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Abstract  
Recently, to diagnose rare genetic diseases, Virtual Gene Panels (VGP) comprising sets of 
disease-related causal genes have been used to interpret candidate genes detected through 
whole-genome sequencing and whole-exome sequencing. In a pilot study of the UK 100,000 
Genome Project for diagnosing rare diseases, VGPs from PanelApp software were used to filter 
candidate genes instead of manual interpretation to improve diagnostic efficiency. However, 
in about 50% of cases, the PanelApp VGPs also filtered out disease-causing genes. Here, we 
propose several methods using the hierarchical structure of Mondo disease ontology to design 
VGPs that avoid filtering disease-causing genes with high probability. To determine the best 
VGP design method among those proposed, we evaluated our methods with various parameters 
via computational experiments with an evaluation data set composed of 74 patients. Our results 
show that our proposed method can contribute significantly to automatically filtering candidate 
genes as well as shortening the interpretation time for diagnosing rare diseases. 
 
Keywords1 
Rare disease, Ontology, Genetic testing, Virtual gene panel 

1. Introduction 

Rare diseases are those with a very low prevalence rate, of which there are estimated to be about 
10,000 in the world [1]. Worldwide, the total number of patients with these diseases is estimated to be 
more than 400 million, many of whom have been undiagnosed for years [2]. Approximately 80% of 
rare diseases are believed to have a genetic origin [1]. The advancement of next-generation sequencing 
(NGS) technology has decreased both the cost and time of decoding genetic sequences. As a result, 
using NGS for genetic testing is considered a powerful tool for diagnosing rare diseases [3]. However, 
diagnosing rare diseases using NGS involves a labor-intensive process of searching through literature 
to identify a single candidate disease-causing gene that can best explain a patient's symptoms. This 
manual interpretation process can take hours, even for trained experts [4]. 

Recently, to reduce the time needed for manual search, a Virtual Gene Panel (VGP) comprising a 
set of disease-related causal genes has been used to filter candidates. By taking the intersection of 
candidate genes and the set of genes of the VGP corresponding to an initial diagnosis, the number of 
potential candidates can be reduced significantly. As part of the UK 100,000 Genomes Project, a pilot 
study for rare disease diagnosis, the PanelApp software, including 332 VGPs, was developed and 
applied to the manual interpretation of whole-genome sequencing results [5]. However, they failed to 
effectively filter out candidates in 50% of cases [6]. 

There are two reasons why disease-causing genes were not effectively filtered in half of the pilot 
study cases. First, there were only 332 VGPs included in PanelApp. VGPs in PanelApp are designated 
through manual curation, which takes time to design. Therefore, there were not always appropriate 
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VGPs corresponding to initial diagnoses. Furthermore, if the initial diagnosis is even slightly wrong, 
the disease-causing gene may not be included in the VGP. 

In this study, we propose a method to design VGPs automatically using a knowledge graph. 
Additionally, we propose several methods to expand VGPs using the hierarchical structure of Mondo 
disease ontology (Mondo) [7]. The basic premise of the expanded VGP design is adding genes 
associated with the superclass or sibling of the initially diagnosed disease in Mondo into an original set 
of genes. We evaluated the diagnostic efficiency of these methods using 74 cases of rare genetic 
diseases. Our results show that the best method succeeded in automatically filtering candidate genes 
while still containing the disease-causing genes with high probabilities. 

2. Methods 
2.1. Knowledge graph 

We constructed a knowledge graph based on the Resource Description Framework to design VGPs 
automatically (https://integbio.jp/rdf/dataset/pubcasefinder), using existing classes for interoperability 
with other knowledge graphs. All diseases and genes were defined as instances of "med2rdf:Disease" 
and "med2rdf:Gene" classes, respectively, by Med2RDF-ontology (http://med2rdf.org/) [8]. Gene-
disease associations were defined as instances of the "sio:SIO_000983" class defined by Semantics 
Science Integrated Ontology [9]. 

We collected gene-disease associations from the following three data sources. 
1. MIM2Gene (https://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen). 

Associations between MIM Numbers with type "phenotype" and NCBI Gene IDs were 
extracted. 

2. OrphaData (http://www.orphadata.org/data/xml/en_product6.xml). 
Associations between OrphaCodes and Gene symbols were extracted. 

3. GenCC (https://search.thegencc.org/download) [12]. 
Associations between disease IDs including MIM Numbers, OrphaCodes, and Mondo IDs and 
HGNC IDs were extracted. 

 
We connected to MIM numbers in Online Mendelian Inheritance in Man [10] and OrphaCodes in 

Orphanet [11] to Mondo IDs using the "equivalentTo" classes in Mondo. In our constructed knowledge 
graph, genes are connected for a disease ID in Mondo through med2rdf:Disease and sio:SIO_000983. 
For a disease ID d in Mondo, we denote a set of genes by 𝐺 𝑑  connected in the knowledge graph. 
Then, we define 𝐺 𝑑 𝐺 𝑑 ∪ ∪      𝐺 𝑑′ .  

2.2. Development of VGPs 

Initially, when a disease, d, is diagnosed, G(d) can be regarded as a VGP for d. Original set (OR): 
For a given disease d, output a set G(d) of genes. Using OR, we can obtain as many VGPs as the number 
of Mondo IDs. However, like PanelApp, OR also has the problem of filtering out the disease-causing 
gene if the initial diagnosis is slightly different. To overcome this problem, we propose an expansion 
of the VGP designed by OR. 

Mondo forms a directed acyclic graph, in which nodes represent diseases and edges represent 
"rdfs:subClassOf" relationships between diseases. Using this structure, we expanded the VGPs 
designed by OR by adding genes of superclasses in Mondo. 

Here we describe four simple rolling-up methods to expand VGP using rdfs:subClassOf. One class 
up for all paths (1UAP): For disease d, compute a set of genes 𝐺 𝑔| 𝑔 ∈
𝐺 𝑑′ , 𝑑 rdfs:subClassOf 𝑑′ . Two classes up for all paths (2UAP): For disease d, compute a set of 
genes 𝐺 𝑔| 𝑔 ∈ 𝐺 𝑑 , 𝑑 rdfs:subClassOf 𝑑′ 𝑎𝑛𝑑 𝑑′ rdfs:subClassOf 𝑑′′ .  One class up for 
minimum paths (1UMP): For disease d, compute a set of genes 𝐺 𝑎𝑟𝑔𝑚𝑖𝑛 |G(d')|  𝑔| 𝑔 ∈
𝐺 𝑑′ , 𝑑 rdfs:subClassOf 𝑑′ . Two classes up for minimum paths (2UMP): For disease d, compute a 
set of genes 𝐺 𝑎𝑟𝑔𝑚𝑖𝑛|G(d'')| 𝑔| 𝑔 ∈ 𝐺 𝑑′′ , 𝑑 rdfs:subClassOf 𝑑′ 𝑎𝑛𝑑 𝑑′ rdfs:subClassOf 𝑑′′ . 



Additionally, we describe the following two methods to expand VGP by rolling-up until the number 
of genes exceeds the threshold k. 

 All paths up with threshold k (TH k AP) 
 Minimum path up with threshold k (TH k MP) 
For an initially diagnosed disease d, TH k AP and TH k MP compute a set D of Mondo IDs, such 

that each 𝑑  in D is d or ancestor of d and the size of 𝐺 𝑑  is equal to or greater than the threshold k. 
TH k AP outputs the union of 𝐺 𝑑′  for all 𝑑′ in D, and TH k MP outputs 𝐺 𝑑′  for 𝑑′ with minimum 
size of 𝐺 𝑑′ . The algorithms of TH k AP and TH k MP are shown in Algorithms 1 and 2. 
 
Algorithms 1 TH k AP 

Input: a Mondo ID d, the Mondo Ontology 
Output: a set G of genes 
𝐷 ∅  
𝐷 .push 𝑑     //𝐷′ is a stack  
while 𝐷  is not empty   

𝑑 𝐷 .pop   
if |𝐺 𝑑′ | 𝑘   

𝐷 𝐷 ∪ 𝑑′   
else 

𝐷′.push 𝑑′′  for 𝑑′′ such that 𝑑′ is a subclass of 𝑑′′  
𝐺  ∪ 𝑑 ∈ 𝐷  𝐺 𝑑   
return 𝐺 

 
Algorithms 2 TH k MP 

Input: a Mondo ID d, the Mondo Ontology 
Output: a set G of genes 
𝐷 ∅  
𝐷 .push 𝑑     //𝐷′ is a stack  
while 𝐷  is not empty   

𝑑 𝐷 .pop   
if |𝐺 𝑑′ | 𝑘   

𝐷 𝐷 ∪ 𝑑′   
else 

𝐷′.push 𝑑′′  for 𝑑′′ such that 𝑑′ is a subclass of 𝑑′′  
𝑑′′ 𝑎𝑟𝑔𝑚𝑖𝑛|G(d)| 𝑑| 𝑑 ∈ 𝐷   
𝐺 𝐺 𝑑′′   
return 𝐺 

3. Results 

To evaluate the diagnostic efficiency of VGPs developed according to the proposed methods, a data 
set from 74 patients obtained via whole-exome sequencing (WES) was used. The data set includes 
candidate genes from WES, initially diagnosed diseases, and disease-causing genes. The median of the 
number of candidate genes in the 74 patients was 384. For each patient, the number of disease-causing 
genes, which would be included in G, was one. The number of initially diagnosed diseases, which is 
the input of the methods, takes from one to three, with a median of one. 

Using the knowledge graph, VGPs for about 25,000 diseases contained in Mondo can be 
automatically designed by the OR method. To evaluate the performance of the seven expansion methods, 
we computed Coverage, Median, and Expectation. Table 1 shows the experimental results of OR, 1UAP, 
1UMP, 2UAP, and 2UMP. Table 2 and Table 3 show the results for TH k AP and TH k MP when 
increasing the threshold from 50 to 300 at increments of 50. Coverage refers to the ratio of VGPs that 
include disease-causing genes. Median is the median of the sizes of intersections of the patient's 
candidate genes and VGPs. Expectation is the expected number of genes to analyze for determining the 



final disease-causing gene. If VGPs include disease-causing genes, only genes in intersections of the 
patient's candidate genes and VGPs should be analyzed. However, if VGPs do not include disease-
causing genes, all candidate genes should be analyzed. Therefore, the expectation can be computed 
using the following formula. 

Expectation  𝛴  ∈ VGP  | 𝐶 𝑝 ∩ VGP 𝑝  |   𝛴  ∉ VGP  | 𝐶 𝑝  |  / 74 
where, for patient 𝑝, a set of genes in VGP, the disease-causing gene, and a set of candidate genes are 
denoted by VGP(𝑝), 𝑔 𝑝 , and 𝐶 𝑝 , respectively. 

 
Table 1  
The results of the experiments using OR, 1UAP, 1UMP, 2UAP and 2UMP 

  OR  1UAP  1UMP  2UAP  2UMP 

Coverage  0.4864  0.9324  0.8378  0.9729  0.8918 
Median  1  23.5  10  60  18 
Expectation  197.22  52.77  74.67  67.14  64.87 

 
Table 2  
The results of the experiments using TH k AP 

  TH 50 AP  TH 100 AP  TH 150 AP  TH 200 AP  TH 250 AP  TH 300 AP 

Coverage  0.9054  0.9189  0.9324  0.9459  0.9459  0.9459 
Median  19.5  22.5  23  24  24  26.5 
Expectation  55.14  54.39  51.24  48.09  48.54  49.35 

 
Table 3  
The results of the experiments using TH k MP 

  TH 50 MP  TH 100 MP  TH 150 MP  TH 200 MP  TH 250 MP  TH 300 MP 

Coverage  0.8513  0.8648  0.9054  0.9324  0.9324  0.9324 
Median  10.5  12  13  14.5  15  15 
Expectation  70.59  66.5  51.93  41.97  42.29  42.56 

 
2UAP performed best in terms of Coverage, although this had the worst Median. Conversely, OR 

had the best Median but worst Coverage. Regarding Expectation, TH 200 MP performed best. 

4. Discussion 

Among the seven methods, the best performance observed was for TH k MP, especially when k = 
200. As k increases, both the coverage of TH k MP and the median of the number of genes to be analyzed 
become larger. Therefore, there is a trade-off between coverage and the median. By selecting suitable 
values of k, users can design a VGP with preferred coverage and median. 

Using VGPs, the number of candidate genes to be analyzed can be reduced. If a VGP was not used, 
all candidate genes had to be analyzed (median of 388). However, by using VGPs designed by TH 200 
MP, the median of the number of candidate genes was reduced to 14.5 if the VGPs included disease-
causing genes. Therefore, VGPs designed by our proposed methods may be useful for gene ranking 
systems, such as PubCaseFinder [13], by filtering candidate genes using VGPs. 

5. Conclusion 

In this study, seven methods were presented to develop expanded VGPs for initial clinical diagnosis 
using knowledge graphs including Mondo. As a result, the TH 200 MP method, i.e., the minimum path 
navigation using a threshold of 200, achieved the best performance regarding Expectation. We found 
that this could contribute significantly to automatically reducing candidate genes as well as shortening 



the interpretation time for diagnosing rare diseases. We expect our methods to be widely used by 
clinicians to diagnose rare diseases with NGS analysis technology. 
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