CEUR-WS.org/Vol-3417/short9.pdf

MAPF and MAPD:
Recent Developments and Future Directions

Francesco Amigoni’, Davide Azzalini’, Nicola Basilico? and Benedetta Flammini’

"Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria

?Universita degli Studi di Milano, Dipartimento di Informatica

Abstract

Multi-Agent Path Finding (MAPF) is the problem of computing collision-free paths for a group of agents
such that they can safely reach their target locations. In Multi-Agent Pickup and Delivery (MAPD), pickup
and delivery locations are provided at runtime for an ideally ever-ending stream of tasks, making MAPD
a combination between MAPF and online task assignment. Current models for MAPF and MAPD do not
consider many of the practical issues encountered in real applications: in this paper, we present four new
variants of the MAPF and MAPD problems we have recently devised which try to overcome different
shortcomings of the original formulations. Promising directions of future work are also identified.

Keywords
Multi-Agent Path Finding, Multi-Agent Pickup and Delivery, Multirobot Systems

1. Introduction

Multi-Agent Path Finding (MAPF) and its lifelong version, Multi-Agent Pickup and Delivery
(MAPD), have gained a lot of attention from both academia and industry in recent years. The
key objective in both problems is to compute paths for a team of agents moving in a shared
environment such that they can perform different tasks while avoiding collisions. MAPD
differs from MAPF in the fact that new (previously unknown) tasks are continuously added
at runtime and have to be dynamically assigned to the agents for their execution. Each task
prescribes to reach a goal (delivery) location from an initial one. In MAPD, agents have the
additional requirement of passing through a pickup location before reaching their goal. MAPF
and MAPD are encountered in several application domains. Notable examples include automated
warehouses [1] where robots continuously fulfill new orders, coordination of service robots [2]
or fleets of autonomous cars, and automated control of non-player characters in video games [3].
Being MAPF and MAPD relatively young problems, several extensions are being investigated
by the research community, especially those that would bridge the gap between theory and
applicability to real use cases. In this paper, we present four new variants of the MAPF and MAPD
problems recently proposed by the authors with the aim of overcoming different shortcomings

9th Italian Workshop on Artificial Intelligence and Robotics, in conjunction with the 21st International Conference of the
Italian Association for Artificial Intelligence (AI"IA 2021), November 28 - December 2, 2022, Udine, Italy.

Authors equally contributed to this paper and are listed in alphabetical order.

Q& francesco.amigoni@polimi.it (F. Amigoni); davide.azzalini@polimi.it (D. Azzalini); nicola.basilico@unimi.it
(N. Basilico); benedetta.flammini@polimi.it (B. Flammini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

#==1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:francesco.amigoni@polimi.it
mailto:davide.azzalini@polimi.it
mailto:nicola.basilico@unimi.it
mailto:benedetta.flammini@polimi.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

of the original formulations and covering a wider range of real applications. Additionally,
possible directions of future work are identified.

2. MAPF and MAPD

In this section, we present the original versions of MAPF and MAPD problems in order to set
the background for our extensions.

2.1. MAPF

The Multi-Agent Path Finding (MAPF) problem consists in finding start-goal paths for a team of
agents such that they do not collide with each other [4]. In the classical MAPF formulation with
a team of k agents, the input is composed of an undirected graph G = (V, E), whose vertices
in V represent the locations of the environment and edges in E their connections. A function
s:{1,...,k} — V maps each agent to its starting vertex, while a functiont : {1,...,k} =V,
provides the agent’s goal vertex. It is assumed that time is discrete and that at each time step
each agent can perform an action a : V' — V. We distinguish between two different types of
actions: at time ¢ an agent at vertex v can either move to an adjacent vertex v’ (i.e., (v,v’) € E),
so that it will be at vertex v’ at time ¢ + 1, or it can wait in its location, remaining at vertex v
at time t + 1. A sequence of actions m; = (a1, ..., ay) is called a single-agent path for agent
i iff executing these actions from the source vertex s(i) leads agent i to reaching the target
vertex t(7). A feasible solution for the MAPF problem is a set of k single-agent paths (one for
each agent), such that the paths do not collide with one another when executed. Two types of
collisions can happen: vertex conflicts happen when two different agents are at the same vertex
at the same time step, while swapping conflicts occur when two different agents traverse the
same edge in opposite directions at the same time. Given a solution 7 = {1, ..., 7}, different
objective functions can be used to evaluate its quality. The most used are the makespan, which
considers the time steps needed so that all the agents reach their target (max;<;<, |7;|), and
the flowtime, that is the sum of time steps needed by each agent to reach its target (Zle |7i])-

2.2. MAPD

In many real-world applications, such as automated warehouses, agents have not just one task
to perform, but receive an online stream of tasks. For this reason, a lifelong version of MAPF
has been proposed, called Multi-Agent Pickup and Delivery (MAPD) [5]. The MAPD problem
consists in finding collision-free paths for a team of agents that have to complete several tasks
in an online manner. For this reason, MAPD combines collision-free path planning (i.e., MAPF)
and online task assignment.

A MAPD problem for k agents involves an undirected connected graph G = (V, E), that
represents the environment, and a task set 7 that contains the tasks that have not yet been
executed. The task set is dynamic, since new tasks can be added at any time. Each task
7; = (84,9;) € T is composed of a pickup location s; € V and a delivery location g; € V. In
order to complete a task, an agent has to reach g; passing through s;. When an agent does not
have any task assigned, it is called free and it can be assigned to a task in 7, otherwise if the

agent has an assigned task is called occupied. An occupied agent becomes free when it reaches
the delivery location of its current task after passing from the pickup location. The objective
of a MAPD problem is to complete all the tasks in the shortest possible time: the quality of
a solution is evaluated using either the service time, that is the average number of time steps
required to complete a task since its appearance, or the makespan, that is the smallest number
of time steps necessary to complete all the tasks (assumed to be finite in number).

3. Some Recent Results

In this section, we outline the extensions to MAPF and MAPD that we recently proposed.

3.1. MAPF-C: MAPF in Configurable Environments

In almost all the existing formulations of the MAPF problem, it is assumed that the environment
is given and static. However, in many real-world applications, this assumption does not hold:
for example, in warehouse logistics shelves can be moved and their positions can be re-arranged.
In [6], we propose MAPF in Configurable environments (MAPF-C), in which the presence and
arrangement of the obstacles in the environment can be controlled under some constraints.
Given a MAPF problem, the MAPF-C variant considers all the possible legal configurations of
the environment and returns both the optimal environment configuration and a solution for
the problem. We devise two different approaches to solve the MAPF-C problem, both based
on Conflict Based Search (CBS) [7], an optimal and complete MAPF solver. The first algorithm
is called Parallel CBS (P-CBS), in which the idea is to run in parallel the CBS algorithm on all
the possible environment configurations and to stop the search when a least-cost solution is
found. The second algorithm is called Abstract CBS (A-CBS), an extension of CBS that considers
not only constraints for the agents but also for the environment. Both algorithms are optimal
and complete. Experiments are conducted on a 15 x 15 grid map, placing 1 x 1 obstacles and
allowing the solvers to remove 30% of the present obstacles, and on a large 128 x 128 grid map
with 4 x 4 obstacles, each with an integer removal cost picked randomly from {1,2,3,4, 5}, and
a removal budget of 10. The settings are tested for a varying number of agents and obstacles.
Both results show that A-CBS performs better than P-CBS in terms of runtime, instances solved,
and computing effort, especially when the number of possible environment configurations and
agents increases.

3.2. MAPD-d: MAPD with Delays

Current algorithms do not consider many of the practical issues encountered when executing
planned paths; in fact, real agents often do not follow the paths as expected and may be subject
to delays and failures. Recently, the MAPF community has focused on robustness, generally
understood as a property of solutions that can withstand real-world-induced relaxations of
some idealistic assumptions made by the models [8, 9]. A typical example is represented by the
assumption that paths are executed without errors. In reality, however, path execution is subject
to delays and other issues that can hinder some properties (e.g., the absence of collisions) of a
solution. For the MAPD problem, robustness has yet to be consistently studied. We study the

robustness of MAPD to the occurrence of delays by defining a variant of the problem that we
call MAPD with delays (MAPD-d) [10]. In this variant, agents, like in the original MAPD, are
assigned to tasks, which may continuously appear at any time step, and paths to accomplish
those tasks while avoiding collisions are computed. During path execution, delays can occur at
arbitrary times, causing one or more agents to halt at some time steps, thus slowing down the
execution of their planned paths. We devise a set of algorithms to compute robust solutions for
MAPD-d based on TP (a decentralized MAPD solver) [5], to which we add recovery routines that
replan in case collisions caused by delays are detected. The two algorithms we propose adopt
the approach of robust planning, computing paths that limit the risk of collisions caused by
potential delays, providing deterministic (k-TP) and probabilistic (p-TP) guarantees, respectively.
We test our algorithms in two warehouse grid environments: a small one, 15 x 13, with 4 and
8 agents, and a large one, 25 x 17, with 12 and 24 agents. We create a sequence of 50 tasks
whose arrival time is determined according to a Poisson distribution. We test 3 different arrival
frequencies A for the tasks: 0.5, 1, and 3. During each run, 10 delays per agent are randomly
inserted. Experiments show that our methods deliver robust MAPD solutions, greatly reducing
the number of replans needed to cope with delays at the cost of a small increase in solution cost
and runtime. For example, for a large warehouse with A = 3, k-TP decreases the number of
replans of more than 75% wrt plain TP with an increase in the total cost of less than 2%.

3.3. MAPD-P: MAPD with Task Probability Distribution

MAPD’s general assumption is that the new tasks that are continuously added to the system
are not known in advance. As a result, existing MAPD algorithms assume complete ignorance
about the position and the time at which future tasks will appear until they are actually added
to the system. This assumption can however be too strict in many real-world scenarios, such
as warehouses, in which historical records can be used to predict where and when it is more
likely that new tasks will appear in the future. Knowledge about when and where future tasks
are expected to appear could be used to make better choices during both task assignment
and path planning, which would in turn lead to reduce the average time required to complete
tasks and thus improve the overall performance of the system. To this end, we define a new
variant of the MAPD problem called MAPD with task Probability distribution (MAPD-P), in
which we assume to know the probability distribution of appearance of tasks at specific time
instants in the future and at specific locations [11]. To solve a MAPD-P problem, we define a
set of algorithms extending TP in which agents take advantage of the knowledge of the task
probability distribution to decide how to behave when they are free or when they are assigned to
a new task. Tests are performed on two 37 x 25 warehouse grids, that differ in the arrangement
of shelves. We test 4 different task frequencies as input to the task generation distribution: 0.05,
0.1, 0.2, and 0.5 tasks per time step. For each task frequency, we run a test with 30 tasks and a
set of 10 agents and 4 tests with 80 tasks and different numbers of agents: 10, 20, 30, and 40
agents. Experiments show that the proposed algorithms can effectively exploit this knowledge
by reducing the average time required to complete tasks, especially in settings with low task
frequency (around 42% for low-frequency settings and around 4% for high frequency ones).

3.4. MAPD-g: MAPD for a Guest Team

Another recent development is the formulation of MAPD for a guest team (MAPD-g), a new
MAPD variant in which there are two different teams of agents in the same environment, each
one with its own MAPD problem [12]. A team, called guest team, has to solve its MAPD
tasks without communicating or interfering with the other team, called home team, that is
already addressing another MAPD problem. Possible applications of this setting can be found in
warehouse logistics, for example when some locations need cleaning: while a team (home team)
is performing the usual pickup and delivery tasks, an external team (guest team) is required to
clean or remove items from the ground without interfering with the ongoing tasks. Adopting a
strategy in which guests plan their paths without considering home robots and replan every
time there is a potential collision can slow down the completion of tasks for guests. To overcome
this issue, we propose guest agents to build a model of the behavior of the home team, and then
incorporate this information in their planning phase. In order to model the behavior of the home
robots, we consider two possible scenarios: the first one assumes that guests have a period of
time during which they can observe home agents and construct a model according to what they
observe. In the second scenario, guests model the behavior of home robots while performing
their MAPD tasks, incrementally updating knowledge according to what they observe. Given
this information, the aim in guests’ planning phase is to find a balance between keeping the
path length short and trying to avoid home robots. The method is tested on a 48 x 46 grid
warehouse with 15 home agents and 3 guests, and a 73 x 41 video game map with 15 home
agents and 5 guests. The length of guests’ observation period is 300 time steps. Experiments
carried on using a probabilistic occupancy model for the home team behavior show that the
inclusion of this information in guests’ planning phase reduces the number of collisions (29%
for warehouse and 42% for video game) and decreases tasks’ completion time (7% for warehouse
and 5% for the video game) for guests.

4. Future Work

Classical algorithms that are used to solve MAPF problems usually have a common limitation:
scalability [13]. Optimal algorithms usually start failing when the number of agents increases
beyond the hundreds. Sub-optimal algorithms tend to scale better, but it is still hard to achieve
good performance in terms of makespan or flowtime. The issue becomes even more evident
when dealing with MAPD problems. For these reasons, recent years have seen a shift towards
Machine Learning approaches. Taking inspiration from [14], we are investigating the application
of Graph Attention Neural Networks in order to enable agents to learn different importance
weights for messages coming from different neighbours, selecting who to listen to or not when
deciding where to move. In this way, information about goals and future movements is shared
amongst agents, improving coordination in local decision-making and avoiding collisions.

Acknowledgments

Authors are thankful to M. Bellusci, G. Lodigiani, A. Di Pietro, and A. Bignoli.

References

(1]
(2]
(3]

[10]
[11]
[12]

P. R. Wurman, R. D’Andrea, M. Mountz, Coordinating hundreds of cooperative, au-
tonomous vehicles in warehouses, AI Mag. 29 (2008) 9-20.

M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, Cobots: Robust symbiotic autonomous mobile
service robots, in: Proc. IJCAI, 2015, pp. 4423-4429.

H. Ma, J. Yang, L. Cohen, T. S. Kumar, S. Koenig, Feasibility study: Moving non-
homogeneous teams in congested video game environments, in: Proc. AIIDE, 2017,
pp. 270-272.

R. Stern, N.R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li, D. Atzmon, L. Cohen,
T. S. Kumar, et al., Multi-agent pathfinding: Definitions, variants, and benchmarks, in:
Proc. SOCS, 2019, pp. 151-158.

H. Ma, J. Li, T. Kumar, S. Koenig, Lifelong multi-agent path finding for online pickup and
delivery tasks, in: Proc. AAMAS, 2017, pp. 837-845.

M. Bellusci, N. Basilico, F. Amigoni, Multi-agent path finding in configurable environments,
in: Proc. AAMAS, 2020, pp. 159-167.

G. Sharon, R. Stern, A. Felner, N. R. Sturtevant, Conflict-based search for optimal multi-
agent pathfinding, Artif. Intell. 219 (2015) 40-66.

D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Bartak, N.-F. Zhou, Robust multi-agent path
finding, in: Proc. AAMAS, 2018, pp. 1862-1864.

D. Atzmon, R. Stern, A. Felner, N. R. Sturtevant, S. Koenig, Probabilistic robust multi-agent
path finding, in: Proc. ICAPS, 2020, pp. 29-37.

G. Lodigiani, N. Basilico, F. Amigoni, Robust multi-agent pickup and delivery with delays,
arXiv preprint arXiv:2303.17422 (2023).

A. Di Pietro, N. Basilico, F. Amigoni, Multi-agent pickup and delivery with task probability
distribution, in: Proc. AAMAS, 2023.

B. Flammini, D. Azzalini, F. Amigoni, Multi-agent pickup and delivery in presence of
another team of robots, in: Proc. AAMAS, 2023.

[13] J. Yu, S. M. LaValle, Structure and intractability of optimal multi-robot path planning on

[14]

graphs, in: Proc. AAAL 2013, pp. 1443-14409.
Q. Li, W. Lin, Z. Liu, A. Prorok, Message-aware graph attention networks for large-scale
multi-robot path planning, IEEE RA-L 6 (2021) 5533-5540.

	1 Introduction
	2 MAPF and MAPD
	2.1 MAPF
	2.2 MAPD

	3 Some Recent Results
	3.1 MAPF-C: MAPF in Configurable Environments
	3.2 MAPD-d: MAPD with Delays
	3.3 MAPD-P: MAPD with Task Probability Distribution
	3.4 MAPD-g: MAPD for a Guest Team

	4 Future Work

