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Abstract
We apply an anomaly detection method based on Hidden Markov Models and Hellinger distance to
a Kairos mobile robot operating in the ICE lab, a research laboratory for Industry 4.0. Two main
contributions are proposed: i) a decomposition of the Hellinger distance which allows to identify the
causes of anomalous behaviours detected, ii) a graphical user interface that synchronously shows the
robot movements in a map and the evolution of the Hellinger distance components, allowing a quick
investigation of the causes of the detected anomalies. The tools are applied to a real-world dataset
allowing to discover that an anomalous movement of the Kairos robot is caused by a wrong reading of
the lidar from a window in the environment.
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1. Introduction

A goal of Artificial Intelligence (AI) is to allow robots to leave controlled environments and take
part in our everyday life. A key aspect of long term autonomy [1] to reach this goal is safety. A
robot should preserve itself, the environment and humans moving in it, while acting to reach a
goal. Important tools for achieving safety in robot autonomy are anomaly detectors [2, 3, 4]
able to recognize infrequent data samples possibly related to anomalous situations faced by the
robot, or damages in robot’s equipment.

In this work we apply a recent online anomaly detection technique [5] based on Hidden
Markov Models [6] to data acquired by sensors and actuators of a mobile robot, namely, an RB-
Kairos1, acting in a real environment for industrial research. The environment is the Industrial
Computer Engineering (ICE) lab2 of the Verona University (Italy), a laboratory for Industry 4.0
with a modern production line, extended with equipment for augmented reality and digital
production. The robot has to move between two positions in the laboratory and abnormal
behaviours are observed. The anomaly detection technique efficiently learns nominal behaviours
of the robot from sequences of sensor readings and recognizes anomalous behaviours instead of
single anomalous observations. Then, using the Hellinger distance [7] between the distribution
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of data observed online (in a time window) and the most similar distribution in the learnt model
of nominal behaviour, the detector successfully detects anomalies in the data.

Besides successfully applying the online anomaly detector to a real-world domain, in this
work we propose two other contributions. From a methodological point of view we introduce a
decomposition of the Hellinger distance in elements focused on specific variables (i.e., sensors
and actuators). This decomposition supports the identification of the causes of the anomalous
behaviours. From an application viewpoint we provide a prototypical Python GUI that syn-
chronizes a map view of the robot moving in the environment with a chart view showing the
time evolution of the components of the Hellinger distance, for all variables (i.e., sensors or
actuators). This GUI allows an informative analysis of the causes of observed anomalies. In the
results section we analyze a real anomaly detected by the system and provide interpretation
using the proposed tools.

2. Related work

Some works employ deep neural networks for online anomaly detection in robot systems, three
recent examples are [8, 9, 10], which employ LSTM variational autoencoders. However, these
works cannot be considered as alternatives to our online method since they require datasets
composed of thousands of execution traces sampled at high frequency. Unlike neural network
based techniques, our methodology is sample efficient, in fact in our case study the model of
the nominal behavior is generated using only two trajectories travelled by the robot in the ICE
environment.

Other key differences are present between our approach and state-of-the-art methods for
anomaly detection in autonomous robots. For instance, some works use supervised machine
learning approaches to classify data produced in real-time by a robot. The problem of these
methods is that they need fully labelled data, which are rarely available in the the context of
anomaly detection. Instead our method is completely unsupervised [2], hence it allows to detect
even completely unknown anomalies, since it considers anomalous the behaviours that have
been never (or rarely) seen in nominal dataset. In [11] an online multivariate data-driven fault
detection approach is presented using the Mahalanobis-distance to compare correlated streams
of data with previously observed data. In [12], a self-awareness approach is proposed which
builds a probabilistic model on the basis of the whole discrete event-based data interchange
inside the robot. Finally, some works [13, 11] explicitly deal with contextual faults [2]. The
difference with our approach is that we represent different contexts as different states of an
HMM, while those in the literature consider recent past observations as context.

Among the approaches in the literature using HMM for anomaly detection, the ones most
similar to our approach are [14] and [15], in which HMMs are trained using multimodal
sensory signals for detecting anomalies in assistive robots. At run time, the trained HMMs
provide likelihood scores for data inside a window, which are compared to an adaptive detection
threshold to identify putative anomalies. The methodology that we use substitutes the likelihood
estimation with the computation of a more informative and interpretable measure, i.e., the
Hellinger distance, that in this work we decompose allowing the identification of the specific
sensors involved in the anomaly. A few other recent works aim to improve the interpretability of



the anomaly detection using hybrid data-driven/symbolic approaches. Some of them [16, 17] use
of Satisfiability Modulo Theory (SMT) to instantiate pre-defined logic rules designed using prior
knowledge. Others [18] use Inductive Learning of Answer Set Programs (ILASP) to automatically
detect behavioral patterns in paradigmatic simulation tasks performed by autonomous agents
operating in uncertain environments. These methods, however, mainly aim to describe in a
human-understandable way (i.e., using logic representations) the behaviours of the robot, while
the approach presented in this paper aims to explain the source of observed anomalies using a
probabilistic and only data driven approach.

3. Dataset

The dataset has been collected by sensors installed on a RB Kairos moving in the ICE lab
environment. The environment, shown in the left-hand side of Figure 1, contains a reconfigurable
production line with a storage system, from which the robot takes the raw materials and puts the
final products, and several tools (e.g., manipulators, a subtractive CNC machine, a 3D printer)
used to generate and assemble the product. In the specific data acquisition sessions the robot
had to move from the staring point to the ending point in the map. Three testing sessions were
performed: two of them had nominal behaviours (see the red and blue trajectories in the map
of Figure 1) and the third session shown an anomalous behaviour (see the green line in the map
which moves close to a window instead of towards the end of the path).

The raw dataset has about 2300 variables and different number of time steps for different
sensors, since each sensor has (potentially) different sampling interval. We focused our analysis
on robot position (i.e., coordinates X and Y ), robot orientation (O) and distances between the
robot and surrounding environment/objects. Distances are perceived by lasers. The robot
collects 540 laser signals, with sampling angle of 0.5∘. We performed data pre-processing with
two main goals: to standardize the sampling interval and to reduce the resolution of the lasers.
The first operation was performed because the anomaly detection technique requires an uniform
sampling interval; the second operation was performed to reduce the dimensionality of the
problem, since high dimensionality may generate mathematical issues in model learning and
in the computation of the Hellinger distance. In particular, we generated three laser variables,
that we called, Laser Left (LL), Laser Center (LC) and Laser Right (LR). LL is the average of
laser signals with angles between 0∘ and 89.5∘, which scan the environment on the left of the
robot. LC is the average of laser signals with angles between 90∘ and 179.5∘, which scan the
environment in front of the robot. LR is the average of laser signals with angles between 180∘

and 270∘, which scan the environment on the right of the robot.
After the pre-processing phase we obtained two datasets, each with six variables (i.e., columns),

namely, X, Y, O, LL, LC and LR. The training dataset contains two nominal trajectories of 32
seconds each, for a total of 64 seconds and 340 time steps (i.e., rows), using a time interval
of 0.2 sec. The test set contains a trajectory of 45 seconds (230 time steps) which is nominal
for 11 seconds and then it diverges from the nominal path moving towards a window in the
environment (see the green line in Figure 1).



4. Method

We first describe the main properties of the anomaly detection technique proposed in [5]. Then
we introduce the two contributions of this work: the decomposition of the Hellinger distance
and the Graphical User Interface. Both support the identification of the causes of the anomalies.

4.1. Online anomaly detection technique

Given a general 𝑑-dimensional time series 𝑂 = {𝑜1, . . . ,𝑜𝑛} composed of 𝑛 observa-
tions, where 𝑜𝑡 is a 𝑑-dimensional vector representing the multivariate (multi-valued) ob-
servation at time 𝑡, the nominal behavior (i.e., training set) of the robot is represented as
𝑂𝑁 = {𝑜𝑁

1 , ...,𝑜𝑁
𝑛𝑁 } and the observed behavior (test set) of the same system along some time

period as 𝑂𝑂 = {𝑜𝑂
1 , . . . ,𝑜

𝑂
𝑛𝑂}.

According to [5], the nominal behavior of the robot system is modeled as a HMM 𝜆𝑁 that
is learned from the training set 𝑂𝑁 using the Baum-Welch algorithm [6]. The number of
hidden states is selected by minimizing the BIC. Online anomaly detection at time step 𝑡 is
performed by means of a sliding window 𝑊𝑡 = {𝑜𝑂

𝑡−𝑤+1, ...,𝑜
𝑂
𝑡 } of length 𝑤 which includes

the last 𝑤 observations. For each window 𝑊𝑡, a score is computed and, when the score exceeds
a predefined threshold 𝜏 , the behavior is considered anomalous. The score is the Hellinger
distance between the estimated distribution of the observations corresponding to the most
frequently occurring state �̂�𝑡 in the Viterbi path 𝑆𝑡 = {𝑠𝑡−𝑤+1, ..., 𝑠𝑡} of window 𝑊𝑡 and the
emission probability of the same state in 𝜆𝑁 .

The online procedure computes the Viterbi path of the multivariate time series inside the
window. For the state �̂�𝑡 occurring most frequently in the Viterbi path a multivariate Gaussian
distribution 𝒩 (𝜇,Σ) is fit with the data inside the window. Then the Hellinger distance is
computed between 𝒩 (𝜇,Σ) and the emission probability of state �̂�𝑡 in 𝜆𝑁 using the formula

𝐻(𝑓, 𝑔) = 1− 𝑑𝑒𝑡(Σ1)
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If the distance is larger than a threshold 𝜏 , then a warning is reported. Full details of the
procedure are described in [5].

4.2. Decomposition of the Hellinger distance

The second term of Equation (1) determines the size of the Hellinger distance for each window,
namely, if this term is close to 1 then the Hellinger distance is close to 0, indicating a nominal
behaviour, and if the term is close to 0 than the Hellinger distance becomes close to 1, reporting
an anomalous behaviour. The second term can be split, again, in two factors. The first one,
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depends on the differences in the covariance matrices Σ1 and Σ2 of the two distributions, while
the second factor,

𝑒𝑥𝑝
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depends on both the means 𝜇1 and 𝜇2 and the covariance matrices Σ1 and Σ2 of the two
distributions. Considering 𝑛 variables 𝑥1, . . . , 𝑥𝑛, with means 𝜇1 = (𝜇1,1, . . . , 𝜇1,𝑛) and
𝜇2 = (𝜇2,1, . . . , 𝜇2,𝑛) for distributions 𝑓 and 𝑔, respectively, and assuming diagonal covariance
matrices
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for distributions 𝑓 and 𝑔, respectively, we developed the matrix calculations in the formula of
the Hellinger distance and grouped by variable obtaining two Hellinger terms for each variable 𝑖.
Notice that the assumption of diagonal covariance matrices is reasonable in several applications.
It only avoids considering covariances between different variables, hence the tool would not
detect anomalies related to different covariances between nominal and observed behaviours.
When small amount of data are available, as in our case study, the estimation of covariance
parameters is very error prone, hence diagonal covariance matrices are used anyway in these
cases that represent the majority of cases in real-world applications. The first term (Eq. (2)) is
related to the first factor in the Hellinger formula, and the second term (Eq. (3)) decomposes the
exponential in the second factor of the Hellinger formula. For the 𝑖-th variable the two terms
are:
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According to this decomposition the Hellinger distance can be written as
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Components 𝐻1(𝑖) and 𝐻2(𝑖) are very useful to identify the variables more involved in an
identified anomalies. In the next section we show a real case study in which this decomposition
allowed to identify the causes of an anomalous behaviour of the RB Kairos in the ICE lab.

4.3. Graphical user interface

The Python graphical user interface (GUI) here proposed is displayed in Figure 1. It shows the
map of the environment on the left and the evolution of Hellinger components 𝐻1(𝑖) and 𝐻2(𝑖)
on the right. The GUI is updated in real-time as new data are loaded from a csv file. At the
beginning the marker representing the robot (a black circle) is positioned in the starting point



of the map and the nominal trajectories (blue and red lines) are shown. In the chart on the right,
the pink vertical line showing the time instant is placed on coordinate 0 of the x-axis. As time
goes on, the robot marker is moved in the map and the related green trajectory is plotted. On
the right, the green vertical line is moved to the right and the chart of Hellinger components for
each variable is generated (in Figure 1 the entire chart is shown because the dataset is analyzed
offline). In the bottom of the GUI some buttons allow to start/stop the run and a slider allows to
quickly move forward and backward if the dataset is analyzed offline. The online version of the
GUI only shows the trajectory and the chart until the current time instant and the slider allows
only to focus on previously seen parts of the robot trajectory. Other commands allow to switch
between different HMM models using different sets of variables (if they were learnt before).

Figure 1: Graphical User Interface. Right: map of the environment showing robot movements. Left: Hellinger
components showing the contribution of each variable to the Hellinger distance. High values identify the
variables more involved in anomalous behaviours.

5. Results

We computed HMM models of nominal behaviors from the training set defined in Section 3 and
using 4 different combinations of variables. We computed the accuracy of each model when
used in the anomaly detector. The model of greatest interest was that using variables X, Y, O,
LL, LC and LR. With parameter tuning we identified a good set of parameters, namely, 9 hidden
states in the HMM and a window of 20 steps (i.e., trajectory intervals of about 3 seconds are
considered to identify the anomalies). The accuracy of this model is 0.95 (with a precision of
1.00, a recall of 0.88 and a F1-score of 0.94). In the computation of the accuracy we used a ground
truth manually defined considering the distance of the trajectory from nominal trajectories.



We tested the anomaly detector on the test set defined in Section 3 containing a known
anomalous trajectory. As shown in Figure 1, the detector managed to identify the anomaly
(see the red dots on the green trajectory). In particular, if we focus on the point where the
anomaly starts (see the circle in the map and the corresponding pink vertical line in the chart)
we see that the first Hellinger component that grows is that of variables LL and LC (the left and
central lasers, see the red and purple lines). After about 2 seconds, the Hellinger component of
variable LR (laser right) grows quickly and reaches a very high level. Only after 2 seconds the
Hellinger component of the X position grows (blue line in the chart). This analysis shows that
the causes of the anomalous behaviour of the robot, which strangely moves close to the window,
are anomalous observations from the laser. For this analysis we only shown components 𝐻2(𝑖)
because components 𝐻1(𝑖) were not informative (always close to 1) in this case study.

From a discussion with robot operators it emerged that a probable cause of the anomaly was
the fact that the window during the testing trajectory was not covered by a curtain as it was
during the nominal trajectories, hence the robot probably received wrong distances from the
central laser which observed out of the room, it started moving towards the window to explore
an area that it did not explored before, and moving closer to the window also the right laser
started to get anomalous readings from the window. Hence the anomalous laser readings can
be identified as very probable causes of the anomalous trajectory travelled by the robot.

6. Conclusions and future work

The tests performed in this work on a RB Kairos robot show that the online anomaly detection
methodology investigated is able to identify anomalous behaviours of robot. Furthermore, the
decomposition of the Hellinger distance allows to improve the interpretability and to identify the
causes of the anomalous behaviours. The GUI supports the analysis both in real-time and offline.
Future developments will focus on comparing the performance and the interpretability of this
method with those of other anomaly detectors in the literature. Then we want to integrate the
detector and the GUI in the ICE-lab demonstrator to show its capability in real-time applications.
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