also measure the
materialization time, i.e. the time to evaluate all the rules and store their results. The more rules
need to evaluated and store the results of these rules, the longer the processing time. This is
clearly visible for the cloud scenario. For the Edge scenario, we can optimize the rules and prune
all intermediate steps that are not contributing to answering the query. Furthermore, necessary
static data is injected inside the remaining rules, such that the static data is not necessary any
more.

Pruning the rules and injecting the static data inside the rules/queries makes the evaluation
less prone to scalability in terms of static data, concurrent observations or reasoning complexity.

6. Related Work

Various approaches to realize the vision of CR have been proposed in the past. StreamRule [18]
proposes a layered approach that combines RSP with Answerset Programming, however, there is
no connection between the layers and each layer needs to be manually defined. In the CityPulse
project [19], StreamRule is extended with Complex Event Processing (CEP) capabilities, however,
inherits the same drawbacks as StreamRule, while the CEP rules cannot be defined declaratibly
and require a programming effort. StreamingMASSIF is the first platform that really integrates
all layers into a single declarative language [4], however, even though the language allows to
target the different layers, each layer still has to be defined manually.

In RSP, StreamQR [20] proposes a query rewriting approach that is able to inject the domain
knowledge directly into the query, resulting in very larges queries with large numbers of
UNIONs, which can still be very expensive to evaluate. Compared to our approach, StreamQR
takes a top-down approach and does not prune the domain knowledge that needs to be injected
in the query based on a bottom-up analysis of the generated data. Our bottom-up analysis
allows to further prune the needed domain knowledge such that that the evaluation at the Edge
can be as efficient as possible. Furthermore, our approach also investigates the injection of static
data into the query next to the injection of domain knowledge, eliminating many of the stream
and static joins that would otherwise need to happen in the cloud.

C-Sprite [15] is a hybrid rewriting approach that analyses a registered query and optimizes
the rules in the domain knowledge that represent concept hierarchies. Similar to our work,
C-Sprite does a top-down analysis of the queries and prunes part of the rules. However, C-Sprite
only takes simple hierarchies (subclassOf) definitions into account, cannot inject any static data
and also disregards the bottom-up analysis making it inefficient for Edge offloading.

Nguyen-Duc et al. [21] propose a Query Federation procedure for Edge processing. This
is done by incorporating the exact query that needs to be evaluated at the Edge as a nested
query in a larger CQELS-QL query. The focus of this work is on the automated federation of
the defined Edge queries based on the stream descriptions and does not allow to rewrite the
queries to take domain knowledge and static data into account as we propose here.

In the realm of Semantic Web of Things, many efforts have been conducted to semantically
describe, discover and search Sensors and sensor data [22]. While their focus is typically on
annotation, query and (in some cases) processing, their focus has not been on pushing generic
processing capabilities down to the Edge as we propose in our work.



To conclude, little work has been done to automatically translate high-level queries to specific
queries that can be automatically offloaded to the Edge to enable generic Edge processing.

7. Conclusion & Future Work

In this paper, we present a first automated CR approach that allows to automatically rewrite
high-level queries to specific ones that can be evaluated directly at the Edge. These high-level
queries typically combine multiple sensors streams with static data and domain knowledge
(in the form of rules). We propose to employ a top-down and bottom up analysis of both
the registered queries and the annotation of the sensor data. These high-level queries can be
optimized and rewritten such that the reasoning-phase and enrichment with static data can
be bypassed as much as possible. The later is realized by rewriting the high-level queries to
Edge specific queries that contain the needed static data and domain knowledge to evaluate
the query. This enables privacy, low-latency and autonomous processing directly at the Edge.
Furthermore, as less data needs to be sent to the cloud, higher throughput at the cloud and less
network congestion are obtained as well.

In our future work, we will fully formalize our work and prove that correctness and com-
pleteness is maintained after splitting up the high-level queries into multiple smaller ones. We
will also investigate more complex queries, i.e. containing nested queries, union or optional
operators. Furthermore, we aim to investigate the other required Edge processing building
blocks that were disregarded in this work, such as discovery and description of streams and
agents, offloading and resource matching to place the processing modules at right agents taking
resources and Qualities of Service into account.

Our work brings us one step closer to realizing the CR vision which aligns directly with the
Edge processing paradigm. This allows to specify high-level queries over the cloud and Edge
network, while the CR platform optimizes the various querying and reasoning operators across
the network to realize efficient and fully generic question answering at the Edge.
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