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Abstract
Brain-machine interfaces (BMIs) are alternative communication channels that have allowed healthy
and disabled people to control external devices from brain signals. In the last decades, the growing
attention towards neurorobotics has led to the proliferation of several BMI-based systems for controlling
different devices including telepresence robots, powered wheelchairs, robotic arms, and upper/lower-limb
exoskeletons. Despite the potentialities of these systems, it has emerged the necessity to create new
forms of interaction between the human and the robot in order to increase the granularity of the user’s
commands which are, in turn, translated into specific robot’s actions. In this preliminary work, we
present how artificial intelligence can be exploited to design and tune a model able to convert the user’s
intention into continuous robot’s movements.
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1. Introduction

Brain-Machine Interfaces (BMIs) provide an alternative interaction channel that does not depend
on the brain’s normal output pathways of peripheral nerves and muscles [1, 2]. The purpose of
BMIs is to augment the capabilities of disabled people suffering from severe motor impairments,
by allowing them to communicate and/or interact with external devices according to their
brain activity [3]. In the previous decades, several studies have shown the feasibility to control
different typologies of robots with BMIs including wheelchairs, telepresence robots, exoskeletons
and robotic arms [4, 5, 6, 7, 8, 9, 10]. In all the applications, BMIs try to detect specific patterns
in the brain signals as a result of stimulation via external stimuli (e.g., exogeneous BMIs) or
the self-paced modulation of the brain rhythms (e.g., endogenous BMIs), that, according to the
specific applications, are then contextualised and converted into a control signal for a device.
Moreover, as represented in Fig. 1, BMIs are characterised by a closed loop, in which the classifier
models the mental activities of the user’s, while the feedback allows the user to learn the task
and adapt to the machine.

A key component in BMI systems is the control strategy that determines how to convert the
output of the BMI decoder into signals for the external device [11] (Fig. 1).
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Figure 1: A representation of the BMI closed-loop. The user is requested to perform a specific mental
task, while his/her brain activities are acquired and recorded. The brain signals are processed in order to
extract the features related to the task. A classifier, based on the extracted features, decodes the user’s
intention of performing the task. The output of the classifier is converted into a control signal (discrete
vs. continuous according to the protocol) for an external device. An appropriate feedback, traditionally
visual, is shown to the user to make him/her aware about the performance.

There are two different approaches in the literature [11]. The first one is the discrete, ac-
cordingly to the name, allows to send discrete high-level commands to the device (e.g., robot’s
rotation, selection of a destination, etc, pick of an object) that can be associated with the brain
response to specific events or resulted from the quantization of the continuous output of the
decoder. For instance, traditionally, the continuous raw probabilities from the decoder are
integrated and compared with a control threshold. In other words, a command is delivered,
when the system is confident enough about the user’s intended command. This strategy allows
to improve the control signal’s stability and to reduce its variability. For these reasons, discrete
control is the most applied for brain-actuated devices.

The other approach is named continuous and is designed to increase the precision and
granularity in controlling external devices. However, such a paradigm is more difficult to
implement due to the non-stationary nature of the EEG and the uncertainty of the classifier
output. Indeed, it is less studied than the discrete case. Only a few approaches are proposed in
the literature based on: (a) mapping of the brain activity via linear/quadratic functions into a
continuous control signal for the robot as in [12, 13, 14, 15]; (b) sophisticated system designed
to make the BMI classifier more stable by taking into account the nature of the signals as in
[16, 17, 18].

In particular, in this work, we focus on the continuous approach based on dynamical systems
proposed in [18], that, as already demonstrated, has allowed to increase the performance in
controlling a telepresence robot via a motor imagery BMI and increase the coupling between
the user and the devices than the discrete control. However, such an approach relies on multiple
parameters that can be difficult to tune especially for a non-expert operator. The purpose of
this preliminary paper is to investigate how AI can be exploited to detect a relation among the



parameters with the aim of simplifying the control framework and facilitating their tuning.

2. Technical Background

For sake of completeness, this section aims to briefly introduce, from a technical point of view,
the two state-of-the-art control strategies for BMI based on two classes motor imagery examined
in this paper.

2.1. Discrete control

In the discrete approach, the raw probabilities are integrated over time according to an exponen-
tial smoothing [19, 18]. Considering 𝑥𝑡 the posterior probabilities in output from the classifier
at time 𝑡, the final control signal is computed as:

𝑦𝑡 = 𝛼 · 𝑥𝑡 + (1− 𝛼) · 𝑦𝑡−1 (1)

𝛼 ∈ [0.0, 1.0] is a smoothing factor that determines the weights of the posterior probabilities
at time t than the previous one. To translate the control signal 𝑦𝑡 into discrete high-level
commands, it is compared with respect to a control threshold.

2.2. Continuous control

The continuous control based on the dynamical system presented in [18] relies on the linear
combination of two forces:

Δ𝑦𝑡 = 𝜒 · [Φ · 𝐹𝑓𝑟𝑒𝑒(𝑦𝑡−1) + (1− Φ) · 𝐹𝐵𝑀𝐼(𝑥𝑡)] (2)

𝐹𝑓𝑟𝑒𝑒 is associated with the previous state of the system, while 𝐹𝐵𝑀𝐼 is calculated on the
current output of the decoder. The sum of the two components aims to reduce the oscillatory
behaviour of the output from the classifier, help the user to deliver commands when intentional
and conversely filter the false positives. Indeed, 𝐹𝑓𝑟𝑒𝑒 is in charge of applying a conservative
contribution when the state is around 0.5, otherwise to push towards one of the two classes.
𝐹𝐵𝑀𝐼 is radial symmetrical with respect to 0.5 to handle the two classes in the same way.
Formally, according to the design reported in [18], 𝐹𝑓𝑟𝑒𝑒, represented in Fig. 2, is computed as
follows:

𝐹𝑓𝑟𝑒𝑒(𝑦) =

⎧⎪⎨⎪⎩
−𝑠𝑖𝑛( 𝜋

0.5−𝜔 * 𝑦) 𝑖𝑓 𝑦 ∈ [0, 0.5− 𝜔)

−𝜓 * 𝑠𝑖𝑛(𝜋𝜔 * (𝑦 − 0.5)) 𝑖𝑓 𝑦 ∈ [0.5− 𝜔, 0.5 + 𝜔]

𝑠𝑖𝑛( 𝜋
0.5−𝜔 * (𝑦 − 𝜔 − 0.5)) 𝑖𝑓 𝑦 ∈ [0.5 + 𝜔, 1]

(3)

while 𝐹𝐵𝑀𝐼 is equal to:

𝐹𝐵𝑀𝐼(𝑥) = 6.4 · (𝑥− 0.5)3 + 0.4 · (𝑥− 0.5) (4)

Please refer to [18] for further details.



Figure 2: (a) 𝐹𝑓𝑟𝑒𝑒 where 𝜔 = 0.2 and 𝜓 = 0.9. The conservative zone is represented in white, while
the pushing area is highlighted in grey. Both depend on 𝜔 and 𝜓. (b) 𝐹𝐵𝑀𝐼 managing the current
output of the decoder.

3. Materials and methods

In this preliminary work, we are focusing on studying the force 𝐹𝑓𝑟𝑒𝑒 in the continuous
framework described in Section 2.2 with the purpose of investigating the relation among its
parameters. As highlighted in Equation 3, the shape of such a force strongly depends on two
main parameters:

• 𝜔 defines the size of the conservative zone. The bigger is 𝜔, the higher is the “resistance"
of the system to send a command.

• 𝜓 influences the transition from the conservative to the pushing behaviours and vice
versa by handling the “amount of resistance/help" from the system. The higher is 𝜓, the
more difficult is the change of state in the system.

Therefore, since both parameters adjust the conservative/pushing behaviours of the examined
dynamical system, we hypothesise that there is a correlation between 𝜔 and 𝜓. In this prelimi-
nary phase, we validate our hypothesis by fixing the other parameters with the values reported
in Table 1 that are set coherently with the previous experiments in [18, 20] to avoid introducing
confounding factors.

As regards𝜔 and𝜓, first, we have applied on a pre-collected dataset a data-driven optimization
that searches the best values of the two parameters by optimising a new cost function, introduced
in Section 3.2, and assessing the resulting performance per each subject and combination. Then,
we have applied a regression analysis on the best achieved values for each subject to find the
relation between the two parameters.

3.1. Dataset

In this work, we have exploited a pre-collected dataset (140.9170 min in total) related to the
two-classes motor imagery task where the user was asked to imagine the movements of both



Parameters Values

𝜒 1.00
Φ 0.60
𝜔 from 0.025 to 0.475 with step of 0.025
𝜓 from 0.05 to 1.0 with step of 0.05

𝑡ℎ𝑚𝑖𝑛 0.45
𝑡ℎ𝑚𝑎𝑥 0.55

Table 1
The values of the examined parameters, where 𝜒, Φ, 𝜔, 𝜓 are from the Equation 2, 𝑡ℎ𝑚𝑖𝑛 and 𝑡ℎ𝑚𝑎𝑥 are
related to the Equation 5 used to optimise the parameters 𝜔 and 𝜓 and are set according to the control
threshold set in the previous studies [20].

hands vs. both feet and then received the feedback according to the predicted class (e.g., online).
The data were previously collected using the motor imagery protocol available inside ROS
Neuro1 framework [20] with a discrete control strategy. Such a dataset contains the data of
eleven subjects (S1-S11), including in total 325 online trials for both hands and 325 online trials
for both feet. Three subjects (S2, S6, S9) have no previous experience with BMI.

3.2. Cost function

To optimise the values of 𝜔 and 𝜓, we have proposed a new metric namely a cost function that
rewards/penalizes the control signal 𝑦 by taking into account the following aspects:

• It is necessary to maximise the times in which the control signal is repeatedly above the
control threshold. In this way, we want to avoid/limit oscillations over and under the
threshold.

• To achieve a more stable control, we use a band of interest rather than a single control
threshold. We want to force the control signal to pass the entire band without falling
inside it. Thus, we penalise when the control signal belongs to the band by attributing a
score equal to zero.

• Given the nature of BMI, as demonstrated in the previous studies, it is infeasible to deliver
intentional command within 1 sec. However, it would be appreciated if the user will send
the wanted commands as fast as possible. Considering such observations, we minimise
the time required to deliver the commands by filtering the impracticable values (< 1 sec).

An illustrative representation of the criteria behind such metric is shown in Fig. 3.
The cost function assigns a score for each combination of 𝜔 and 𝜓 according to the following

three constraints:

1. for each time 𝑡 ∈ [0, 𝑇𝑡𝑟𝑖𝑎𝑙] with 𝑇𝑡𝑟𝑖𝑎𝑙 the duration of the entire trial, we compute the
signed distance between the current control signal and the extremes of the band (see
Fig. 3a). Specifically, given the band of interest [𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥], we define the function

1https://github.com/rosneuro

https://github.com/rosneuro


Figure 3: Illustration of the metric explained in Section 3.2 applied to a simulated 7 seconds trial. (a)
The representation of 𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 for a specific value of 𝜔 and 𝜓. Three colours are used to highlight the
different contributions of the control signal to the sum: green associated with the positive values, red
the negative ones and grey null. (b) The representation of 𝑓𝑑𝑖𝑠𝑐𝑎𝑟𝑑 for a specific value of 𝜔 and 𝜓. (c)
Merges the previous constraints together.

𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 at time 𝑡 as:

𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡(𝑦𝑡(𝜔, 𝜓), 𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥) =

⎧⎪⎨⎪⎩
0 𝑖𝑓 𝑦𝑡(𝜔, 𝜓) ∈ [𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥]

𝑦𝑡(𝜔, 𝜓)− 𝑡ℎ𝑚𝑖𝑛 𝑖𝑓 𝑦𝑡(𝜔, 𝜓) ∈ [0, 𝑡ℎ𝑚𝑖𝑛)

𝑦𝑡(𝜔, 𝜓)− 𝑡ℎ𝑚𝑎𝑥 𝑖𝑓 𝑦𝑡(𝜔, 𝜓) ∈ (𝑡ℎ𝑚𝑎𝑥, 1]
(5)

The values of 𝑡ℎ𝑚𝑖𝑛 𝑡ℎ𝑚𝑎𝑥 are reported in Table 1.
2. the temporal constraint related to the filtering of the unfeasible commands. With this

purpose, we introduce the function 𝑓𝑑𝑖𝑠𝑐𝑎𝑟𝑑 that filters the commands due to the control
signal overcoming the thresholds before 1 sec (see Fig. 3b):

𝑓𝑑𝑖𝑠𝑐𝑎𝑟𝑑(𝜔, 𝜓, 𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥) =

⎧⎪⎨⎪⎩
0 𝑖𝑓 ∃(𝑦𝑡(𝜔, 𝜓) ≤ 𝑡ℎ𝑚𝑖𝑛 ∨ 𝑦𝑡(𝜔, 𝜓) ≥ 𝑡ℎ𝑚𝑎𝑥)

𝑤𝑖𝑡ℎ 𝑡 ∈ [0, 1]𝑠𝑒𝑐

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

3. the optimisation of the time for which the control signal is outside the band of interest.
Such a condition aims to make the user quickly deliver commands. To manage this



aspect, we design the function 𝑓𝑡𝑖𝑚𝑒, that is applied to couples of candidates [𝜔, 𝜓] found
according to the previous criteria:

𝑓𝑡𝑖𝑚𝑒(𝜔, 𝜓, 𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥) =

⎧⎪⎨⎪⎩
𝑇𝑡𝑟𝑖𝑎𝑙 𝑖𝑓 𝑡ℎ𝑚𝑖𝑛 ≤ 𝑦𝑡(𝜔, 𝜓) ≤ 𝑡ℎ𝑚𝑎𝑥 ∀𝑡 ∈ [0, 𝑇𝑡𝑟𝑖𝑎𝑙]

𝑡* 𝑖𝑓 ∃(𝑦𝑡*(𝜔, 𝜓) ≤ 𝑡ℎ𝑚𝑖𝑛 ∨ 𝑦𝑡*(𝜔, 𝜓) ≥ 𝑡ℎ𝑚𝑎𝑥)

∧ 𝑡* > 1𝑠𝑒𝑐
(7)

Thus, the final cost function is achieved by the combination of the Equation 8 and Equation
9. First (e.g., from the two first constrains), we select a set of candidates [𝜔, 𝜓] according to:

[𝜔, 𝜓] = max
𝜔,𝜓

(

𝑁𝑡𝑟𝑖𝑎𝑙𝑠∑︁
𝑡𝑟𝑖𝑎𝑙=1

(

𝑇𝑡𝑟𝑖𝑎𝑙∑︁
𝑡*=0

1

𝑡*

𝑡*∑︁
𝑡=0

𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡(𝑦𝑡(𝜔, 𝜓), 𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥))·𝑓𝑑𝑖𝑠𝑐𝑎𝑟𝑑(𝜔, 𝜓, 𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥))

(8)
Then, we choose the best 𝜔*, 𝜓* among the resulted candidates using the following formula:

𝜔*, 𝜓* = min
𝜔𝑖,𝜓𝑖∈[𝜔,𝜓]

(
𝑁𝑡𝑟𝑖𝑎𝑙𝑠∑︁
𝑡𝑟=1

𝑇𝑡𝑟𝑖𝑎𝑙∑︁
𝑡=0

𝑓𝑡𝑖𝑚𝑒(𝑦𝑡(𝜔𝑖, 𝜓𝑖), 𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥)) (9)

Furthermore, since the dataset includes online runs previously recorded with the discrete
protocol, we use the final output for each trial — hit when the predicted class corresponds to
the requested task vs. miss otherwise — as ground truth for these pseudo-analyses.

4. Preliminary results

For sake of clarity, Fig. 4 shows an example of application of the cost function described in
the previous section to the control signals related to a both hands trial (upper class) in the
continuous modality. The band threshold used in the proposed metric is indicated in grey. For
graphical reasons, we only report the control signals achieved with four combinations of 𝜔 and
𝜓, drawn with green, purple, black, cyan colours in the continuous modality. In the same figure,
we also show the control signal in the discrete case achieved via the exponential smoothing
that we use as reference and is represented via dashed red colour. The control threshold for
each class in the discrete case is marked with dashed blue lines. The best combination of 𝜔
and 𝜓 is associated with the green curve. Indeed, the control signal in cyan does not satisfy
the temporal constraint because it overcomes the band before 1 second. The control signal in
black will cause a miss - namely it overcomes the threshold for the other class (lower one). The
control signal in purple is less performing than the green.

The comparison of the accuracy via the discrete (exponential smoothing) and the continuous
control approaches (optimised dynamical control framework) are highlighted in Table 2 that also
lists the best couples of 𝜔 and 𝜓 for each subject. Coherently with the results in [18], overall, all
subjects improve their performance using the optimised dynamical control framework with the
exception of S5, S6, S11. By qualitatively analysing the control signals over the different trials,
we noticed that them drop in the [𝑡ℎ𝑚𝑖𝑛, 𝑡ℎ𝑚𝑎𝑥] band suggesting the presence of involuntary
commands. Further analyses will be needed in future.



Figure 4: An illustrative example of the proposed metric applied to the control signal achieved from four
combinations of 𝜔 and 𝜓 in the continuous case marked with the green, purple, black, cyan colours. The
corresponding control signal in the discrete case, taken as reference, is also reported with the dashed
red colour line.

Subject 𝜔 𝜓
Accuracy

discrete case

Accuracy
continuous case,

with discrete prediction
as ground truth

S1 0.2 0.05 67.5% 96.25%
S2 0.025 1.00 72.5% 92.5%
S3 0.025 0.95 73.75% 85%
S4 0.475 0.05 92.5% 97.5%
S5 0.425 0.05 95% 90%
S6 0.025 1.00 92.5% 80%
S7 0.35 0.05 65% 76.67%
S8 0.175 0.20 66.67% 68.33%
S9 0.25 0.60 80% 83.33%
S10 0.4 0.05 81.11% 93.33%
S11 0.325 0.05 96.67% 91.67%

Table 2
The best 𝜔 and 𝜓 derived from the optimisation per each subject. Comparison of the accuracy in the
discrete case (e.g., via the exponential smoothing) vs. continuous case (e.g., via the optimised dynamical
control framework).

Then, from the detected best configurations of the two parameters for each subject, we
perform a regression analysis in order to find a relation between them and verify our hypothesis.



The results are displayed in Fig. 5. We found a second-degree polynomial function equal to
𝜓 = 6.6652 · 𝜔2 − 5.2772 · 𝜔 + 1.0884. To evaluate the goodness of the achieved model, we
use 𝑅2 which measures the percentage of the dependent variable variation that our model can
explain. Our model has a high 𝑅2 with value greater than 81.67%, hence it confirms that there
is a relation between 𝜔 and 𝜓.

Figure 5: Dependency between 𝜔 and 𝜓. The black dots represent the optimised values of 𝜔 in x-axis
and 𝜓 in y-axis per each subject. The best achieved curve that fits such values is drawn in cyan and is a
second-degree polynomial function.

5. Conclusion

In this preliminary work, we investigate how to optimise the continuous teleoperation of brain-
actuated robotic devices based on a dynamical system presented in [18] using AI. With this
purpose, we propose a metric that we exploit as cost-function to optimise the parameters of
the dynamical system to convert the user’s intention into continuous robot’s movements. In
addition, we found a possible relation between 𝜔 and 𝜓 to facilitate their tune and simplify
the system. The main limitation of this study is that the analyses were made offline on the
available dataset without involving new users. Future works will include the validation of such
a hypothesis with an appropriate protocol for driving a powered wheelchair. Furthermore, we
will also investigate the possibilities of keeping the same relation in the case of asymmetrical
free force (different 𝜔 and 𝜓 for each class).
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