
Monte Carlo Tree Search Planning for continuous
action and state spaces
Federico Bianchi

1
, Lorenzo Bonanni

1
, Alberto Castellini

1
and Alessandro Farinelli

1

1University of Verona, Department of Computer Science, Strada Le Grazie 15, 37134, Verona, Italy

Abstract

Sequential decision-making in real-world environments is an important problem of artificial intelligence

and robotics. In the last decade reinforcement learning has provided effective solutions in small and

simulated environments but it has also shown some limits on large and real-world domains characterized

by continuous state and action spaces. In this work, we aim to evaluate some state-of-the-art algorithms

based on Monte Carlo Tree Search planning in continuous state/action spaces and propose a first version

of a new algorithm based on action widening. Algorithms are evaluated on a synthetic domain in which

the agent aims to control a car through a narrow curve for reaching the goal in the shortest possible

time and avoiding the car going off the road. We show that the proposed method outperforms the

state-of-the-art techniques.

Keywords
Reinforcement Learning, Monte Carlo Tree Search, Planning in continuous space, Progressive widening

1. Introduction

Planning for sequential decision-making in real-world environments is an important problem

in artificial intelligence and robotics. The interest in this topic has rapidly grown and recently

Reinforcement Learning (RL) [1] methods have been applied to it. Several of these approaches

have however shown to be effective on small or simulated environments but unable to scale to

real-world problems. A feature that characterizes several real-world planning problems is the

usage of continuous actions and states. Some examples are autonomous driving [2, 3], search

and rescue [4] or dynamic resource allocation [5]. In these domains finding an optimal policy

is often unfeasible due to the large or multi-dimensional action space, in which the number

of possible actions is infinite hence making the exploration of all available actions impossible.

In particular, large high-dimensional spaces make often space discretization unfeasible due

to computational constraints. Even when such discretization is computationally feasible, the

exploratory ability is limited and action accuracy is low.

Monte Carlo Tree Search (MCTS) [6, 7] based planning is an online method widely used

to allow planning in Markov Decision Processes (MDP) on large domains. The methodology

reached very good results on discrete state/action domains [8] and partially observable domains

[9]. It was also extended to consider prior knowledge about the environment [10, 11] and to

The 9th Italian Workshop on Artificial Intelligence and Robotics (AIRO 2022)
$ federico.bianchi@univr.it (F. Bianchi); lorenzo.bonanni@studenti.univr.it (L. Bonanni);

alberto.castellini@univr.it (A. Castellini); alessandro.farinelli@univr.it (A. Farinelli)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:federico.bianchi@univr.it
mailto:lorenzo.bonanni@studenti.univr.it
mailto:alberto.castellini@univr.it
mailto:alessandro.farinelli@univr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

improve the trustworthiness of the policy [12, 13, 14], and it was applied to real-world domains

[15, 16]. However, only a few works focus on the extension of MCTS to continuous state and

action spaces. Some techniques for MDPs were proposed in 2008. In particular, a method called

MCTS Action Progressive Widening (MCTS-APW) that controls the widening of actions for

continuous action space was introduced in [17] and theoretically analyzed in [18]. In 2013 a

methodology based on [17] that extends the widening to actions and states nodes was proposed,

namely, the method which is called MTCS-Double Progressive Widening (MCTS-DPW) controls

the widening of the tree search both for the states and actions, balancing the exploration

of new states and actions or the exploitation of visited nodes [19]. In 2018 the idea of [19]

was extended for Partially Observable Markov Decision Processes (POMDPs). The extension

introduces a method called Partially-Observable Monte Carlo Planning Observation Widening

(POMCPOW) that controls the widening of actions, states, and observations [20]. Finally, in

2019 a technique based on Voronoi diagrams [21] was proposed and subsequently extended

to progressive widening for POMDPs in 2021 [22]. This extension uses Voronoi diagrams to

partition the action space in cells in which centroids represent the action with the highest

state-action value and perform a global search in order to identify the cell and then the best

action by sampling new actions around it.

In this work, we aim to i) evaluate the most prominent state-of-the-art methodologies for

MCTS-based planning in continuous state and action spaces, ii) propose a new method that

outperforms state-of-the-art techniques. We present, in particular, the results achieved so far

comparing standard MCTS-planning [7] using discretized actions, MCTS-APW [17, 19] and

an extended version of MCTS-APW, that we call MCTS-APW2, which performs widening by

sampling new actions in an efficient way. The methods are compared on a synthetic domain

in which the agent aims to control a car through a narrow curve for reaching the goal in the

shortest possible time and avoiding the car going off the road. We show that the proposed

methodology outperforms the other approaches.

2. Background

2.1. Markov Decision Processes

Markov Decision Processes (MDPs) [23, 24] can formalize a broad range of sequential decision-

making problems. Formally, an MDP models problems in fully observable environments using a

5-tuple 𝑀 = ⟨𝑆,𝐴, 𝑇,𝑅, 𝛾⟩, where 𝑆 is a set of states, 𝐴 is a set of actions, 𝑇 : 𝑆 ×𝐴 → 𝒫(𝑆)
is a stochastic transition function, in which 𝑇 (𝑠, 𝑎, 𝑠′) indicates the probability of landing on

state 𝑠′ ∈ 𝑆 after executing action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆, 𝑅 : 𝑆 × 𝐴 → R is a reward function
with 𝑅(𝑠, 𝑎) ∈ [−𝑅𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥], and 𝛾 ∈ [0, 1) is a discount factor. When 𝑇 cannot be implicitly

defined, a generative model 𝐺(𝑠, 𝑎) can be used to stochastically generate a new state 𝑠′ and

reward 𝑟 for MDP. The set of stochastic policies for 𝑀 is Π = {𝜋 : 𝑆 → 𝒫(𝐴)} and the goal

is to find a control policy 𝜋(𝑠, 𝑎) = 𝑃 (𝑎|𝑠) that maximizes the expected discounted cumulative
reward defined as E[

∑︀∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡, 𝑎𝑡)].

2.2. Monte Carlo Tree Search Planning for MDPs with discrete states/actions

MCTS is a simulation-based search algorithm for online decision-making [25, 7] that works by

incrementally creating a policy tree until some predefined computational budget is reached. The

building of a policy tree consists of alternating layers of state nodes generated by a generative

model 𝐺 and action nodes estimated by state-action value function 𝑄(𝑠, 𝑎). Each state node in

the search tree represents a state of the domain, and direct links to child action nodes represent

actions leading to the next states.

A search iteration starts from the root node and four steps are applied: i) Selection: An

action node is recursively selected to descend through the tree until a node is expandable, i.e., it

represents a non-terminal state and has unvisited children. The most common selection function

for MCTS is the Upper Confidence Tree (UCT) which expands the tree by selecting nodes and

balancing exploration and exploitation in order to maximize the upper confidence bound UCB

[26, 27]; ii) Expansion: One (or more) child nodes are added to expand the tree according to the

available actions; iii) Simulation: A simulation is run from the expanded nodes to the leaf nodes

according to the default policy to produce an outcome. The default policy selects sequences of

actions randomly; iv) Backpropagation: The result of the simulation is backpropagated through

the selected nodes to update their statistics, which are the average reward obtained from that

node onwards and the number of times the node has been visited. At the end of simulations, the

action with the maximum Q-value is selected and executed in the environment. This method

assumes that the states and actions are discrete.

3. Methods

We first summarize some of the main methods in the literature for MCTS-based planning in

continuous state/action spaces and then we describe a new technique aiming to outperform

state-of-the-art methods.

3.1. MCTS Planning with discretized actions

We refer here to the standard version of MCTS that discretizes the action space by splitting it

into intervals and maps each interval to a discrete value. This technique poses the problem of

tuning the number of actions for maximizing the performance, which is often complicated in

real-world domains with continuous and multi-dimensional action space. When the number

of possible actions is infinite it is impossible to explore all the space and it is often difficult to

achieve a good trade-off between accuracy and MC tree width. The curse of dimensionality is

a problem for this approach because a large number of actions/spaces makes the tree width

explode. In other words, the tree gets wider and never develops in depth obtaining policies

optimized only in the first step and using random (rollout) policies in all following steps. This

type of policies are not optimal but very close to random.

3.2. MCTS-APW

MCTS Action Progressive Widening (MCTS-APW) was first proposed in [17, 19]. It explicitly

controls the branching factor of the action nodes of the tree search. MCTS-APW is necessary

when the action space is continuous or so large that cannot be fully explored. During the search,

the number of actions for each state is controlled by two parameters, namely, 𝑘 ∈ R+
, 𝛼 ∈ [0, 1]

that control the number of action nodes for each state. In particular, the technique samples

a new random action from the action space if ||𝐴(𝑠)|| < 𝑘𝑁(𝑠)𝛼, where ||𝐴(𝑠)|| is the set of

actions added to the node with state 𝑠 and 𝑁(𝑠) is the number of visits of state 𝑠. The strategy

used by this algorithm to generate new actions is to randomly sample from all the action space.

If no new action has to be added to the current set, then the algorithm selects an action using

UCT [27].

3.3. MCTS-APW2

We propose an extension of MCTS-APW, that substitutes the random sampling of new actions

from all the action space with a new sampling strategy. The first three actions selected by

MCTS-APW2 are always the minimum, median and maximum points of the action space (in

multi-dimensional action spaces the minimum, median, and maximum are obtained by selecting,

respectively, the minimum, median and maximum values for each action). From the fourth

action, with probability 𝑝 < 𝜖 we select the two actions 𝑎1, 𝑎2, in the current set of selected

actions, having the highest 𝑄-value (this is why the name of the method has a "2" at the end), and

we compute the new action as 𝑎 =mean(𝑎1, 𝑎2); with probability 1− 𝜖 we sample a new action

randomly in all the action space. The algorithm is described in more detail in the Supplementary

Material. After a new action is added to the state node, its statistics are initialized and UCT is

used to select actions in the new action set.

4. Results

This section presents experiments comparing standard MCTS, MCTS-APW and MCTS-APW2.

We first describe the domain, then we introduce the experimental setting and parameter tuning

performed to determine good sets of parameters for each method. Finally, we show the global

performance in terms of average cumulative reward and analyze the best and average trajectories

generated to explain the reasons why MCTS-APW2 outperforms MCTS-APW.

4.1. Domain

We evaluate the algorithms in an environment representing a curved road with a bottleneck in

which the agent has to reach the other side of the bottleneck in the minimum number of steps

(i.e., in the shortest possible time or with the highest possible average speed). The environment

is displayed in Figure 1, where the blue and red lines represent the edges of the road and the

green dashed line is the trajectory executed by the agent. The trajectory starts in 𝑆0 with an

initial speed 10 m/s with angle 90∘ (0∘ is a horizontal movement to the right) and it ends when

the agent crosses the vertical dashed green line on the right (or if it goes off the road). The state

and action spaces are continuous. Namely, the agent can position itself at any point inside the

road and it can control the acceleration 𝑎 ∈ [−5, 5] and the steering 𝜑 ∈ [−30∘, 30∘]. The speed

of the vehicle must be in the range 𝑣 ∈ [0, 20]. The reward function returns a score 𝑟 = − 𝛿
𝑛𝑠𝑡𝑒𝑝𝑠

at each step, where 𝛿 is a reward proportional to the distance between the agent and the target

and 𝑛𝑠𝑡𝑒𝑝𝑠 is the number of steps taken until the current point. The episode is terminated in

three cases: if the agent reaches the target (with reward 𝑟 = 10000
𝑛𝑠𝑡𝑒𝑝𝑠

), if the agent goes off-road

(with reward 𝑟 = −1000), or if it reaches 100 steps (with reward 𝑟 = −1000). The transition

model is a simple dynamical model that allows to move the agent deterministically according to

the current speed, acceleration, and steering.

4.2. Parameter optimization

We perform parameter tuning to select the most suitable parameters for each method. Specifi-

cally, we perform a grid search running each combination of parameters for 10 episodes and then

identify the set of parameters that maximize the average discounted reward. For standard MCTS

(called MCTS in the following) the main parameter to tune is the number of intervals in which

each action is discretized. We perform a grid search over each combination of number of acceler-

ations 𝜔 ∈ [7, 11, 15, 21, 50, 70, 120, 150] and angles 𝜑 ∈ [3, 5, 7, 11, 15]. For MCTS-APW and

MCTS-APW2 we perform a grid search to determine the parameters 𝑘 and 𝛼 that control the

action widening. We tested, in particular, all combinations of 𝑘 ∈ [30, 40, 50, 60, 70, 80, 90] and

𝛼 ∈ [0, 0.1, 0.4, 0.5, 0.6, 0.8, 0.9]. With MCTS-APW2 we also considered all 𝜖 ∈ [0.4, 0.6, 0.9].
The best parameters for the methods are the following: i) MCTS: 𝜔 = 7 and 𝜑 = 7; ii)

MCTS-APW: 𝑘 = 40 and 𝛼 = 0; iii) MCTS-APW2: 𝑘 = 40, 𝛼 = 0 and 𝜖 = 0.4. In all methods

we use 100 simulations to generate the tree, the exploration factor is 𝑐 = 11 and the discount

factor is 𝛾 = 0.99. After selecting the best parameters for each method we computed their

cumulative reward on 100 episodes using those parameters. Tests are run on two laptops, the

first with processor Intel Core i7 - 6500 CPU 2.50 GHz x 4, RAM 16 GB and operating system

Ubuntu 20.04.5 LTS, the second with processor Intel Core i7-8550U CPU 1.80GHz × 8, RAM 16

GB and operating system Ubuntu 22.04 LTS.

4.3. Performance comparison

Table 1 shows the performance of the three methods using the best parameters. The parameters

used are reported in brackets close to the name of the method in the first column. The second

column shows the average performance (over 100 runs), which is the main measure we use

to evaluate the algorithms. MCTS-APW2 has the highest cumulative reward (𝜌𝑎𝑣𝑔), namely

48.3, then there is MCTS with −309.2 and finally MCTS-APW with −909.8. We notice that the

algorithm that we propose, i.e., MCTS-APW2, provides a large improvement in terms of average

performance. The third and fourth columns of Table 1 show, respectively, the maximum and

minimum reward (over 100 runs). It is interesting to notice that also on this measure MCTS-

APW2 wins, with a value of 1774.7, but in this case, MCTS reaches a similar performance, i.e.,

1773.2. The fifth column shows the number of times the agent went off-road (over 100 runs).

MCTS-APW2 does it 42 times, MCTS 66, and MCTS-APW 91. The average reward is of course

influenced by the number of times the agent goes off-road and also by the average reward of

runs in which the agent reaches the goal. The last column of Table 1 shows the number of

actions used on average by each method. It is clear that the two methods based on widening,

namely MCTS-APW and MCTS-APW2 use fewer actions (i.e., 41) than standard MCTS with

discretized actions (which uses 49 actions). This reduction of actions allows MCTS-APW and

Method 𝜌𝑎𝑣𝑔 𝜌𝑚𝑎𝑥 𝜌𝑚𝑖𝑛 #offroad #actions
MCTS (𝜔=7, 𝜑=7) −309.2 1773.2 −953.2 66/100 49
MCTS-APW (𝑘 = 40, 𝛼 = 0) −809.8 1371.8 −956.8 91/100 41
MCTS-APW2 (𝑘 = 40, 𝛼 = 0, 𝜖 = 0.4) 48.3 1774.7 −955 42/100 41

Table 1
Summary of performance among MCTS, MCTS-APW, and MCTS-APW2.

MCTS-APW2 to perform more simulations for each action on average, developing the tree more

in depth than standard MCTS. MCTS-APW2 is also more precise in the selection of the actions,

managing to pass through the bottleneck better than other methods.

Figure 1: Distributions of reward and analysis of the trajectories in the best and in the average case for
each method.

Figure 1 shows the distributions of rewards for all the methods, in particular, the 58% of the

mass for MCTS-APW2 is positive, which means that the episodes are completed and the agent

is able to pass the curve and reaches the target without getting off the road. For MCTS and

MCTS-APW the mass of positive rewards decreases respectively to 34% and 9%. Below the

performance distributions, the bottom part of Figure 1 shows, for each method, the trajectory

with maximum reward (first row) and the trajectory with reward closer to the average reward

(second row). For each scenario, we show the number of steps that methods take to complete

the episode and the mean depth (𝑑) of the tree for each step of the episode. In the best case,

MCTS-APW2 and MCTS reach the target in 6 steps, while MCTS-APW takes 8 steps, but

MCTS-APW2 has a deeper search tree than the other methods and this results in a longer

planning horizon. For instance, we can notice the first step of trajectory in Figure 1.c.3 in which

MCTS-APW2 computes a wider trajectory than MCTS to pass faster through the bottleneck. In

the average case, we can notice that the number of steps for completing the episode increases

and that MCTS-APW2 has better accuracy in choosing the actions and is the only able to

compute a trajectory that reaches the goal (see Figure 1.c.3), even if the performance of the

proposed method are improvable and far from the optimal. MCTS (see Figure 1.a.3) reaches the

bottleneck while reducing the velocity and remains stuck. Analyzing the trajectories we notice

that the discretization of the action space introduced by MCTS reduces the accuracy of actions

preventing the robot to pass the bottleneck (and the curve) in several cases. In MCTS-APW

the random sampling of new actions in the continuous space implies that the exploration of

action space is often inefficient and yields a performance decrease, on average, with respect to

standard MCTS. The new sampling strategy proposed in MCTS-APW2 manages instead to solve

the problem of action space exploration and to increase the average return from -309.2 to 48.3.

5. Conclusions and future work

In this study, we consider different MCTS-based planning methods that work on discretized

action space and continuous state/action spaces. We propose a new method that extends the

state-of-the-art technique on action progressive widening in continuous domains and we show

that the method we proposed outperforms the state-of-the-art. Future work will focus on

the improvement of the performance of our method and on extending the analysis to other

progressive widening techniques. Future work will also propose a Python framework that

implements all the algorithms for MCTS-based planning in continuous action/state spaces and

some environments for evaluation.

References

[1] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, second ed., The MIT

Press, 2018.

[2] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu, W. S. Lee, D. Rus, Intention-aware

motion planning, in: Algorithmic foundations of robotics X, Springer, 2013, pp. 475–491.

[3] H. Gupta, B. Hayes, Z. Sunberg, Intention-aware navigation in crowds with extended-

space POMDP planning, in: 21st International Conference on Autonomous Agents and

Multiagent Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022, 2022, pp.

562–570.

[4] Y. Liu, G. Nejat, Robotic urban search and rescue: A survey from the control perspective,

Journal of Intelligent & Robotic Systems 72 (2013) 147–165.

[5] D. Bertsimas, S. Gupta, G. Lulli, Dynamic resource allocation: A flexible and tractable

modeling framework, European Journal of Operational Research 236 (2014) 14–26.

[6] R. Coulom, Efficient selectivity and backup operators in monte-carlo tree search, in: H. J.

van den Herik, P. Ciancarini, H. H. L. M. J. Donkers (Eds.), Computers and Games, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 72–83.

[7] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. P. Liebana, S. Samothrakis, S. Colton, A survey of monte carlo tree search

methods, IEEE Transactions on Computational Intelligence and AI in Games 4 (2012) 1–43.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-

brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis,

Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016)

484–489.

[9] D. Silver, J. Veness, Monte-Carlo planning in large POMDPs, in: Advances in Neural

Information Processing Systems, NeurIPS 2010, 2010, pp. 2164–2172.

[10] A. Castellini, G. Chalkiadakis, A. Farinelli, Influence of State-Variable Constraints on

Partially Observable Monte Carlo Planning, in: IJCAI 2019, Macao, China, August 10-16,

2019, ijcai.org, 2019, pp. 5540–5546.

[11] M. Zuccotto, A. Castellini, A. Farinelli, Learning state-variable relationships for improving

pomcp performance, in: Proceedings of the 37th ACM/SIGAPP Symposium on Applied

Computing, SAC ’22, Association for Computing Machinery, New York, NY, USA, 2022, p.

739–747.

[12] G. Mazzi, A. Castellini, A. Farinelli, Identification of unexpected decisions in partially

observable monte-carlo planning: A rule-based approach, in: Proceedings of the 20th

International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), In-

ternational Foundation for Autonomous Agents and Multiagent Systems, 2021, p. 889–897.

[13] G. Mazzi, A. Castellini, A. Farinelli, Rule-based shielding for partially observable monte-

carlo planning, in: Proceedings of the International Conference on Automated Planning

and Scheduling (ICAPS), volume 31, 2021, pp. 243–251.

[14] G. Mazzi, D. Meli, A. Castellini, A. Farinelli, Learning logic specifications for soft policy

guidance in pomcp, in: Proceedings of the 22nd Conference on Autonomous Agents and

MultiAgent Systems, 2023, p. in publication.

[15] A. Castellini, E. Marchesini, A. Farinelli, Partially observable monte carlo planning with

state variable constraints for mobile robot navigation, Eng. Appl. Artif. Intell. 104 (2021)

104382.

[16] M. Zuccotto, M. Piccinelli, A. Castellini, E. Marchesini, A. Farinelli, Learning state-variable

relationships in POMCP: A framework for mobile robots, Frontiers Robotics AI 9 (2022).

[17] G. M. J. Chaslot, M. H. Winands, H. J. v. d. Herik, J. W. Uiterwijk, B. Bouzy, Progressive

strategies for monte-carlo tree search, New Mathematics and Natural Computation 4

(2008) 343–357.

[18] Y. Wang, J.-Y. Audibert, R. Munos, Algorithms for infinitely many-armed bandits, 2008,

pp. 1729–1736.

[19] A. Couetoux, Monte carlo tree search for continuous and stochastic sequential decision

making problems, 2013.

[20] Z. N. Sunberg, M. J. Kochenderfer, Online algorithms for pomdps with continuous state,

action, and observation spaces, in: Twenty-Eighth International Conference on Automated

Planning and Scheduling, 2018.

[21] M. H. Lim, C. J. Tomlin, Z. N. Sunberg, Sparse tree search optimality guarantees in pomdps

with continuous observation spaces, arXiv preprint arXiv:1910.04332 (2019).

[22] M. H. Lim, C. J. Tomlin, Z. N. Sunberg, Voronoi progressive widening: Efficient on-

line solvers for continuous state, action, and observation pomdps, in: 2021 60th IEEE

Conference on Decision and Control (CDC), IEEE Press, 2021, p. 4493–4500.

[23] R. Bellman, A markovian decision process, Journal of Mathematics and Mechanics 6 (1957)

679–684.

[24] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming,

John Wiley & Sons, 2014.

[25] G. Chaslot, S. Bakkes, I. Szita, P. Spronck, Monte-carlo tree search: A new framework for

game ai, in: Proceedings of the Fourth AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, AIIDE’08, AAAI Press, 2008, p. 216–217.

[26] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem,

Mach. Learn. 47 (2002) 235–256.

[27] L. Kocsis, C. Szepesvári, Bandit based monte-carlo planning, in: Proceedings of the 17th

European Conference on Machine Learning, ECML’06, Springer-Verlag, 2006, p. 282–293.

A. Supplementary material

In this section, we provide the pseudo-code of procedures that are in common among the

methods we compared, namely PLAN and ROLLOUT. For simplicity, we provide only the

pseudo-code of MCTS-APW2. For the pseudo-code of MCTS-APW please refer to this paper

[19].

A.1. Pseudo-code of common procedures and MCTS-APW2

Algorithm 1 Common procedures

1: procedure Rollout(𝑠, 𝑑)

2: if 𝑑 = 0 then
3: return 0
4: end if
5: 𝑎 = 𝜋0(𝑆)
6: return 𝑟 = 𝑟 + 𝛾Rollout(𝑠′, 𝑎, 𝑑− 1)

7: end procedure
8:

9: procedure Plan(𝑟)

10: for 𝑖 ∈ 𝑛 do
11: Simulate(𝑟, 𝑑𝑚𝑎𝑥)

12: end for
13: return argmax

𝑎
𝑄(𝑠)

14: end procedure

Algorithm 2 MCTS-APW2

1: procedure NewActionSelection(𝐴(𝑠))
2: 𝑝 = Unif[0, 1]
3: if 𝑝 < 𝜖 then
4: 𝑎1, 𝑎2 = select two actions with the two highest 𝑄(𝑠)
5: a = mean(𝑎1, 𝑎2)

6: else
7: 𝑎 = randomAction()

8: end if
9: return 𝑎

10: end procedure
11:

12: procedure NewActionProgressiveWidening()

13: if ||𝐴(𝑠)|| < 𝑘𝑁(𝑠)𝛼 then
14: if 𝑁(𝑠) = 0 then
15: 𝑎 = median(𝐴(𝑠))
16: else if 𝑁(𝑠) = 1 then
17: 𝑎 = min(𝐴(𝑠))
18: else if 𝑁(𝑠) = 2 then
19: 𝑎 = max(𝐴(𝑠))
20: else
21: 𝑎 = NewActionSelection(𝐴(𝑠))
22: end if
23: 𝑁(𝑠, 𝑎), 𝑄(𝑠, 𝑎), 𝑉 (𝑠, 𝑎) = 𝑁0(𝑠, 𝑎), 𝑄0(𝑠, 𝑎), 𝑉 (𝑠, 𝑎)
24: 𝐴(𝑠) = 𝐴(𝑠) ∪ {𝑎}
25: end if
26: return argmax

𝑎
𝑄(𝑠, 𝑎) + 𝑐

√︁
log𝑁(𝑠)
𝑁(𝑠,𝑎)

27: end procedure
28:

29: procedure Simulate(𝑠, 𝑑)

30: if 𝑑 = 0 then
31: return 0
32: end if
33: if 𝑠 /∈ 𝑇 then
34: 𝑇 = 𝑇 ∪ {𝑠}
35: 𝑁(𝑠) = 𝑁0(𝑠)
36: return Rollout(𝑠, 𝑑)

37: end if
38: 𝑎 = NewActionProgressiveWidening()

39: 𝑠′, 𝑟 = 𝐺(𝑠, 𝑎)
40: 𝑞 = 𝑟 + 𝛾SIMULATE(𝑠′, 𝑑− 1)

41: 𝑁(𝑠, 𝑎) = 𝑁(𝑠, 𝑎) + 1

42: 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝑞−𝑄(𝑠,𝑎)
𝑁(𝑠,𝑎)

43: return 𝑞
44: end procedure

	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Monte Carlo Tree Search Planning for MDPs with discrete states/actions

	3 Methods
	3.1 MCTS Planning with discretized actions
	3.2 MCTS-APW
	3.3 MCTS-APW2

	4 Results
	4.1 Domain
	4.2 Parameter optimization
	4.3 Performance comparison

	5 Conclusions and future work
	A Supplementary material
	A.1 Pseudo-code of common procedures and MCTS-APW2

