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Abstract

Aggregating preferences over combinatorial domains has several applications in AI. Due to the exponen-

tial nature of combinatorial preferences, compact representations are needed, and CP-nets are among

the most studied formalisms. 𝑚CP-nets are an intuitive formalism based on CP-nets to reason about

preferences of groups of agents. The dominance semantics of 𝑚CP-nets is based on voting, and different

voting schemes give rise to different dominance semantics for the group. Unlike CP-nets, which received

an extensive complexity analysis, 𝑚CP-nets, as reported multiple times in the literature, lacked such a

thorough characterization. In this paper, we start to fill this gap by carrying out a precise computational

complexity analysis of Pareto and majority voting on acyclic binary polynomially-connected 𝑚CP-nets.
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1. Introduction

Managing and aggregating agent preferences have attracted extensive interest for their im-

portance in AI applications, such as recommender systems [2], product configuration [3],

planning [4], preference-based constraint satisfaction [5], preference-based query answer-

ing/information retrieval [6, 7, 8], and preference-based argumentations [9]. In computer

science, preference aggregation has often been based on social choice theory [10]. In this theory,

agents’ preferences are usually extensively represented. Although this is reasonable with a

small set of candidates, this is not feasible with combinatorial domains, i.e., when the set of

candidates, or outcomes, is the Cartesian product of finite-value domains for each of a set of

features [11, 12]. Combinatorial domains contain an exponential number of outcomes in the

number of features, and hence compact representations are needed [11, 12]. CP-nets [13] are

among the most studied of these representations, and have also been used in applications even

in learning scenarios [14, 15]. In CP-nets, vertices of a graph represent features, and an edge

from vertex 𝐴 to vertex 𝐵 models the influence of 𝐴’s value on the choice of 𝐵’s value. This

model captures conditional ceteris paribus preferences like “if the rest of the dinner is the same,

with a fish dish (𝐴’s value), I prefer a white wine (𝐵’s value)”.
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(a) A CP-net modeling dinner preferences.

(b) The CP-net’s induced prefer-

ence graph.

Figure 1: A CP-net and its preference graph.

Example 1. Assume that we want to model one’s preferences for a dinner with a main dish

and a wine [13]. In the CP-net in Figure 1a, an edge from vertex Main to vertex Wine models

that the value of feature Main influences the choice of the value of feature Wine : 𝑚 and 𝑓 are

the possible values of feature Main , denoting “𝑚eat” and “𝑓 ish”, respectively, while 𝑟 and 𝑤
are the possible values of feature Wine , denoting “𝑟ed (wine)” and “𝑤hite (wine)”, respectively.

The table associated with feature Wine specifies that when a meat dish is chosen, then a red

wine is preferred to a white one, and when a fish main is chosen, then a white wine is preferred

to a red wine. The table associated with feature Main indicates that a meat dish is preferred to

a fish one. These tables are called CP tables. A CP-net like this one can represent the conditional
ceteris paribus preference “given that the rest of the dinner does not change, with a meat dish

(Main’s value), I prefer a red wine (Wine’s value)”.

Every CP-net has an associated induced preference graph [13], whose vertices are all the

possible outcomes of the domain, and whose edges connect outcomes differing on only one

value: there is a directed edge from an outcome to another if the latter is preferred to the former

according to the preferences encoded in the CP tables of the CP-net. Figure 1b shows the induced

preference graph of the CP-net in Figure 1a, having as vertices all the possible combinations

for the dinner, and there is, e.g., an edge from mw to mr , because the combination meat and

red wine is preferred to the combination meat and white wine. The preferences encoded in a

CP-net are the transitive closure of its induced preference graph. Intuitively, an outcome 𝛼 is

preferred to an outcome 𝛽 according to the preferences of a CP-net, if there is a directed path

from 𝛽 to 𝛼 in the induced preference graph, in which case 𝛼 is said to dominate 𝛽. ◁

CP-nets were also used to model preferences of groups, obtaining the multi-agent model

𝑚CP-nets [16], which is a profile of CP-nets, one for each agent. The preference semantics

of 𝑚CP-nets is defined via voting schemes: through its own individual CP-net, every agent

votes whether an outcome is preferred to another. Various voting schemes were proposed for

𝑚CP-nets [16, 17], and different voting schemes give rise to different dominance semantics for

𝑚CP-nets. In this paper, we consider Pareto and majority voting as they were defined in [16].

Example 2. Consider again the dinner scenario of Example 1, and assume that there are three

agents (Alice, Bob, and Chuck), expressing their preferences via CP-nets (see Figure 2). In Pareto

voting, an outcome 𝛼 dominates an outcome 𝛽, if all agents prefers 𝛼 to 𝛽. In majority voting,

an outcome 𝛼 dominates an outcome 𝛽, if the majority of agents prefers 𝛼 to 𝛽.

The outcome fr is not Pareto optimal, because fr is Pareto dominated by 𝑚𝑟, i.e., the outcome

𝑚𝑟 is preferred to fr by all agents. The outcome 𝑚𝑤 is instead Pareto optimal, as there is no



Figure 2: Dinner preferences of Alice, Bob, and Chuck (in this order) modeled via CP-nets (above) and

their induced preference graphs (below).

outcome Pareto dominating 𝑚𝑤. Hence, from a Pareto perspective, 𝑚𝑤 is better than fr . The

outcome 𝑚𝑤, however, is not majority optimal, because 𝑚𝑟 majority dominates 𝑚𝑤 (Alice and

Chuck prefer 𝑚𝑟 to 𝑚𝑤). Conversely, 𝑚𝑟 is majority optimal, as there is no outcome majority

dominating 𝑚𝑟. Hence, from a majority perspective, 𝑚𝑟 is better than 𝑚𝑤. Moreover, again

according to the majority perspective, 𝑚𝑟 is a very good outcome, because 𝑚𝑟 is also majority
optimum, i.e., 𝑚𝑟 majority dominates all other outcomes. On the contrary, in this example,

there is no Pareto optimum outcome, i.e., there is no outcome Pareto dominating all the others.◁

Unlike CP-nets, which were extensively analyzed, a precise complexity analysis of the group

dominance semantics in 𝑚CP-nets was missing for long time, as explicitly mentioned several

times in the literature [18, 19, 20, 17]. Our aim in this paper is to settle these problems in their

exact complexity classes, showing, if possible, completeness results.

In particular, we focus on acyclic binary polynomially-connected 𝑚CP-nets (see Section 2

for these notions) built with standard CP-nets. Unlike what is often assumed in the literature,

in this work, we do not restrict the profiles of CP-nets to be 𝒪-legal, meaning that we do

not require that there is a topological ordering common to all the CP-nets of the profile. We

carry out a thorough complexity analysis for the (a) Pareto and (b) majority voting schemes, as

defined in [16], of deciding (1) dominance, (2) optimal and (3) optimum outcomes, and (4) the

existence of optimal and (5) optimum outcomes. Deciding the dominance for a voting scheme 𝑠
means deciding, given two outcomes, whether one dominates the other according to 𝑠. Deciding

whether an outcome is optimal or optimum for a voting scheme 𝑠 means deciding whether the

outcome is not dominated or dominates all others, respectively, according to 𝑠. Deciding the

existence of optimal and optimum outcomes is the natural extension of the previous problems.

A summary of the complexity results obtained is provided in Table 1.

We obtain many intractability results, where the problems are put at various levels of the

Polynomial Hierarchy. Although intractability is usually “bad” news, these results are quite

interesting, as for most of these tasks only exp upper bounds were known in the literature to

date [16]. Even more interestingly, some of these problems are actually tractable, as they are in

p or even logspace, which is a huge leap from exp. The complexity results here shown can be

extended to wider notions of “compact representations” of preference profiles [1, 21].



Table 1
Summary of the complexity results.

*
A different proof is provided in [16].

Problem Complexity

P
a
r
e
t
o

Pareto-Dominance np-complete

Is-Pareto-Optimal co-np-complete

Exists-Pareto-Optimal Θ(1)*

Is-Pareto-Optimum in logspace

Exists-Pareto-Optimum in p

M
a
j
o
r
i
t
y

Majority-Dominance np-complete

Is-Majority-Optimal co-np-complete

Exists-Majority-Optimal Σp

2-complete

Is-Majority-Optimum Πp

2-complete

Exists-Majority-Optimum Πp

2-hard, in d
p

2

In Section 2, we provide definitions of the framework. In Section 3 and in Section 4 we discuss

our results for Pareto and majority voting, respectively. Full proof details are available in [1].

2. Preliminaries

CP-nets. A CP-net N is a triple ⟨𝒢N ,DomN , (CPT𝐹
N )𝐹∈ℱN

⟩, where 𝒢N = ⟨ℱN , ℰN ⟩ is a

directed graph whose vertices ℱN represent the features of the combinatorial domain, DomN

is a function, and (CPT𝐹
N )𝐹∈ℱN

is a family of functions. For a feature 𝐹 , DomN associates a

(value) domain DomN (𝐹 ) with 𝐹 , while CPT𝐹
N is the so called “CP table” of 𝐹 .

Feature 𝐹 ’s domain is the set of values that 𝐹 may have in the outcomes. Here, we assume

features to be binary, i.e., each feature’s domain contains two values. We denote by 𝑓 and 𝑓 the

two values of 𝐹 . For a feature set 𝒮 ⊆ ℱN , DomN (𝒮) = ×𝐹∈𝒮DomN (𝐹 ). An outcome is an

element of the set 𝒪N = DomN (ℱN ). For a feature 𝐹 ∈ ℱN and an outcome 𝛼, 𝛼[𝐹 ] is 𝐹 ’s

value in 𝛼. For a feature set 𝒮 ⊆ ℱN and an outcome 𝛼, 𝛼[𝒮] is the projection of 𝛼 over 𝒮 .

CP tables encode preferences over feature values. The CP table of feature 𝐹 has a row for

any possible combination of values of all the parent features of 𝐹 in 𝒢N ; in each row there

is a total order over DomN (𝐹 ). This order encodes agent’s preferences for 𝐹 ’s values when

specific values of 𝐹 ’s parents are considered: 𝑓 ≻ 𝑓 denotes 𝑓 being preferred to 𝑓 . If 𝐹 has

no parents, its CP table has only one row with a total order over DomN (𝐹 ). We denote by

‖N ‖ the size of CP-net N , i.e., the space in terms of bits required to represent the whole net N
(including, features, links, feature domains, and CP tables).

CP-nets’ preference semantics is based on “improving flips”. Let 𝐹 be a feature, and let 𝛼, 𝛽
be two outcomes differing only on 𝐹 ’s value. Flipping 𝐹 from 𝛼[𝐹 ] to 𝛽[𝐹 ] is an improving flip
iff, in the row of 𝐹 ’s CP table associated with the values in 𝛼 of the parents of 𝐹 , 𝛽[𝐹 ] ≻ 𝛼[𝐹 ].
Outcome 𝛽 is preferred to 𝛼, or 𝛽 dominates 𝛼 (in N ), denoted 𝛽 ≻N 𝛼, iff there is a sequence

of improving flips from 𝛼 to 𝛽, otherwise 𝛽 does not dominate 𝛼, denoted 𝛽 ̸≻N 𝛼; 𝛽 and 𝛼
are incomparable, denoted 𝛽 ◁▷N 𝛼, iff 𝛽 ̸≻N 𝛼 and 𝛼 ̸≻N 𝛽.

A CP-net N is binary iff all its features are binary; N is singly connected iff, for any two

features 𝐺 and 𝐹 of N , there is at most one path from 𝐺 to 𝐹 in 𝒢N . A class F of CP-nets is



polynomially-connected iff there exists a polynomial 𝑝 such that, for any CP-net N ∈ F and for

any two features 𝐺 and 𝐹 of N , there are at most 𝑝(‖N ‖) distinct paths from 𝐺 to 𝐹 in 𝒢N . A

CP-net N is acyclic iff 𝒢N is acyclic. Acyclic CP-nets N have a unique optimum outcome oN ,

dominating all others, that can be computed in polynomial time [13]. Unless stated otherwise,

we consider acyclic binary CP-nets.

𝑚CP-nets. An 𝑚CP-net is a tuple of 𝑚 CP-nets defined over the same set of features having,

in turn, the same domain. The “𝑚” of an 𝑚CP-net is the agents’ number, so a 3CP-net is an

𝑚CP-net with 𝑚 = 3. Originally, partial CP-nets were allowed to constitute 𝑚CP-nets [16].

Here, we assume only standard CP-nets in 𝑚CP-nets, and CP-nets do not need to be 𝒪-legal

(i.e., we de not assume that the CP-nets of an 𝑚CP-net have a common topological ordering).

𝑚CP-nets’ semantics is based on voting. Let ℳ = ⟨N1, . . . ,N𝑚⟩ be an 𝑚CP-net, and let 𝛼, 𝛽
be two outcomes. The sets 𝑆≻

ℳ(𝛼, 𝛽) = {𝑖 | 𝛼 ≻N𝑖 𝛽}, 𝑆≺
ℳ(𝛼, 𝛽) = {𝑖 | 𝛼 ≺N𝑖 𝛽}, and

𝑆◁▷
ℳ(𝛼, 𝛽) = {𝑖 | 𝛼 ◁▷N𝑖 𝛽}, are the sets of agents preferring 𝛼 to 𝛽, preferring 𝛽 to 𝛼, and for

which 𝛼 and 𝛽 are incomparable, respectively. The dominance semantics considered are [16]:

Pareto: 𝛽 Pareto dominates 𝛼, denoted by 𝛽 ≻p
ℳ 𝛼, iff all the agents of ℳ prefer 𝛽 to 𝛼, i.e.,

|𝑆≻
ℳ(𝛽, 𝛼)| = 𝑚.

Majority: 𝛽 majority dominates 𝛼, denoted by 𝛽 ≻maj
ℳ 𝛼, iff the majority of the agents of ℳ

prefers 𝛽 to 𝛼, i.e., |𝑆≻
ℳ(𝛽, 𝛼)| > |𝑆≺

ℳ(𝛽, 𝛼)|+ |𝑆◁▷
ℳ(𝛽, 𝛼)|.

For a voting scheme 𝑠, an outcome 𝛼 is 𝑠 optimal in ℳ iff 𝛽 ̸≻s
ℳ 𝛼 for all 𝛽 ̸= 𝛼, whereas 𝛼 is

𝑠 optimum in ℳ iff 𝛼 ≻s
ℳ 𝛽 for all 𝛽 ̸= 𝛼. Optimum outcomes, if they exist, are unique.

An 𝑚CP-net is acyclic, binary, and singly connected, iff all its CP-nets are acyclic, binary, and

singly connected, respectively. A class F of 𝑚CP-nets is polynomially-connected iff the set of

CP-nets constituting the 𝑚CP-nets in F is polynomially-connected. Unless stated otherwise,

𝑚CP-nets here considered are acyclic, binary, and belong to polynomially-connected classes.

3. Complexity of Pareto voting on 𝑚CP-nets

We now focus on Pareto voting. Being based on the concept of unanimity, an np witness for an

outcome Pareto dominating another outcome is the set of the witnesses of all agents preferring

one to the other (for the class of (𝑚)CP-nets here considered, dominance check is known to be

np-complete [13]). For the hardness, on 1CP-nets, ≻p
and ≻ are equivalent.

Theorem 3. Let ℳ be an 𝑚CP-net, and let 𝛼, 𝛽 be two outcomes. Deciding whether 𝛽 ≻p
ℳ 𝛼 is

np-complete. Hardness holds even on 1CP-nets.

Consider the problem of deciding whether a given outcome 𝛼 is Pareto optimal for a given

𝑚CP-net ℳ. We can disprove 𝛼 being Pareto optimal by guessing an outcome 𝛽 along with

the witness that 𝛽 ≻p
ℳ 𝛼, and checking the witness (in np, see Theorem 3). For the hardness, it

is possible to provide a reduction from unsatisfiability of 3CNF Boolean formulas.

Theorem 4. Let ℳ be an 𝑚CP-net, and let 𝛼 be an outcome. Deciding whether 𝛼 is Pareto
optimal in ℳ is co-np-complete. Hardness holds even on 2CP-nets.



Deciding whether an 𝑚CP-net has a Pareto optimal outcome is trivial, because there is always

one. Indeed, if this were not the case, then the optimal outcomes of the single CP-nets would be

dominated by some other outcome, which would be a contradiction. An 𝑚CP-net has a Pareto

optimum outcome iff all its CP-nets have the very same individual optimal outcome (that is

also Pareto optimum). Indeed, to be Pareto optimum, an outcome has to dominate all other

outcomes in all the CP-nets of the 𝑚CP-net: this property is satisfied only by an outcome that is

the optimum in all the CP-nets of the 𝑚CP-net. By combining this with the fact that checking

the optimality of an outcome in a CP-net is in logspace [1], we can state the following.

Theorem 5. Let ℳ be an 𝑚CP-net. Deciding whether an outcome 𝛼 is Pareto optimum in ℳ is
in logspace; deciding whether ℳ has a Pareto optimum outcome is in p.

4. Complexity of majority voting on𝑚CP-nets

In this section, we deal with majority voting. It is possible to design four different acyclic binary

singly-connected CP-nets with the following dominance relationships: 𝑎𝑏 ≻N1 𝑎𝑏 ≻N1 𝑎𝑏 ≻N1

𝑎𝑏; 𝑎𝑏 ≻N2 𝑎𝑏 ≻N2 𝑎𝑏 ≻N2 𝑎𝑏; 𝑎𝑏 ≻N3 𝑎𝑏 ≻N3 𝑎𝑏 ≻N3 𝑎𝑏; and 𝑎𝑏 ≻N4 𝑎𝑏 ≻N4 𝑎𝑏 ≻N4 𝑎𝑏.
Interestingly, the 4CP-net constituted by the four above nets do not have majority optimal and

optimum outcomes. Therefore, we can state the following.

Theorem 6. There are acyclic binary singly-connected 𝑚CP-nets not having majority optimal
and optimum outcomes.

Let us now focus on majority dominance. Observe that 𝛽 ≻maj
ℳ 𝛼 iff |𝑆≻

ℳ(𝛽, 𝛼)| > 𝑚
2 . Hence,

a certificate consists in the witnesses of at least
𝑚
2 agents preferring 𝛽 to 𝛼 (which is in np; see

above). On the hardness side, on 1CP-nets, ≻maj
equals ≻ (which is np-hard; see above).

Theorem 7. Let ℳ be an 𝑚CP-net, and let 𝛼, 𝛽 be two outcomes. Deciding whether 𝛽 ≻maj
ℳ 𝛼 is

np-complete. Hardness holds even on 1CP-nets.

For the majority optimal problem, to test that an outcome 𝛼 is not majority optimal, we

guess an outcome 𝛽 and the witness of 𝛽 ≻maj
ℳ 𝛼 (in np, see Theorem 7). For the hardness, on

2CP-nets, ≻maj
and ≻p

are equivalent.

Theorem 8. Let ℳ be an 𝑚CP-net. Deciding whether an outcome 𝛼 is a majority optimal in ℳ
is co-np-complete. Hardness holds even on 2CP-nets.

We now focus on deciding the existence of majority optimal outcomes. We can test in Σp

2

that ℳ has a majority optimal outcome by guessing an outcome 𝛼 (in np), and checking that 𝛼
is majority optimal (in co-np, see Theorem 8). To prove the respective hardness, an involved

construction showing a reduction from QBF is required.

Theorem 9. Let ℳ be an 𝑚CP-net. Deciding whether ℳ has a majority optimal outcome is
Σp

2-complete. Hardness holds even on 6CP-nets.

Consider the problem of deciding whether an outcome is majority optimum. We can test in Σp

2

that 𝛼 is not majority optimum by guessing an outcome 𝛽 (in np) and checking that 𝛼 ̸≻maj
ℳ 𝛽

(in co-np, see Theorem 7). The hardness proof uses similar ideas to those in Theorem 9.



Theorem 10. Let ℳ be an 𝑚CP-net. Deciding whether an outcome 𝛼 is majority optimum in ℳ
is Πp

2-complete. Hardness holds even on 3CP-nets.

We now deal with the problem of deciding the existence for an 𝑚CP-net of a majority

optimum outcome. First, observe that an outcome, to be majority optimum, must also be

majority optimal. Notice that, when the majority optimum exists, then it is the only majority

optimal outcome. For this reason, an 𝑚CP-net ℳ has a majority optimum outcome if and only

if ℳ has majority optimal outcomes and it is not true that ℳ has majority optimal outcomes

that are not also majority optimum. Hence, two tasks need to be solved to decide whether an

𝑚CP-net ℳ has a majority optimum outcome: (1) decide whether ℳ has majority optimal

outcomes; and (2) decided whether ℳ does not have majority optimal outcomes that are not

also optimum. We already know that the complexity of task (1) is in Σp

2 (see Theorem 9). The

complexity of task (2) can be shown in Πp

2. Indeed, solving the complement of task (2), i.e.,

deciding whether ℳ has majority optimal outcomes that are not also optimum, can be shown

in Σp

2. First, we guess two different outcomes 𝛼 and 𝛽 (feasible in np). Then, through a co-np

oracle call, we check that 𝛼 is actually majority optimal (see Theorem 4), then through another

oracle call in co-np, we check that 𝛼 ̸≻maj
𝑀 𝛽 (see Theorem 7).

By combining the complexity of these two tasks follows that deciding whether an 𝑚CP-net

has a majority optimum outcome is in d
p

2. The Πp

2-hardness of the problem can be shown by

inspection of the reduction for the hardness in Theorem 10.

Theorem 11. Let ℳ be an 𝑚CP-net. Deciding whether ℳ has a majority optimum outcome is
in d

p

2 and is Πp

2-hard. Hardness holds even on 3CP-nets.

5. Summary and outlook

We have carried out a thorough complexity analysis of the Pareto and majority semantics in

𝑚CP-nets. The various problems analyzed here have been put at various levels of the Polynomial

Hierarchy, and some of them are even tractable (in p or logspace). This work was extended

to consider also rank voting and relative majority voting [22, 23, 24], where to analyse the

complexity of the latter a novel characterization of the complexity class Θp

2 was needed [25].

The semantics intractability of (𝑚)CP-nets has encouraged research to individuate tractable

approximate algorithms for CP-nets dominance [26].

There are various possible directions for further research. Having constraints on the feasibility

of outcomes is an interesting direction of investigation. Without any constraint, CP-nets model

agents’ preferences when it is assumed that all outcomes are attainable. However, this is not

always the case. For example, to decide whether an outcome is majority dominated by another,

we should check that the latter is feasible. A similar idea characterized the solution concepts in

NTU cooperative games defined via constraints [27, 28]. This approach could be merged with

the definition of constrained CP-nets [5, 29]. CP-nets offer a rather flexible formalism to express

preferences, and in fact it would be interesting to extend the preference model adopted in the

AI explanation framework [8] to something capable of leveraging the representational power of

CP-nets, and extend this to other explanation frameworks [30, 31, 32]. The model of CP-nets

could also be extended to hypergraphs [33, 34] by following the intuitions provided in [35],

where ceteribus paribus preferences are put in relationship with hypergraphs transversals.
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