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Abstract
Monocular visual odometry is a fundamental problem in computer vision and it was extensively studied
in literature. The vast majority of visual odometry algorithms are based on a standard pipeline consisting
in feature detection, feature matching, motion estimation and local optimization. Only recently, deep
learning approaches have shown cutting-edge performance, replacing the standard pipeline with an
end-to-end solution. One of the main advantages of deep learning approaches over the standard methods
is the reduced inference time, that is an important requirement for the application of visual odometry in
real-time. Less emphasis, however, has been placed on memory requirements and training efficiency.
The memory footprint, in particular, is important for real world applications such as robot navigation or
autonomous driving, where the devices have limited memory resources. In this paper we tackle both
aspects introducing novel architectures based on Depth-Wise Separable Convolutional Neural Network
and deep Quaternion Recurrent Convolutional Neural Network. In particular, we obtain equal or better
accuracy with respect to the other state-of-the-art methods on the KITTI VO dataset with a reduction of
the number of parameters and a speed-up in the inference time.

1. Introduction

Monocular Visual Odometry consists in estimating the trajectory of an agent from a sequence
of images acquired at consecutive time instants from a single camera mounted on the agent.
Most of the visual odometry (VO) systems are based on a standard pipeline based entirely on
geometry. Some implementations achieved excellent results, and a number of them can also run
in real-time [1][2], however there is always a trade-off between real-time performances and
consistency due to the final local optimization procedure. Moreover, in the case of monocular
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VO, the global scale is unknown and it must be computed using other measurements. Recently,
the first end-to-end deep learning pipeline for monocular VO (DeepVO) was introduced in [3].
The authors used a RCNN [4] in order to automatically extract and match features in consecutive
frames. In particular DeepVO is trained to predict the pose and orientation (and also the global
scale) directly from a sequence of RGB images. With this work we extend the aforementioned
model by introducing some optimizations aimed at reducing the number of parameters and
increasing the inference speed. We will achieve this with two important changes. We will replace
the standard real value convolution with the convolution in the quaternion domain, that allows
to reduce the number of parameters without harming the expressive power. We also introduced
Depth-Wise Separable Convolution (DC) both in the real and in the quaternion domain. The DC
convolution separates the spatial correlation from the channels correlation reducing drastically
the number of parameters and the number of operations. The rest of the paper is structured as
follows: section 2 introduces the problem of monocular visual odometries along with related
works; section 3 provides the mathematical background and describes in detail the quaternion
convolution (section 3.1) and the depth-wise separable convolution (section 3.2); section 5
illustrates the proposed method with the implementation details; section 6 discusses the results
and the conclusion is drawn in section 7.

2. Related Works

Visual Odometry has a long history in the computer vision community[5, 6, 7, 8, 9]. However,
thanks to the precise and clean geometric formulation of the problem, the vast majority of the
state-of-art monocular VO systems are based on the following standard pipeline [10, 11]:
Image sequence: the input of the pipeline is an ordered sequence of images collected by the
camera in consecutive instants. In order to match features, it is important that two consecutive
images have a sufficient scene overlap.
Feature Detection: in this step salient keypoints are extracted by each image, where keypoints
are patterns that are different from their neighbours and can be easily identified in a different
pose and orientation. Common algorithms such as SIFT [12] or FAST[13] consist in applying a
feature-response function over the entire image and detect features as local maxima.
Feature Description: in which each feature is converted into a compact representation that
can be matched with other descriptors.
Feature Matching: the feature descriptors in consecutive images are matched according to a
similarity measure.
Motion Estimation: the motion of the consecutive frames is computed using the correspon-
dences between the features descriptors in the two images.
Bundle Adjustment: in this step the result is refined by optimizing the reprojection error on
the entire sequence of images. This is the most costly operation.

Even tough applications based on this pipeline achieved excellent results, there is always a
trade-off between performance and consistency, and the right solution must be chosen carefully
considering both the navigation environment and the requirements. Moreover, monocular VO
approaches based on geometry are not able to recover the global scale, that must be recovered



through external measurements. On the other hand, deep learning have been rarely used
to tackle VO problems, and some existing approaches require a pre-processed optical-flow
as input [14]. DeepVO, introduced in [3], was the first deep learning model to estimate the
6 Dof of the poses directly from a sequence of RGB images. The model is composed of a
convolutional neural network (CNN) to extract local descriptors and a recurrent neural network
(RNN) to match the extracted features in consecutive frames. DeepVO will be used as a baseline
model and its performances will be compared to those of the same model with the addiction of
quaternion convolution, separable depth-wise convolution and both. Quaternion convolutional
networks (QCNN) for image processing were introduced in [15] in order to give colored images
a meaningful representation through the quaternion algebra. In particular a pixel is represented
as a single quaternion rather than a vector in ℛ3. In this way it is possible to interpret pixel
multiplications (with the Hamilton product) as rotations in the color space. The effect of this
representation is investigated in [16] where a QCNN based autoencoder, trained only on gray
scale images, is able to perfectly reproduce colored images at test time. Depth-wise separable
convolution (DC) firstly appeared in [17] and was popularized by its extensive application in
the famous Xception[18] and MobileNets[19] architectures. DC allows to drastically reduce the
number of parameters and operation without harming the accuracy. More details will be given
in section 3.2.

3. Background

This section describes the mathematical foundation of the proposed approach. In particular the
first part introduces quaternions and quaternion convolution, while the second part is about
the detph-wise separable convolution.

3.1. Quaternions

The quaternion algebra H was introduced by Hamilton in 1843 as an extension to the complex
algebra. A quaternion has a real component and three imaginary components i,j,k, with the
property that

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1

Given two quaternions
𝑄1 = 𝑟1 + 𝑥1𝑖+ 𝑦1𝑗 + 𝑧1𝑘

and
𝑄2 = 𝑟2 + 𝑥2𝑖+ 𝑦2𝑗 + 𝑧2𝑘

, they can be summed, multiplied by a scalar and multiplied by each other according to the
following formulae:

𝑄1 +𝑄2 =(𝑟1 + 𝑟2) + (𝑥1 + 𝑥2)𝑖+ (1)

(𝑦1 + 𝑦2)𝑗 + (𝑧1 + 𝑧2)𝑘

𝜆𝑄1 =𝜆𝑟1 + 𝜆𝑥1𝑖+ 𝜆𝑦1𝑗 + 𝜆𝑧1𝑘

𝑄1 ⊗𝑄2 =(𝑟1𝑟2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2)+



(𝑟1𝑥2 + 𝑥1𝑟2 + 𝑦1𝑧2 − 𝑧1𝑦2)𝑖+

(𝑟1𝑦2 − 𝑥1𝑧2 + 𝑦1𝑟2 + 𝑧1𝑥2)𝑗+

(𝑟1𝑧2 + 𝑥1𝑦2 − 𝑦1𝑥2 + 𝑧1𝑟2)𝑘

where ⊗ is the Hamilton product and it is the core of the Quaternion Convolution (QC). In
standard convolution (SC) each pixel is represented as a three channels (RGB) feature vector,
while in QC a pixel is a single quaternion where the imaginary parts are its RGB components
and the real part is the gray scale image.

𝑄(𝑝) = 𝐺𝑟𝑎𝑦(𝑝) +𝑅(𝑝)𝑖+𝐺(𝑝)𝑗 +𝐵(𝑝)𝑘 (2)

Let 𝐼 ∈ 𝒬𝑁×𝑁 be the image and 𝑊 ∈ 𝒬𝐿×𝐿 the filter, both in the quaternion domain, then
the QC can be defined as:

𝐼 ○* 𝑊 [𝑘, 𝑘′] =

𝐿∑︁
𝑙=1

𝐿∑︁
𝑙′=1

𝑊𝑙,𝑙′ ⊗ 𝐼𝑘+𝑙,𝑘′+𝑙′ (3)

The peculiarity of this operation is that the information about the color space is preserved,
whereas in the standard convolution the contributions from the RGB channels are summed. In
QC the color space is modeled in the quaternion domain and each pixel, each weight of the
network and each element of the intermediate feature maps are represented in this domain. By
replacing the SC with the QC, the number of parameters and operations increases by a factor 4.
However it was shown [15] that quaternion convolutional networks have good performances
even if the number of kernels in each layer is reduced to match those of the real value convolution,
hence input and output channels are divided by

√
4 = 2. Quaternion convolution acts as a

regularizer and reduces the degrees of freedom of the trainable parameters, as explained in
[16]. In order to exploit this property, we further reduced the number of parameters dividing
both input and output channels by 4 (instead of 2). Thanks to this optimization, the number of
parameters of the convolutional networks drops from 1.3M to 416K as shown in table 1.

Model Name CNN Parameters
DeepVO 14.6M

QDeepVO 3.7M
DeepVO DSC 1.6M

QDeepVO DSC 416K

Table 1
This table compares the number of parameters in the convolutional part of the three proposed models
and the baseline

3.2. Depth-Wise Separable Convolution

Depth-Wise Separable Convolution (DC) splits the correlation of the spatial features and the
features channels in two separate steps and consequently reducing the number of parameters.
In standard convolution, each output channel is the result of the sum of the activations of



N kernels, where N is the number of input channels. Let 𝑜𝑚[𝑥] be the channel 𝑐𝑜𝑢𝑡 of the
convolution at position 𝑥 where 𝑥 ∈ 𝑅2. The standard convolution equation can be written as:

𝑜𝑐𝑜𝑢𝑡[𝑥] =
∑︁
𝑐𝑖𝑛

𝐼 * 𝑘𝑐𝑖𝑛 =
∑︁
𝑐𝑖𝑛

∑︁
𝑦

𝐼[𝑥+ 𝑦]𝑘𝑐𝑜𝑢𝑡𝑐𝑖𝑛 [𝑦] (4)

Hence, a convolution of a feature map with size 𝑁 ×𝑁 with 𝑀 input channels with 𝐾 filters
(output channels) with size 𝐿× 𝐿 requires 𝑀𝐾𝐿2 parameters and 𝑁2𝑀𝐾𝐿2 operations. In
DC convolution, first the spatial convolution is computed indepentently for each input channel:

𝑜𝑐𝑜𝑢𝑡[𝑥] = 𝐼 * 𝑘𝑐𝑜𝑢𝑡 =
∑︁
𝑦

𝐼[𝑥+ 𝑦]𝑘𝑐𝑜𝑢𝑡[𝑦] (5)

Of course the number of output channels equals the number of input channels. This computation
requires 𝑀𝐿2 parameters and 𝑁2𝑀𝐿2 operations. Then a 1𝑥1 convolution correlates the
channels:

𝑜𝑐𝑜𝑢𝑡[𝑥]′ =
∑︁
𝑐𝑖𝑛

𝑜𝑐𝑜𝑢𝑡 *𝐾𝑐𝑜𝑢𝑡
1×1 𝑐𝑖𝑛 (6)

This computation requires 𝑀𝐾 parameters and 𝑁2𝑀𝐾 operations. Hence in DC convolution
the total number of parameters is 𝑀𝐾 + 𝑀𝐿2 and the number of operations is 𝑁2𝑀𝐿2 +
𝑁2𝑀𝐾 . With simple algebraic manipulations, it can be shown that the reduction factor in
both the number of parameters and operations is 𝐾𝐿2

𝐾+𝐿2 .

4. Dataset

For training and testing our models we used the famous KITTI dataset [20] and in particular
the KITTI VO/SLAM benchmark, containing 22 sequences of RGB images, where the first 11
have the ground truth pose matrix associated to each image in the sequence. Figure 4 shows
two consecutive images in a sequence while figure 4 shows a ground truth trajectory computed
from the ground truth file.

5. Method

The three architectures presented in this section are derived from the DeepVO network. The
network is composed of 9 convolutional blocks, each with 2D convolution, ReLU activation,
Batch Normalization and Dropout. After the convolutional blocks there are two stacked LSTM
that receive as input the sequence of feature maps extracted by the convolutional layers (more
details are reported in table 3).

The input of the network is a sequence of raw RGB images and the output consists in the 3
components of the translation vector expressed in meters and the 3 euler angles expressed in
degrees for each image in the sequence. The three variants of DeepVO introduced in this paper
are:
Quaternion DeepVO: with Quaternion convolution (as described in section 3.1) instead of
standard convolution.



Figure 1: Example of two consecutive images from the KITTI dataset

Figure 2: Example of a trajectory from ground truth.

DeepVO DSC: with Depth-Wise Separable convolution instead of standard convolution.
Quaternion DeepVO DSC: with both Quaternion convolution and Depth-Wise Separable con-
volution. The three networks have the same type and number of layers, but the implementation
of the convolution algorithm changes as explained in section 3. The advantage is a considerable
reduction in the number of parameters. In particular with Quaternion DeepVO, DeepVO DSC
and Quaternion DeepVO DSC we obtained a reduction in the number of parameters of 13M,
10.9M, 14.2M respectively in the three cases (these results are summarized in table 2). For the
quaternion implementation we opted for a full quaternion representation, where the real part
represents the gray scale image and the imaginary parts the RGB components, with respect to a
pure quaternion representation, in which the real part is set to zero.



Model Name textbfCNN parameters Translation loss (%) Rotational Loss (deg)
DeepVO 14.6M 10.17 8.76

QDeepVO 3.7M 9.48 7.93
DeepVO DSC 1.6M 12.54 10.79

QDeepVO DSC 416K 9.74 7.13

Table 2
This table summarizes the results both in term of model size and translation and rotational losses.

DeepVO Architecture
input (bs,3,1280,384)

conv1
kernels = 64, kernel size = 7, stride = 2

conv2
kernels = 128, kernel size = 5, stride = 2

conv3
kernels = 256, kernel size = 3, stride = 2

conv3_1
kernels = 256 , kernel size = 3, stride = 1

conv1
kernels = 512, kernel size = 3, stride = 2

conv4
kernels = 512, kernel size = 3, stride = 1

conv4_1
kernels = 512, kernel size = 3, stride = 2

conv5
kernels = 512, kernel size = 3, stride = 1
kernels = 1024, kernel size = 3, stride = 2

LSTM1 hidden size = 1000
LSTM2 hidden size = 1000
Linear out features = 6

Table 3
DeepVO architecture. To increase readability, the table did not state that after each convolutional block
there is a ReLU activation function, batch normalization and dropout with rate 0.2.

6. Results

The three networks were trained for 200 epochs with learning rate 10−3 on 5 of the 11 labelled
sequences (in particular on sequences 00, 01, 02, 08, 09), while the remaining 6 labelled sequences
are used for testing. The average translational RMSE drift in percentage on lengths of 100m -
800m and the average rotational RMSE drift expressed in deg /100𝑚 on lengths of 100m-800m
are reported in table 2. The learning curves of the models are reported in figure 3 while tables 4
and 5 show the true and predicted trajectories in the test sequences. The results show that the
best performances are obtained by our Quaternion DeepVO model, while the metrics of our
Quaternion DeepVO DSC model are comparable to those of the baseline, but with a significant
reduction in the number of parameters and operations.

7. Conclusion

In this paper we presented a novel end-to-end deep learning approach for monocular visual
odometry. The proposed method was based on the DeepVO, a state-of-art deep learning architec-
ture for VO, and introduced quaternion convolution and depth-wise separable convolution. We
obtained the best result in the quaternion domain, with 10.9M parameter less and a comparable



result with the depth-wise convolution in the quaternion domain, with 14.2M parameter less.
However the changes we introduced apply only on the convolutional part. We left as a future
work the investigation of other optimization strategies for the recurrent part, and in particular,
considering the success of the quaternion convolution, it would be of interest to keep also the
LSTM part in the quaternion domain.

Figure 3: The figure shows the learning curves of the models. The first and second columns represents
respectively the translational and rotational losses, where the red and blue curves are the train and test
curves.



Table 4
True (blue) and predicted (red) trajectories on the test sequences 03, 04, 05

Networks Sequence 03 Sequence 04 Sequence 05

DeepVO
LSTM
1000

DeepVO
DSC
LSTM
1000

QDeepVO
LSTM
1000

QDeepVO
DSC
LSTM
1000
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