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Abstract

In this paper
1

, we discuss a knowledge-aware recommendation framework based on neuro-symbolic graph
embeddings that encodes first-order logical (FOL) rules. Our workflow starts from a knowledge graph (KG)

encoding user preferences and item properties. Next, knowledge-aware recommendations are obtained

through the combination of three modules: (i) a rule learner, that extracts FOL rules from the KG; (ii) a

graph embedding module, that learns the embeddings of users and items based on the triples of the KG

and the FOL rules previously extracted; (iii) a recommendation module, that uses the embeddings to feed

a deep learning architecture. In the experimental session we evaluate the effectiveness of our strategy

on two datasets. The results show that the combination of KG embeddings and FOL rules improves the

predictive accuracy and the novelty of the recommendations.
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1. Introduction

Recommender Systems (RS) are getting a crucial role in decision-making processes [2]. Dif-

ferently from early RS approaches, which relied on simple user-item interactions and ignored

descriptive information, more recent attempts showed that knowledge-aware recommender sys-
tems (KARS) [3] significantly improve the performance of RS [4, 5, 6] by exploiting descriptive

features available in knowledge graphs (KGS), such as DBpedia [7]. In this research line, recent

shreds of evidences [8, 9, 10] show how good KARS based on KG embeddings [11, 12] perform

in recommendation tasks; however, these methods are purely data-driven and non-symbolic1
.

Instead, the current wave of neuro-symbolic AI systems [13], fostered the development of models

that combine data-driven approaches with pure symbolic methods, in order to take the best from

both the worlds. For example, methods for joint embedding of First-Order Logics (FOL) rules

and graphs have been proposed [14, 15]: in this setting, graphs provide explicit knowledge, while

FOL rules could be exploited to explicitly inject some background knowledge which is likely to
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improve the embedding process and the resulting representation. In this work, we follow these

intuitions and we investigate whether RS can benefit of the integration between symbolic and

non-symbolic knowledge as well. To this end, we present a knowledge-aware recommendation
framework that relies on neuro-symbolic graph embeddings exploiting first-order logical rules.
Starting from a KG encoding information about users, ratings and descriptive properties of the

items, we design a modular framework based on three components: (i) a Rule Learner, that

extracts FOL rules based on the information encoded in the KG; (ii) a Graph Embedding module,

that jointly learns a vector-space representation of users and items based on both the explicit

information encoded in the KG and the background knowledge encoded in the rules previously

learned; (iii) a Recommendation Framework, that takes as input the embeddings and use them to

feed a deep architecture that predicts the top-k items for the user. In the experimental session, we

evaluate the effectiveness of our strategy on two datasets and results show that the combination

of KG embeddings and FOL rules led to an improvement of the predictive accuracy.

The rest of the paper is organized as follows. In Section 2 we present related work in the area.

Next, the different modules that compose our framework are introduced in Section 3. Results of

the experiment are shown in Section 4. Finally, conclusions and future work are sketched in

Section 5.

2. Related Work

Graph Embeddings for Recommender Systems. The aim of graph embedding techniques

is to represent entities and relations in a KG as dense vectors by projecting them in a vector

space, preserving the original structure of the graph [11]. Similarly to the approach proposed

by Palumbo et al. [16], we applied graph embeddings over a tripartite graph encoding both

collaborative and content-based information. Other works (such as [17, 18, 19, 12]) showed that

recommendation models exploiting graph embedding techniques outperform typical baselines.

Next, previous research [8], showed that translation models, such as TransE [20], obtain com-

petitive performance in recommendation tasks. Accordingly, this work exploits a translation

model, i.e. KALE [14], as graph embedding technique. KALE is considered as an extension

of TransE that exploits first-order logic to merge in a unified representation logical rules and

triples encoded in a knowledge graph. Up to our knowledge, the use of KALE in deep learning

architectures for recommendation tasks has never been investigated in literature.

Knowledge-aware Recommender Systems (KARS). KARS foster the idea of injecting in-

formation encoded in KGs and RSs. While early works were based on similarity and Linked Open

Data [21, 22, 23], more recent methods followed the wave of deep learning. Knowledge-aware

Hybrid Factorization Machines (KaHFM) [5] obtained very competitive results by extending

classic factorization machines by using semantics information encoded in a KG. Another inter-

esting approach regards the application of Graph Convolutional Neural Networks [24] to KGs.

Here, Wang et al. [25] present Knowledge Graph Convolutional Networks (KGCN) for RS, which

learn a representation based on user-item interactions (encoded into a matrix) and descriptive

properties (encoded in a KG). Similarly, KGAT (Knowledge Graph Attention Network) [25] uses

an attention mechanisms to model the high-order connectivities in KG. Most of these work were

considered as baselines in our experiments. In this case, the novelty of our work lies in the



integration of explicit knowledge encoded in the KG with background knowledge encoded as

logical rules in our knowledge-aware RS. Up to our knowledge, this kind of hybridization has

been poorly investigated.

3. Description of the Framework

Figure 1: Workflow carried out by our framework.

In this section, we introduce the modules composing our framework; it relies on a knowledge

graph (see Figure 2) encoding information about users, items and descriptive properties.

Figure 2: A tripartite knowledge graph. Different kind of entities (users, items, properties) are high-

lighted with different colors.

Basics of First-Order Logic. The logical rules [26] we exploit are typically referred to

as Horn clauses
2
, since they are composed by several atoms connected by means of logi-

cal connectives (e.g., ∨,∧,⇒ . . .), in which at most one of them is positive. Each atom is

composed of variables (entities) and predicates (relations). An example of logical rules is:

∀𝑥, 𝑦, 𝑧 : 𝑙𝑖𝑘𝑒𝑠(𝑥, 𝑧)∧𝑝𝑟𝑒𝑞𝑢𝑒𝑙(𝑦, 𝑧) ⇒ 𝑙𝑖𝑘𝑒𝑠(𝑥, 𝑦). A specific formula is called ground when ev-

ery variable is replaced by a suitable entity in the graph. An example of ground rule based on the

graph in Figure 2 is: 𝑙𝑖𝑘𝑒𝑠(𝐶ℎ𝑙𝑜𝑒, 𝑆𝑡𝑎𝑟𝑊𝑎𝑟𝑠𝐼𝐼) ∧ 𝑝𝑟𝑒𝑞𝑢𝑒𝑙(𝑆𝑡𝑎𝑟𝑊𝑎𝑟𝑠𝐼, 𝑆𝑡𝑎𝑟𝑊𝑎𝑟𝑠𝐼𝐼) ⇒
𝑙𝑖𝑘𝑒𝑠(𝐶ℎ𝑙𝑜𝑒, 𝑆𝑡𝑎𝑟𝑊𝑎𝑟𝑠𝐼).
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Mining First-Order Logical Rules. The first task carried out by our framework consists in

mining FOL rules that hold in a KG to extract background knowledge concerning typical pattern

encoded in the graph. The process of rule mining returns a set of FOL rules in Horn form, each

with confidence score, expressing to what degree the rule holds; these scores can be used to

rank the rules and encode in the model only the most promising ones. It is worth to point out

that any FOL rules mining method can be used at this step. An example of the rules extracted

at this step is provided in the previous paragraph.

Learning Graph Embeddings. Once the rules are extracted, a joint learning based on triples

in the KG and FOL rules is carried out. In this work, we used KALE [14] as graph embedding

technique, which is inspired by TransE [20] and extends it by encoding symbolic knowledge

given by FOL rules.

The neuro-symbolic nature of KALE lies in the fact that the embeddings for each entity in

the KG are learnt by exploiting: (i) explicit knowledge, expressed by triples encoded in KG;

(ii) background knowledge, expressed by FOL rules. Explicit and background knowledge are

represented in a unified framework that learns a comprehensive representation based on both

information sources. Based on work by Rocktäschel et al. [27, 28], joint training is possible

since triples from a KG can be seen as atoms in FOL (e.g., likes(Alice,Kill Bill)); given that also

rules are expressed in a logical form, it is possible to exploit first-order logic as the common

framework that allows to unify the representations and to carry out a joint learning. Due to

space reasons, it is not possible to provide more details about KALE.

Recommendation Framework. Learnt embeddings are then used to feed a deep learning

architecture that provides users with recommendations. Given a set of users and a set of items,

our architecture aims at identify suitable recommendations, by predicting the interest of a user

in an items and by ranking the items based on descending relevance score. As shown in Figure 3,

we designed a simple yet effective architecture based on the combination of concatenation layers

and dense layers which is inspired by previous work in the area [29] that obtained competitive

results in the top-k recommendations task.

Figure 3: Recommendation framework architecture

In particular, the recommendation process starts with the embeddings which are obtained as

output of the graph embedding process. Each embedding is passed through three dense layers

and is then merged through concatenation layer. After a second passage through three dense

layers, a sigmoid activation function is used to return a score between 0 and 1 which estimates

the probability that the item 𝑖 is relevant for user 𝑢. Before making predictions, the architecture



is trained by exploiting all the the ratings in the form (𝑢, 𝑖) available in the dataset and by

using binary cross-entropy as loss function. See next section for more details on parameters.

Once the model is learned, it can predict to what extent user 𝑢 would like unseen items 𝑗 ∈ 𝐼 .

After this step, items are ranked based on predicted relevance score and top-k are returned as

recommendations.

4. Experimental Evaluation

In the experimental session we evaluated the effectiveness of our methodology in the task of

item recommendation to answer to the following research questions:

RQ1: Which is the best strategy to select FOL rules to be included in the embedding process? Is

there any difference in the accuracy, novelty and diversity when logical rules are encoded in the

model?

RQ2: How does our approach based on neuro-symbolic graph embeddings perform w.r.t. com-
petitive baselines?

4.1. Experimental Design

Datasets. Experiments were carried out in a movie recommendation and in a book recommen-
dation scenario. In the former case, MovieLens 1M (ML1M)

3
was exploited as dataset, while

in the latter we used DBbook dataset
4
. As KG, we exploited DBpedia. To extract information

from DBpedia and populate our KG, we exploited a mapping already available online
5
. Table 1

depicts some statistics about the datasets.

Users Items Ratings %Positive Sparsity Entities Relations Triples Avg. Links

ML1M 6,040 3,883 1,000.209 57.51% 96.42% 26,858 13 828,119 30.83

DBbook 6,181 6,733 72,372 45.85% 99.83% 17,505 36 85,549 4.94

Table 1

Statistics of the datasets

Protocol. For both the datasets, we used a 80%-20% training-test split. Data were split in order

to maintain the ratio between positive and negative ratings. As for MovieLens-1M we considered

as positive only the ratings equal to 4 and 5 out of 5. As for DBbook, ratings were provided in a

binary format (positive/negative). The predictive accuracy of the algorithms was evaluated on

top-5 recommendation list, calculated by following the TestRatings strategy [30].

Source Code and Parameters. Rule mining was carried out by exploiting the latest version

of AMIE
6
, while a recent Java implementation of KALE

7
was used to learn graph embeddings.

Finally, the source code of our deep recommendation framework is available on GitHub
8

and is
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inspired by the implementation made available by the authors of [29] released on Github
9
. As

regards the parameters of the tools, as for AMIE, we set maximum length rules to 4 atoms, while

for each rule minimum confidence is set equal to to 0.001 and minimum coverage equal to 0.1.

As regards KALE, we learnt embeddings having size=512, 768 and we learnt the representation

with mini batches equal to 100 for both the datasets. Margin separating positive and negative

examples = 0.1, entity learning rate = 0.05, relations learning rate = 0.05, iterations = 1000.

All these parameters were set through a grid search. Finally, as regards our deep architecture,

our models were trained for 25 epochs, by setting batch sizes to 512 for ML1M and to 1536
for DBbook, respectively. The parameter 𝛼 is set to 0.9 and learning rate is set to 0.001. As

optimizer, we used ADAM for ML1M and RMSprop for for DBbook. All the parameters were

tuned through a grid search.

Configurations. Throughout the experimental protocol, we compared five different variant of

our framework: two basic configurations (which do not invole FOL rules) and three rule-based
configurations. In particular, we compared the embeddings learnt on the simple user-item and

user-item-properties graphs (i.e., graph encoding only ratings and graph encoding descriptive

properties too). Next, rule-based configuration were run over the user-item-properties graph,

and we defined three different heuristics to rank the rules returned by AMIE: (i) like rules,

having a like relation in the head (e.g., 𝑙𝑖𝑘𝑒𝑠(𝑥, 𝑧) ∧ 𝑝𝑟𝑒𝑞𝑢𝑒𝑙(𝑦, 𝑧) ⇒ 𝑙𝑖𝑘𝑒𝑠(𝑥, 𝑦)); (ii) top-k
like rules, having a like relation in the head based on the coverage of the rules; (iii) high

confidence rules, having a confidence score higher than 0.75. Of course, other strategies to

select FOL rules can be applied in this step.

Baselines and Evaluation Metrics. To ensure the complete reproducibility, we calculated

our evaluation metrics and we selected our baselines by using the Elliot
10

framework [31]. As

regards the metrics, to assess the accuracy of the recommendations we used F1 score [32], Mean
Average Precision (MAP), and the normalized discounted cumulative gain (nDGC) [33, 34] scores;

we also considered diversity and novelty of the recommendations by calculating Gini Index and

Expected Popularity Complement (EPC) [35]. Finally, we also compared our methodology to

ten baselines available in Elliot: three matrix factorization techniques (SLIM [36], BPRMF [37]

and PureSVD), three methods based on deep learning models, (MultiVAE [38], CFGAN [39] and

NGCF [40]) and four algorithms implementing knowledge-aware techniques (Item-KNN and

User-KNN [41], KaHFM [5] and LightGCN [42]). All the algorithms are run with their optimal

parameters, selected by the Elliot framework through a grid search.

4.2. Results

(RQ1) Performance of the Framework and Selection of Logical Rules. For RQ1, we

compared performances obtained by basic configurations (user-item and user-item-properties),

treated as baselines, with those using FOL rules. As shown in Table 2, baselines are almost

always outperformed by the other configurations. For ML1M, for 𝑘 = 512, all rule-based

configuration overcome the baselines with a statistically significant gap; configurations based

on like rules got the best results for all accuracy and novelty metrics. For 𝑘 = 768 we got good

results too, but with a less significant gap. For Dbbook we got similar findings: the overall

9
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ML1M Dbbook

Configuration Accuracy Diversity Novelty Accuracy Diversity Novelty

MAP F1 nDCG Gini EPC MAP F1 nDCG Gini EPC

k = 512

user-item 0.8106 0.4824 0.8410 0.1626 0.6479 0.6393 0.5140 0.6779 0.2792 0.6351

user-item-properties (uip) 0.8357 0.4881 0.8632 0.1525 0.6656 0.6361 0.5124 0.6757 0.1566 0.6340

uip + like rules 0.8410** 0.4902** 0.8680** 0.1481 0.6698** 0.6357 0.5126 0.6755 0.1573 0.6337

uip + top-k like 0.8411** 0.4898** 0.8673** 0.1429 0.6644 0.6410* 0.5142 0.6797* 0.1567 0.6372*

uip + high confidence 0.8372 0.4893 0.8650 0.1558 0.6748 0.6407* 0.5132 0.6790 0.1572 0.6367

k = 768

user-item 0.8118 0.4831 0.8426 0.1657 0.6478 0.6417 0.5114 0.6781 0.2793 0.6349

user-item-properties (uip) 0.8383 0.4890 0.8649 0.1461 0.6671 0.6332 0.5107 0.6726 0.1575 0.6312

uip + like rules 0.8395 0.4902 0.8667 0.1455 0.6690* 0.6372* 0.5144 0.6779 0.1580 0.6356*

uip + top-k like 0.8401 0.4892 0.8664 0.1433 0.6687** 0.6408 0.5144 0.6794 0.1569 0.6366

uip + high confidence 0.8394 0.4897 0.8659 0.1539 0.6708** 0.6361 0.5114 0.6755 0.1569 0.6337

Table 2

Results of the Experiment on ML1M and Dbbook data. For each size of the embeddings 𝑘, configurations

overcoming the baseline (UIP) are highlighted in bold. Significant improvements are emphasized with *

(for 𝑝 < 0.05) and ** (for 𝑝 < 0.01).

ML1M Dbbook

Baseline Accuracy Diversity Novelty Accuracy Diversity Novelty

MAP F1 nDCG Gini EPC MAP F1 nDCG Gini EPC

BPRMF 0.7486 0.4636 0.7861 0.0779 0.558 0.6392 0.4472 0.6372 0.0360 0.6626

PureSVD 0.7553 0.4615 0.7896 0.113 0.5856 0.6365 0.4468 0.6349 0.0399 0.6622

Slim 0.7852 0.4743 0.8189 0.1897 0.6521 0.6240 0.4437 0.6285 0.0482 0.6556

MultiVAE 0.7358 0.4552 0.7714 0.1445 0.5845 0.6222 0.4400 0.6245 0.0451 0.6519

CFGAN 0.6229 0.414 0.6677 0.2842 0.5396 0.6104 0.4391 0.6166 0.0507 0.6458

NGCF 0.5946 0.4057 0.6442 0.192 0.5229 0.6074 0.4377 0.6150 0.0511 0.6448

AttributeItemKnn 0.7302 0.449 0.765 0.2257 0.6127 0.6316 0.4443 0.6333 0.0496 0.6602

AttributeUserKnn 0.7499 0.4557 0.784 0.1556 0.5957 0.6371 0.4463 0.6363 0.0452 0.6629

KaHFM 0.7403 0.4565 0.7763 0.1468 0.5865 0.6384 0.4493 0.6381 0.0354 0.6633

LightGCN 0.5946 0.4057 0.6442 0.192 0.5229 0.6147 0.4420 0.6212 0.0462 0.6490

Our best 0.8406** 0.4903** 0.8676** 0.1517 0.6739** 0.6410 0.5142** 0.6797** 0.1567 0.6372

Table 3

Comparison to baselines on ML1M and Dbbook data. Overall best performing configuration is high-

lighted in bold. Significant improvements are emphasized with ** (for 𝑝 < 0.01).

best results are obtained for 𝑘 = 512, and the best-performing configuration is top-k likes rules.

Moreover, our best-performing configuration improves the baselines in terms of diversity and

novelty as well. As regards 𝑘 = 768, the behavior we noted is in line with that we observed

for ML1M. We can also notice that user-item often overcomes user-item-properites: this means

that descriptive properties are poorly informative; however, injecting background knowledge

encoded as FOL rules is able to overcome this issue and leads to the overall best results.

(RQ2) Comparison to Baselines. To answer RQ2, we compared our best-performing con-

figuration with some competitive baselines. Table 3 show that our framework significantly

overcomes those baselines. For ML1M (Table 3), all metrics but diversity have been outperformed

with a significant gap (𝑝 < 0.01). It is worth to notice that KARS have been outperformed by

methods for matrix factorization, differently by our expectations. Results on Dbbook confirm

these findings: all metrics, except for novelty, are overcame by our framework. The best baseline

in this case is KaHFM [5], and this should not surprise since the high sparsity of the dataset



emphasized the importance of the descriptive features of the items. We can also note that our

approach obtained the best results for novelty and diversity on ML1M and DBbook, respectively,

so further analyses will be carried out to better understand this behavior.

5. Conclusions and Future Work

In this paper we discussed a knowledge-aware recommendation framework based on neuro-
symbolic graph embeddings encoding first-order logical rules; it combines explicit knowledge

provided by triples in the graph and background knowledge provided FOL rules. Our experi-

ments provided us with the following findings: (i) joint learning based on FOL rules and KGs

generates more precise embeddings and more accurate recommendations, in particular using

rules with only like relation in the head; (ii) comparisons with several baselines confirmed the

accuracy of our framework. A good impact is also noted in terms of novelty and diversity of the

recommendations. Such promising results represent a first step in the direction of developing

neuro-symbolic RSs exploiting neural and symbolic reasoning. However, given the novelty of

the current work, we are aware that several limitations exist. As an example, more accurate

methods for selecting the rules are needed, together with a more extensive analysis of the

informative power of different FOL rules. As future work, we will also strengthen the level of

the baselines we consider in our experiments and the number of datasets, and by evaluating the

system in different domains (i.e., food recommendations [43]) and by modeling user preferences

by exploiting different sets of features [44].
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