
Evaluating the Effect of Semantic Enrichment on
Entity Embeddings of IoT Knowledge Graphs
Roderick van der Weerdt1,∗, Victor de Boer1, Laura Daniele2, Ronald Siebes1 and
Frank van Harmelen1

1Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
2TNO - Netherlands Organization for Applied Scientific Research, The Hague, The Netherlands

Abstract
IoT devices in Smart homes generate large amounts of data by sending messages to share measurements
at frequent intervals. To make this IoT measurement data interoperable, ontologies such as SAREF are
used to represent this data as knowledge graphs (KGs).

These resulting KGs contain measurements from IoT devices together with the context about those
devices, such as the type of measurements, or in which room it is located. Through the use of embedding
methods, we learn embedding representations for entities in KGs that can be used to generate prediction
models. In this study, we investigate how the structure of the IoT knowledge graph affects the effectiveness
of embedding methods for such tasks. Specifically, we look at the effect on embedding quality of enriching
IoT KGs by making implicit information such as temporal sequences and measurement value similarity
explicit. We perform experiments on two IoT KGs represented using the SAREF ontology. One is in a
basic setting, and the other has this information explicitly added. We use RDF2vec to create embeddings,
train a classifier, and compare classifier accuracy.

Analysis of our results shows that classifiers trained with embeddings from enriched KGs outperform
classifiers trained with embeddings from original KGs. This indicates that the explicit information in the
enriched graph improves the quality of the embeddings of entities.

Keywords
Internet of Things, smart homes, ontologies, SAREF, RDF2vec

1. Introduction

With IoT devices becoming more prevalent in everyday homes, common frameworks in which
IoT devices can interact becomemore important. [1] Some of these frameworks use ontologies to
create a common knowledge representation that can represent all available information that IoT
devices can share. The resulting knowledge graph (KG) contains not only the information from
the IoT devices but also, due to the organization of the ontology, the context of the information.
All this information combined in one KG provides opportunities to learn over the shared

knowledge by using embedding methods that create vector representations of the entities in a
KG, which can be used to train ML models used as forecasters or classifiers. A classifier could,

Proceedings of the 1st International Workshop on Semantic Web on Constrained Things at ESWC 2023
∗Corresponding author.
Envelope-Open r.p.vander.weerdt@vu.nl (R. v. d. Weerdt)
Orcid 0000-0002-1125-1126 (R. v. d. Weerdt); 0000-0001-9079-039X (V. d. Boer); 0000-0002-9267-7160 (L. Daniele);
0000-0001-8772-7904 (R. Siebes); 0000-0002-7913-0048 (F. v. Harmelen)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:r.p.vander.weerdt@vu.nl
https://orcid.org/0000-0002-1125-1126
https://orcid.org/0000-0001-9079-039X
https://orcid.org/0000-0002-9267-7160
https://orcid.org/0000-0001-8772-7904
https://orcid.org/0000-0002-7913-0048
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


for example, be used to predict whether the outside temperature is expected to be warm or cold,
which in turn can be used to turn a heater on or off to save energy.

However, the ontologies that are used in these frameworks were instead developed to optimize
embedding methods to learn from them, they were developed in a manner that: “facilitates the
matching of existing assets in the smart applications domain”. [2] Explicitly adding implicitly
available information could potentially improve the quality of entity representations that are
created with the embedding methods. In this research, we investigated the effect that semantic
enrichment of a KG has on the quality of entity embeddings learned from it. This was tested by
taking existing IoT KGs and creating new IoT KGs by semantically enriching them, through the
addition of new properties and entities for each measurement. Classifiers are trained with the
respective entity embeddings and the accuracy of these classifiers was used to determine the
quality of the entity embeddings.
Before the experiment is described in more detail, the next section will give an overview of

relevant research and use it to define some concepts we used in this work.

2. Background

In this section, we will give a short overview of existing work that is relevant to our research.
The first part explains what we define as IoT KGs, while the second part provides background
to embedding methods and specific methods that will be used in our experiments.

2.1. IoT Knowledge Graphs

We define IoT KGs as KGs specifically created to represent measurement data from IoT devices.
SAREF [2] was created to enable interoperability between IoT devices, it was designed to be
able to represent any information coming from IoT devices, serving as a common “language”
to share information with any other device. In Figure 1, we show an example of a SAREF
graph, four of the six properties of a saref:Measurement entity1 connect to an entity that
connects to every measurement made by that device, connecting to the same saref:Device
saref:FeatureOfInterest , saref:Property and UnitOfMeasurement entities, with the other two
properties relating to literals. So when walking through this graph, every measurement is
reachable within two steps.

As seen in Figure 1, there are a few entities, such as saref:Device or saref:Property , that are
connected to the much larger amount of measurement entities. This disproportionate imbalance
between many measurement entities, and a few other entities is what we consider to define
a IoT KG. As stated in [3], the New York entity in DBpedia is specifically highly connected
because from it half of all other entities can be reached within two steps. This high connectivity
is also characteristic for IoT KGs, but instead of it being a specific characteristic of one entity,
this holds for every entity in the graph. Section 3.4 describes how the datasets we used follow
this structure.
When examining the Web of Things ontology a similar structure can be observed, with the

wot:property entity acting as the saref:Measurement entity. [4] Similarly the Semantic Sensor

1To be consistent in our terminology we keep referring to these as entities, but for RDF purposes these are resources.



SAREF:Function

SAREF:Device

SAREF:Task

SAREF:FeatureOfInterest

SAREF:Property

SAREF:UnitOfMeasurement

SAREF:Measurement1 SAREF:Measurement300SAREF:Measurement2 SAREF:Measurement3

0.50

28-01-2023 00:00

0.68

28-01-2023 01:00

0.52

28-01-2023 02:00

5.00

09-02-2023 12:00

Figure 1: Subset of four measurements from a SAREF IoT graph, orange boxes are entities, blue boxes
are literals. Arrow heads represent the direction of the properties.

Network ontology uses ssn:observation . [5] Earlier research by Moreira et al. [6] has shown
that, with minimal mappings, most properties of IoT data can be represented by both SSN and
SAREF. In our experiments, we focus on KGs that were modeled with SAREF, but based on
similarities between all discussed ontologies we expect our results to also be representative for
KGs modeled with the other ontologies.

2.2. Embedding algorithms

The purpose of embedding models is to create a numerical representation for specific entities.
Word2vec learns embeddings for words based on with which other words they co-occur in
sentences. [7] RDF2vec uses random or directed walks to mimic sentences, working under
the assumption that good representations for nodes can be learned based on with which other
nodes they co-occur in random walks. [8] Research has shown that this assumption holds for
many graphs, such as DBpedia or Wikidata.
In [3] the authors describe multiple variants of RDF2vec methods, which are all evaluated

on different KGs. These graphs were generated based on specific characteristics that a KG can
have, such as cardinality restrictions or relations to particular individuals. Similar to their work
we research the effect of KG characteristics on the quality of RDF2vec embeddings. However,
our characteristics are based on graphs that are used in practice, instead of very specific logical
definitions.

Adding new information to a graph based on implicit information can have an adverse effect,
as shown by [9]. In their paper, experiments are performed to test the effect of additional



Step I

Basic

Graph

Semantic

Enrichment

Enriched

Graph

Entity

Embeddings

Embedding

Model

Entity

Embeddings

Classification

Task

Accuracy

Accuracy

Step II

Step II

Step III

Step III

compare

Figure 2: Experimental pipeline.

implicit information, but the quality of the embeddings actually declines. They hypothesize that
the initial absence of the implicit information was in itself a signal. Our semantic enrichment
approach similarly utilizes implicit knowledge, but in the case of IoT KGs, the implicit informa-
tion is used to create new relations because the current relations are insufficiently connecting
relevant entities.

3. Method

In order to expose the effect that semantically enriching IoT KGs has on entity embeddings,
the following experiments were created. The experimental pipeline is depicted in Figure 2.
Each experiment consists of two graphs: an IoT graph (basic graph), and a copy of that first IoT
graph that has been semantically enriched (enriched graph). For the second step an embedding
method is used to create embeddings for specific entities in each graph, and step three uses these
entity embeddings to train a classifier. Comparing the accuracy of the classifier trained with
embeddings from the basic graph, with the accuracy of the classifier trained with embeddings
from the enriched graph will show the effect of the semantic enrichment.

Each step is described in more detail in the following subsections. All the code used in these
experiments is available in our GitHub repository.2

To investigate whether the amount of devices affects the embeddings, the experiments were
performed with three different quantities of devices. We used either all the measurements of:
one device, all the devices from one home, or all the devices from all the homes in the dataset.

3.1. Step I: Semantic Enrichment

In order to perform the semantic enrichment of the graph we created three new entities based
on implicit knowledge in the graph.
Rounded value (red line in Figure 3) Each measurement entity has a measurement value,

which is used to create a new entity based on the rounded value of the measurement. In this

2https://github.com/RoderickvanderWeerdt/semantic-enrichment-of-IoT-graphs

https://github.com/RoderickvanderWeerdt/semantic-enrichment-of-IoT-graphs


SAREF:Function

SAREF:Device

SAREF:Task

SAREF:FeatureOfInterest

SAREF:Property

SAREF:UnitOfMeasurement

SAREF:Measurement1 SAREF:Measurement300SAREF:Measurement2 SAREF:Measurement3

0.50

28-01-2023 00:00

28-01-2023 00:00 0.5

0.68

28-01-2023 01:00

0.52

28-01-2023 02:00

5.00

09-02-2023 12:00

Figure 3: Updated visualization of Figure 1 with the semantic enrichment.

research, the value was rounded to one decimal.
ex:measurement1 ex:hasRoundedValue ex:0.5
ex:0.5 ex:hasRoundedValue ex:measurement1
Sequence links (green line in Figure 3) For each measurement entity a property is added

towards the “next” and “previous” measurement entities, based on the chronological order of
the measurements.
ex:measurement1 ex:nextMeasurement ex:measurement2
ex:measurement2 ex:previousMeasurement ex:measurement1
Timestamp (blue line in Figure 3) The literal timestamp value is used to create a new entity

in the graph, which has a relation towards every measurement taken at that moment, and an
inverse property from each of those measurements back to the timestamp entity.
ex:measurement1 ex:measuredAtTime ex:timestamp1
ex:timestamp1 ex:measuredDuring ex:measurement1

3.2. Step II: Embedding creation

For the embedding step of our experiment, we use the pyRDF2vec implementation of RDF2vec.
[10] This is an implementation of RDF2vec light, which only creates embeddings for specific
entities in KGs, specifically timestamp entities, not for all nodes. Timestamps were selected to
be embedded because they correspond with the classification task, which is described is 3.3.



Table 1
Range of the hyperparameter settings that were explored.

hyperparameter settings
number of walks 6 10 25
walk length 2 4 6
number of epochs 1-40

This also provided the freedom to add and remove devices and measurements without having
to adjust the pipeline, keeping it as similar as possible between experiments. All experiments
used the reverse function of pyRDF2vec.

An initial experiment compares different settings for the following hyperparameters: number
of walks per entity, length of the walks, and number of epochs the embeddings are trained.
A subset of the dataset described in Section 3.4 was used that only included 2000 time points,
to decrease the time it takes to train the embedding model. Based on the results of this first
experiment settings were selected to run the remaining experiments.

3.3. Step III: Evaluation Task

The evaluation of the embeddings quality is a classification task, classifying each timestamp as
either hot or cold. The timestamps were labeled by dividing the dataset in two by sorting the
timestamps from hot to cold and labeling the first half as warm, and the second half as cold.

The classification was performed with a Multilayer perceptron (MLP) implementation written
using PyTorch [11], consisting of two hidden layers with 512 ReLU activation nodes. These
were used as the default hyperparameters. The input to the MLP was the embeddings of the
timestamp, and the output was the hot or cold label.

3.4. Datasets

At the moment of writing, we were not able to find open IoT KGs, which is likely due to the pri-
vacy concerns of making people’s IoT device data publicly, therefore we created these ourselves,
using an energy consumption dataset on device level containing real device measurement data.
We created the IoT KGs following the mapping procedure detailed in [12]. Templates were
created for each device in the dataset, mapping each measurement to the graph together with
related properties.
In order to create the entity files for the embedding step the timestamps of a dataset were

collected and used to connect with the outside temperature at that location at the specific time.
From those temperatures, the hot and cold labels were created. The outside temperature values
were retrieved through worldweatheronline.com.

OPSD Household data The OPSD Household 1hour dataset [13] consists of energy con-
sumption measurements from devices in different types of buildings, of which we use only the
six residential homes since this is closest to the type of measurements we want to investigate.

worldweatheronline.com


Table 2
Distribution of device types over residences in OPSD Household dataset.

device types

re
si
de
nc
e
id

gr
id

im
po

rt

gr
id

ex
po

rt

pv

di
sh
w
as
he
r

ev

re
fr
id
ge
ra
to
r

fr
ee
ze
r

he
at

pu
m
p

w
as
hi
ng

m
ac
hi
ne

ci
rc
ul
at
io
n
pu

m
p

to
ta
l

res1 1 1 1 1 1 1 6
res2 1 1 1 1 1 5
res3 1 1 1 1 1 1 1 1 8
res4 1 1 1 1 1 1 1 1 1 9
res5 1 1 1 1 4
res6 1 1 1 1 1 1 1 7

total 6 3 4 6 1 3 5 2 6 3 39

Table 2 shows the distributions of the different device types over each separate residence.3

The dataset contains measurements taken over a five years duration, but not every device
recorded measurements for the entire period. In order to have a complete dataset we chose to
extract a subset of ten months where all devices had recorded measurements, by removing only
two devices (the freezer from residence 2, and the grid export from residence 6), if we would
have included these the measurements would only be available for two months.
The final manipulation of the data was transforming the energy consumption measure-

ment from its original value of accumulated consumption from the startpoint, to accumulated
consumption over the last hour. This manipulation was performed to ensure that the measure-
ment values in the graph would be recurring, which would not be the case for accumulated
measurement values because those would only increase.

The final graph represents 8133 timestamp entities linking to measurements from 37 devices
from ten device types, spread out over six residences. Three different versions of this graph
were created in order to be able to distinguish between the effects of adding more devices from
within the same home, and adding devices from other homes. The following shorthand is used
to refer to different compositions of the graph:
res1dev1: this graph uses only measurements of one device. this is the heatpump from

residence 4. This graph contains 89477 triples.
res1devA: this graph uses all measurements from all devices in one home, in this case, all

devices from residence 4. This graph contains 715,765 triples.
resAdevA: this graph uses all measurements from all devices in all available homes that are

available. It contains 3,220,912 triples.

3The IoT KGs can be found at: https://github.com/RoderickvanderWeerdt/SAREFized-OPSD-household-graph

https://github.com/RoderickvanderWeerdt/SAREFized-OPSD-household-graph


Table 3
Classification accuracy on the test set and training time of the embedding models for multiple hyperpa-
rameters, on the OPSD-2000 graph.

trained on graph
walk
length

number of walks
6 6 10 10 25 25

accuracy time accuracy time accuracy time

SAREF basic 2 50.92% 222 s 53.17% 233 s 52.58% 288 s
SAREF basic 4 51.68% 7,448 s x x x x
SAREF basic 6 51.67% 14,458 s x x x x

SAREF enriched 2 61% 288 s 75.83% 315 s 92.83% 391 s
SAREF enriched 4 70.25% 25,323 x x x x
SAREF enriched 6 75,83% 53,563 s x x x x

Semantically Enriched data After the semantic enrichment described in Section 3.1 was
performed on the OPSD dataset the KGs grew:
res1dev1: This graph contains 122,007 triples.
res1devA: This graph contains 976,005 triples.
resAdevA: This graph contains 4,391,992 triples.

4. Results

In this section, the results of the experiments are reported. The hyperparameter selection uses
the subset with the 2000 hottest and coldest time points of the OPSD dataset, while the full
OPSD dataset is used in Section 4.2.

4.1. Hyperparameter Selection

The intention of the hyperparameter selection experiment was to find a combination of short
training time and ideally accuracies that were representable for the quality of the embeddings
learned from each graph, not to optimize for the highest accuracy possible.
Table 3 displays accuracies and training times achieved with the resAdevA-2000 KGs, for

multiple hyperparameter settings. Each combination was trained for 40 epochs.
After removing the options that were ended prematurely due to an expected training time of

at least 50 hours, marked here with a ‘x’, the grid was reduced into two directions to explore,
increasing either the number of walks or the walk length. By increasing the walk length the
difference in accuracy between using the basic or enriched graph grows, but the training time
also grows extensively. Alternatively increasing the number of walks had a similar effect on the
accuracy, but the time to train only grew slightly between different settings.

We attribute this difference in training time to the increase of entities that were needed to be
retrieved during training of the models with an increased walk length. As discussed earlier in
Section 2.1, IoT KGs require only a few steps through the graph to reach all entities in the graph.
By increasing the walk length more entities are included that are connected to many entities,
increasing the possible unique walks greatly. To handle this more compute time is required.



0 5 10 15 20 25 30 35 40

50%

60%

70%

80%

90%

100%

resAdevA enhanced (train)
resAdevA enhanced (test)
resAdevA basic (train)
resAdevA basic (test)
res1devA enhanced (train)
res1devA enhanced (test)
res1devA basic (train)
res1devA basic (test)
res1dev1 enhanced (train)
res1dev1 enhanced (test)
res1dev1 basic (train)
res1dev1 basic (test)

Figure 4: Effect of the number of epochs on the accuracy of classifiers trained with various IoT KGs.

Based on our requirements of short training time and distinct accuracies the best option is a
walklength of 2 and 25 walks per entity, since the time increase is limited, and the accuracy
increase allows for more range between the embedding quality of basic and enriched IoT KGs.
In order to determine the effects of the number of epochs the embeddings model is trained,

we trained six embedding models, one for each version of the basic and the enriched IoT KG.
The training and test accuracy were calculated after each epoch, for a total of 40 epochs. The
results are visualized in Figure 4. Training accuracies are portrayed with dashed lines, test
accuracies with solid lines.
All training accuracies reach 100% after 10 epochs, except res1dev1-basic, which takes 20

epochs. Two out of three test accuracies for basic IoT KGs never increase above ±50% and are
therefore not taken into account. The enriched IoT KGs test accuracies remain consistent after
20 epochs.
Based on these findings we trained the model for the next experiment for 20 epochs, this is

enough to reach the plateau of resAdevA enriched and res1devA enriched, but will also avoid
overfitting by not training too long.

4.2. Basic vs Enriched

The results of the experiment have been visualized in Figure 5. For both datasets and for any
amount of devices being used, the classifier trained on the enriched graph always outperforms
the classifier trained on the basic graph. The smallest difference occurred with res1dev1 of the
OPSD data, and even then the accuracy was still significantly different (p=0.00766).

Accuracies of classifiers trained on basic IoT KGs were, with the exception of res1dev1, always
close to 50%. This indicates that these embeddings did not contain any information that the
classifier was able to learn from since only two possible classes exist and therefore always



res1dev res1devA resAdevA
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

basic
enhanced

Figure 5: Average accuracies of the classifiers, trained on different amounts of devices, for the full
OPSD data.

picking the same class yields an accuracy of 50%. The exception being the classifier trained
on the res1dev1 graph. A possible explanation is that because this is a singular device, all
measurements values that were available as literals were enough for the embedding model to
learn a signal because that one device by itself happens to be a very good indicator for what
was being classified, the energy consumption of a heatpump to predict the outside temperature.

Accuracies of classifiers trained on enriched IoT KGs were highest when learning from
res1dev1. As with the classifiers trained on basic IoT KGs, this could be explained by the fact
that this device is a good indicator for the classes. When more devices from the same residence
were added (res1devA) the accuracy of classifiers reduced, which might be explained by all the
additional devices, and therefore measurements, that were added, are not providing more, or
the right, information for the embeddings, causing the classifiers accuracy to decrease. For
example, a dishwasher would not be a good predictor of the outside temperature.
Classifiers trained with embeddings from resAdevA had a significantly higher accuracy

(p=0.00099) than classifiers trained with embeddings from res1devA. The difference in relation
to res1devA and res1dev1 being that not only other devices were added, but other devices
from different homes were added, which include new devices that are good indicators for the
classification labels.

5. Discussion

During this research, some unexpected observations were made, which are presented in this
section. They serve as a way to explain our process, but also to suggest some possibilities for
future research.



5.1. Data Validity

For now, only energy consumption measurements were used, primarily because this was the
only public data we could acquire at the time. More heterogeneous measurements could have a
different effect of the embedding methods. Additional measurements could for example include
CO2 levels or room occupancy.

In Section 2.1 we explained why we expect our results to generalize to IoT KGs created with
different ontologies, based on the similarities in their design. Additional research could explore
the differences, to determine if semantic enrichment has a bigger or smaller effect.

5.2. Enrichment Choices

The rounded values were now always rounded to one decimal, using more decimals would result
in more rounded value entities, each having fewer connections with measurements, since fewer
measurement values would be rounded to the same rounded value. But rounding to too many
decimals runs the risk of becoming too specific, with a “rounded” value for every measurement
value. How much rounding is applied could be an interesting parameter for future research.

Even though all the measurements were about energy consumption, they were made by many
different devices. But the rounded values (and literal values) made no distinction between, for
example, a measurement of 0.6 of a freezer, or a measurement of 0.6 of a dryer. Making separate
entities out of these, such as 0.6_freezer and 0.6_dryer would allow the embedding method to
learn the difference.

5.3. Evaluation Task

For now, we used one classifier without any optimization. For the purposes of this experiment
that sufficed to compare the accuracies of the classifiers trained on different IoT KGs, but other
classifiers could be used to examine if they are differently affected with different IoT KGs.

The classifiers are overfitting on the training set, as can be observed in Figure 4. This could
be an indication that we need more data, or that the embeddings are creating too specific
representations for the entities. RDF2vec not only embeds similar entities close together, but
it also tries to embed dissimilar entities further away, which could cause all the entities to
be spread out evenly, leaving no generalization to learn for the classification model. Future
research could reimplement this experiment with different embedding methods, such as TransE
[14] or GCN [15], which could make the difference in accuracies achieved in the experiment
more clearly distinct.

In our experiments, we predicted the outside temperature based on a house, but this outside
temperature is the same for all the houses in each dataset because we only have one outside
temperature on city level. Therefore the result that including more houses leads to a higher
accuracy can also mean a more representative house was added, that better represents what is
being classified. Future research should explore the benefits of sharing information between
different homes to improve embeddings, but also explore how this affects privacy concerns.



6. Conclusion

In this research, we set out to answer the question: What is the effect of semantically enriching a
KG on the quality of entity embeddings learned from it. When we consider the accuracy of the
classifier as an indicator of the quality of the entity embeddings, the results of our experiment
make it clear that semantic enrichment had a positive effect on the entity embedding quality.
The semantically enriched IoT KGs outperformed their corresponding basic IoT KGs in every
instance, regardless of graph size.
Because the information added by the semantic enrichment is implicitly already available

in the KG, changing the ontology design to add the enrichments would not provide any new
information to the ontology. Instead, we see the semantic enrichment step as an additional part
of preprocessing the graph, to enhance the quality of the embeddings.

Acknowledgements. This work is part of the InterConnect project (interconnectproject.eu/)
which has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 857237.

References

[1] C. Akasiadis, V. Pitsilis, C. D. Spyropoulos, A multi-protocol iot platform based on open-
source frameworks, Sensors 19 (2019) 4217.

[2] L. Daniele, F. den Hartog, J. Roes, Created in Close Interaction with the Industry: the Smart
Appliances REFerence (SAREF) Ontology, in: International Workshop Formal Ontologies
Meet Industries, Springer, 2015, pp. 100–112.

[3] J. Portisch, H. Paulheim, The RDF2vec Family of Knowledge Graph Embedding Methods,
2022.

[4] W3C, Web of Things (WoT) Thing Description (2020). URL: https://www.w3.org/TR/2020/
REC-wot-thing-description-20200409/.

[5] M. Compton, P. Barnaghi, L. Bermudez, R. GarcíA-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, et al., The SSN Ontology of the W3C Semantic
Sensor Network Incubator Group, Journal of Web Semantics 17 (2012) 25–32.

[6] J. Moreira, L. Daniele, L. F. Pires, M. van Sinderen, K.Wasielewska, P. Szmeja, W. Pawlowski,
M. Ganzha, M. Paprzycki, Towards iot platforms’ integration semantic translations between
w3c ssn and etsi saref., in: SEMANTICS workshops, 2017.

[7] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in
vector space, 2013. URL: https://arxiv.org/abs/1301.3781. doi:10.48550/ARXIV.1301.3781 .

[8] P. Ristoski, J. Rosati, T. Di Noia, R. De Leone, H. Paulheim, Rdf2vec: Rdf graph embeddings
and their applications, Semantic Web 10 (2019) 721–752.

[9] A. Iana, H. Paulheim, More is not always better: The negative impact of a-box materializa-
tion on rdf2vec knowledge graph embeddings, in: CEUR Workshop Proceedings, volume
2699, RWTH, 2020, pp. Paper–5.

[10] G. Vandewiele, B. Steenwinckel, T. Agozzino, F. Ongenae, pyrdf2vec: A python implemen-
tation and extension of rdf2vec, arXiv preprint arXiv:2205.02283 (2022).

https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://arxiv.org/abs/1301.3781
http://dx.doi.org/10.48550/ARXIV.1301.3781


[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style,
high-performance deep learning library, in: Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[12] R. van der Weerdt, V. de Boer, L. Daniele, B. Nouwt, R. Siebes, Making heterogeneous smart
home data interoperable with the SAREF ontology, International Journal of Metadata,
Semantics and Ontologies 15 (2021) 280–293.

[13] Open Power System Data, Data Package Household Data, Version 2020-04-15 https://data.
open-power-system-data.org/household_data/2020-04-15/. (Primary data from various
sources, for a complete list see URL)., 2020.

[14] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating embeddings
for modeling multi-relational data, Advances in neural information processing systems 26
(2013).

[15] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,
arXiv preprint arXiv:1609.02907 (2016).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://data.open-power-system-data.org/household_data/2020-04-15/
https://data.open-power-system-data.org/household_data/2020-04-15/

	1 Introduction
	2 Background
	2.1 IoT Knowledge Graphs
	2.2 Embedding algorithms

	3 Method
	3.1 Step I: Semantic Enrichment
	3.2 Step II: Embedding creation
	3.3 Step III: Evaluation Task
	3.4 Datasets

	4 Results
	4.1 Hyperparameter Selection
	4.2 Basic vs Enriched

	5 Discussion
	5.1 Data Validity
	5.2 Enrichment Choices
	5.3 Evaluation Task

	6 Conclusion

