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Abstract
Powered lower limb exoskeletons (LLEs) are innovative wearable robots that allow independent walking
in people with severe gait impairments. Despite the recent advancements, the use of this promising
technology is still restricted to clinical settings; uptake in real-life conditions as a device to promote
user independence is still lacking due to the difficulty of controlling these devices in unstructured and
complex environments. In this work, we propose a vision-assisted method for low obstacle avoidance to
enhance the autonomy of LLEs. The exoskeleton collects information from the surroundings through a
RGB-D camera to recognize and segment objects on the ground that might affect the walking pattern.
Then, the method identifies suitable foothold positions. In addition, a novel iterative gait trajectory
generator is proposed to automatically compute collision-free walking paths. We believe that re-thinking
exoskeletons as semi-autonomous agents will represent not only the cornerstone to promote a more
symbiotic human-exoskeleton interaction but may also pave the way for the use of this technology in
the everyday life.
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1. Introduction

Powered lower-limb exoskeletons (LLEs) represent a recent assistive technology to allow people
with gait impairment to regain the capability of walking [1]. The interest in this technology is
not limited to the research community but is gaining attention from a commercial perspective:
several exoskeletons are already available on the market (e.g., HAL [2], MindWalker [3]).
However, the use of powered exoskeletons is still restricted to clinical settings or to highly
controlled environments [4]. Indeed, LLEs generate pre-programmed walking patterns which
are repeated all alike or—at most—implement gait patterns individualized for each user [5]. The
research community has tried to face this limitation by implementing pre-defined locomotion
modes for ground-walking, inclined planes, stair walking [6]. However, the user is often required
to manually switch between the different modes [7] and a run-time estimation of the robot’s
gait control parameters for adapting the walking to the specific environmental obstacles (e.g.,
objects on the ground) is generally not considered. In unstructured real-world settings, this can
be inconvenient and cognitively demanding as the control burden is entirely on the user. To
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Figure 1: Pipeline of the proposed method

overcome these limitations, we propose a novel vision-based control approach for low-obstacle
avoidance in lower-limb exoskeletons. The proposed method is schematically displayed in
Figure 1. A RGB-D camera is mounted on the exoskeleton pelvis and a Robotic Vision module is
implemented for detecting ground plane and obstacles, and compute the next foothold position
taking into consideration robot state, obstacles’ shape and safety constraints. In addition, a
novel iterative-based Collision-Free Foot Trajectory Generator (CFFTG) and a parameterized
gait kinematic model are proposed to compute hip and knee joints’ angles that are sent to the
robot PID controller to produce a feasible gait pattern allowing to avoid the detected obstacles.
Our preliminary results in a simulation experiment show that the proposed autonomous gait
planning method allows the exoskeleton to successfully perform a step in complex walking
conditions without collisions.

2. Methods

2.1. Robotic Vision Module

The Robotic Vision module takes the data from the RGB-D camera to perceive the environment
in order to recognize the spatial position and geometric shape of the obstacles that may interfere
with the walking. First, the point cloud is aligned with the robot coordinate frame through
an homogeneous transformation. Then, the ground plane is identified using the RANSAC
algorithm [8] and separated from the input point cloud. The remaining points of the cloud are
labelled as obstacle points. Rectangular area in front of each foot, with dimension [foot width ×
maximum step length] is considered (Figure 2(a)). For each point within this area, a score is
computed taking into consideration: (i) presence of an obstacle point, to which a score of 0 is
immediately applied; (ii) linear distance to the closest obstacle point; (iii) average step length, to
privilege a consistent step cadence, as shown in Figure 2(b). In case no obstacle is detected, only
the average step length is automatically considered. Finally, a sliding window is applied to each
area (i.e., the window will have the dimension of the foot) to find the region in which the mean
score of the points in the window is maximised. If a window contains a point whose score is
0, the whole window is discarded. If a feasible window is found, the step length is computed



Figure 2: (a) Visualisation of the output produced by the Robotic Vision Module, along with the
proposed next step position (highlighted in yellow). (b) Functions used to compute the score for each
track point. (c) Visualisation of the CFFTG algorithm’s iterations.

considering the center of the window.

2.2. Collision-Free Foot Trajectory Generator (CFFTG)

After having predicted the next foothold, a CFFTG algorithm is in charge of producing the foot
trajectory that doesn’t collide with the identified obstacles. In practice, the gait trajectory is
modelled as a cubic polynomial curve that has its starting point in the current foot position
and its final point in the center of the foothold found by the Robotic Vision module. Fixing
the start and end points, the curve has two degrees of freedom, which are the horizontal ℎ
and vertical 𝑣 position of the foot trajectory peak. To identify these parameters, a randomized
iterative state-space search [9] is exploited. In particular, ℎ and 𝑣 are firstly initialized using
gaussian random variables with means equal to half the step length and to average step height,
respectively. If the trajectory resulting from the current ℎ and 𝑣 parameters doesn’t collide
with obstacle, it is returned in output; otherwise, the minimum euclidean distance between the
trajectory and the obstacle is computed. Also, new values for ℎ and 𝑣 are generated from the
gaussian random variables. If the newly computed trajectory is still in collision but its minimum
distance to obstacle is higher than the previous one, the means of the random variables are set
to the current values of ℎ and 𝑣 and the variances are reduced by a scale factor to restrict the
search space. This trajectory generation process is iterated until a feasible trajectory is found or
the maximum number of iterations is reached. In the second case, the process is repeated with
a different initialization of the random variables to account for the presence of local minima in
the searching process. An example of the CFFTG iterations is shown in Figure 2(c).

This motion planning algorithm has been implemented as it results in smooth foot trajectories
similar to the physiological walking pattern [10] and since it is shown to converge faster to
a feasible solution than other motion planning algorithms [11]. This aspect is fundamental
in walking applications as the exoskeleton should predict and elaborate the next step motion
during the stance phase, which lasts about 400 ms in able-bodied locomotion.



Figure 3: Kinematic model of the swing leg (a) and single-support leg (b) in the sagittal plane

2.3. Parameterized Kinematic Model

A parameterized kinematic model is implemented to achieve a run-time adaptation of the gait
pattern according to the outcome of the CFFTG algorithm. The employed kinematic model is
shown in Figure 3 (a) for the swing leg, and in Figure 3 (b) for the single-support leg. The model
has two active degrees of freedom at the hip and knee joints, while the passive ankle joint is
assumed to be fixed at 90∘ during the swing phase, and compliant during the stance phase, to
keep the foot parallel to the ground. Based on the bio-mechanical literature [12], the motion of
the center of mass (CoM) during the swing phase is shown to follow a cubic polynomial curve in
the vertical direction that has its minimum when the swing leg is parallel to the single-support
leg, that is flexed of 𝛿 ≃ 20∘ for a better support. To calculate this vertical translation 𝑠, we
exploited the crank-connecting rod mechanism [13] (see Figure 3 (b)):

𝑠 = 𝐿1 + 𝐿2 − (𝐿1 ⋅ cos (𝛽) + 𝐿2 ⋅ cos (𝛼)) (1)

Finally, knowing the full CoM and foot trajectories and given the leg length constraints, the
trajectory of each active joint can be retrieved from the inverse kinematic solution:

𝜃𝐻 = arctan(
𝐻𝑧 − 𝐾𝑧

𝐾𝑦 − 𝐻𝑦
) (2)

𝜃𝐾 = 𝜃𝐻 − arctan(
𝐾𝑧 − 𝐹𝑧
𝐹𝑦 − 𝐾𝑦

) (3)

3. Experiments & Results

Six experiments have been carried out by simulating a situation where the LLE was challenged
to surpass different obstacles: following a hardware-in-the-loop approach, point clouds were
acquired with a RealSense D-455 Stereo Camera to test the Robotic Vision module on real data,



Table 1
Means and standard deviations of notable experimental values

Value Mean

Obstacle Detection Error 0.35 cm ± 0.25 cm
RV execution time 61.48 ms ± 20.45 ms

CFFTG execution time 20.35 ms ± 5.73 ms

Figure 4: Kinematic simulation results for the six experiments. The elements depicted are: foot
trajectory (dark blue), single support leg (blue), leg executing the step (red), obstacle (orange), hip
trajectory (green).

and based on the detection a simulated version of the environment was produced to test CFFTG
and kinematics. It is worth noting that we assumed perfect obstacles tracking with respect
to the exoskeleton reference frame since experiments have been conducted in a simulated
environment. Visuo-inertial SLAM techniques [14] will be considered as soon as the system will
be implemented and evaluated on a real LLE. Table 1 shows the parameters monitored during
the experiments. Figure 4 shows the outcome of the CFFTG algorithm and kinematic model for
the six experiments. In all the conditions, the method was able to produce a feasible gait pattern
avoiding collisions with obstacles of different shapes and height with suitable computational
time.

4. Conclusions & Future Work

This work presents a new vision-based method to control LLEs with the aim of increasing the
autonomy of these devices in real-world applications. Future work will focus on implementing
and testing this approach on a real exoskeleton, as well as new approaches will be considered
for the vision module in order to extend it to be used in outdoor settings.
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