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Abstract
We show hardness of learning AES key from pairs of ciphertexts under the assumption of computational
closeness of AES to pairwise independence. The latter is motivated by the recent result of Liu et al. [1].
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1. Introduction and Main Result

Advanced Encryption Standard (AES) is one of the most popular encryption algorithms today.
It underlies the TLS 1.3 protocol, which is used by most modern websites, email services, instant
messengers, etc. The US National Security Agency uses AES to encrypt materials classified as
top secret.1 It would seem that with such a wide distribution there should be a strong guarantee
of the security of this algorithm. However, at the moment, results on the provable security of
AES against various cryptanalysis methods are scarce. This is primarily due to the fact that AES
is not based on any mathematically hard problem. On the contrary, this algorithm is a heuristic
proposed by Daemen and Rijmen [2] in the late 90s. It is noteworthy that since then no one has
managed to build a successful attack on the AES. State of the art attacks are only marginally
better than brute force: for example, Tao and Wu [3]’s biclique attack requires 2126 operations
to recover a 128-bit AES key (compared to 2128 operations with a brute force attack).
This lack of computationally feasible attacks on AES suggests that this method is indeed

secure, but as we noted above, we currently have very little understanding of its provable
security. Here we would like to highlight the recent work by Liu et al. [1], which shows for
two different inputs the 𝜖-closeness of the corresponding AES outputs to a uniform distribution
under the randomness of its key. This property, also referred to as 𝜖-closeness to pairwise
independence, implies AES’s resistance to linear and differential cryptanalysis. In this paper,
motivated by the result of Liu et al. [1], we show the resistance of AES to attacks based on
machine learning.

Let 𝐹 ∶ {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑛 be a permutation family, denoted as 𝐹k(x), where k ∈ {0, 1}𝑚
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is a key, and x ∈ {0, 1}𝑛 is an input. AES is a special case of 𝐹 with 𝑚 ∈ {128, 192, 256} and
𝑛 = 128. In this work, we prove the resistance of a permutation family 𝐹 to attacks based on
machine learning under the following

Assumption 1. For a pair of distinct inputs x and x′, and a uniformly sampled key k, the
distribution of the corresponding pair [𝐹k(x), 𝐹k(x′)] is computationally indistinguishable from
the uniform distribution of two random distinct 𝑛-bit strings [u,u′], i.e. for any poly(𝑛)-time
algorithm 𝐷

|Pr
k
[𝐷(𝐹k(x), 𝐹k(x′)) = 1] − Pr

u,u′
[𝐷(u,u′) = 1]| ≤ 1/poly(𝑛) (1)

Note that the result of Liu et al. [1] differs from Assumption 1 in that we require only the initial
key to be random, as is the case in the real AES.

We show that existence of a function computable in poly(𝑛) time that, given a pair of arbitrary
ciphertexts, can recover one of the keys consistent with those ciphertexts, would result in a
polynomial distinguisher that contradicts Assumption 1. Our main result is the following

Theorem 1. Let x and x′ be arbitrary distinct 𝑛-bit strings and assume there exists a function
ℎx,x′ ∶ {0, 1}2𝑛 → {0, 1}𝑛 such that

ℎx,x′(y,y′) = {
k, if ∃k ∶ [𝐹k(x), 𝐹k(x′)] = [y,y′]
0, otherwise

, (2)

and ℎx,x′ is computable in poly(𝑛) time. Then for a random uniform 𝑛-bit string k the distribution
of [𝐹k(x), 𝐹k(x′)] is computationally distinguishable from that of two uniformly sampled distinct
𝑛-bit vectors.

Remark. Under Assumption 1 there is no efficient learner for the class ℋ ∶= {ℎx,x′ ∣ x,x′ ∈
{0, 1}𝑛, x ≠ x′}, where each ℎx,x′ is given by (2). If there were such a learner, then by sampling
uniformly at random ℓ = poly(𝑛) keys {k𝑖}ℓ𝑖=1, and computing [𝐹k𝑖(x), 𝐹k𝑖(x

′)], we could generate
a labeled training sample of pairs ([𝐹k𝑖(x), 𝐹k𝑖(x

′)],k𝑖), which should suffice for our learner to
figure out an (𝜖, 𝛿) approximation (in PAC sense) of ℎx,x′ , which by Theorem 1 would result in
a polynomial time distinguisher that contradicts Assumption 1.

2. Proof of Theorem 1

Fix arbitrary distinct x,x′ ∈ {0, 1}𝑛, and let ℎx,x′ be defined by (2). Consider Algorithm 1,
which we denote 𝐷x,x′(y,y′) for brevity. Randomly pick k from a uniform distribution over
{0, 1}𝑛. Feeding 𝐹k(x), 𝐹k(x′) as input to 𝐷x,x′ , Line 1 produces 𝜅 such that 𝐹𝜅(x) = 𝐹k(x) and
𝐹𝜅(x′) = 𝐹k(x′). Thus Lines 2&3 give us

𝜉 ← 𝐹−1𝜅 (𝐹k(x)) = 𝐹−1𝜅 (𝐹𝜅(x)) = x.
𝜉′ ← 𝐹−1𝜅 (𝐹k(x′)) = 𝐹−1𝜅 (𝐹𝜅(x′)) = x′,

and algorithm outputs 1. Hence

Pr
k
[𝐷x,x′(𝐹k(x), 𝐹k(x′)) = 1] = 1 (3)



Algorithm 1 Distinguisher
Input: y,y′ ∈ {0, 1}𝑛 s.t. y ≠ y′
Parameter: x,x′ ∈ {0, 1}𝑛 s.t. x ≠ x′

1: 𝜅 ← ℎx,x′(y,y′)
2: 𝜉 ← 𝐹−1𝜅 (y)
3: 𝜉′ ← 𝐹−1𝜅 (y′)
4: if 𝜉 = x and 𝜉′ = x′ then
5: return 1.
6: else
7: return 0.
8: end if

Now randomly pick 𝑛-bit strings u, u′ without replacement from the uniform distribution over
{0, 1}𝑛 and feed them as input to 𝐷x,x′ . Intuitively, in this case the event 𝐴 ∶= {ℎx,x′(u,u′) ≠ 0}
has low probability. Let us upperbound the latter using the union bound:

Pr[𝐴] = Pr
u,u′

[ℎx,x′(u,u′) ≠ 0]

= Pr
u,u′

[∃𝜅 ≠ 0 ∶ [𝐹𝜅(x), 𝐹𝜅(x′)] = [u,u′]]

= Pr
u,u′

[⋃
𝜅≠0

[𝐹𝜅(x), 𝐹𝜅(x′)] = [u,u′])]

≤ ∑
𝜅≠0

Pr
u,u′

[[𝐹𝜅(x), 𝐹𝜅(x′)] = [u,u′]] (4)

Notice that [𝐹𝜅(x), 𝐹𝜅(x′)] is a fixed 2𝑛-bit string, and the joint p.d.f. of u,u′ has the form

Pr
u,u′

(u = 𝜐,u′ = 𝜐′) = 1
2𝑛(2𝑛 − 1)

, 𝜐 ≠ 𝜐′. (5)

Combining (4) and (5), we have

Pr
u,u′

[𝐴] ≤ ∑
𝜅≠0

1
2𝑛(2𝑛 − 1)

= 1
2𝑛
. (6)

When ℎx,x′(u,u′) = 𝜅 ≠ 0, we have 𝐹−1𝜅 (u) = x, 𝐹−1𝜅 (u′) = x′, and thus we can write

Pr
u,u′

[𝐷x,x′(u,u′) = 1 ∣ 𝐴] = 1 (7)

Now we turn to the event when ℎx,x′(u,u′) outputs the zero key. This happens if one of the
following events occurs:

𝐵 ∶= {ℎx,x′(u,u′) = 0} ∩ {[𝐹0(x), 𝐹0(x′)] = [u,u′]}
𝐶 ∶= {ℎx,x′(u,u′) = 0} ∩ {∄𝜅 ∈ {0, 1}𝑛 ∶ [𝐹𝜅(x), 𝐹𝜅(x′)] = [u,u′]}

By Eq. (5), we have

Pr
u,u′

[𝐵] ≤ Pr[[𝐹0(x), 𝐹0(x′)] = [u,u′]] = 1
2𝑛(2𝑛 − 1)

. (8)



In the event 𝐵, we have [𝐹−10 (u), 𝐹−10 (u′)] = [x,x′], and thus Alg. 1 produces 1 in this case, i.e.

Pr
u,u′

[𝐷x,x′(u,u′) = 1 ∣ 𝐵] = 1. (9)

In the event 𝐶, ℎ𝑆(u,u′) outputs 0 which is not a key that maps [x,x′] to [u,u′] under AES,
and we have

Pr
u,u′

[𝐷x,x′(u,u′) = 1 ∣ 𝐶]

= Pr
u,u′

[𝐹−10 (u) = x, 𝐹−10 (u′) = x′ ∣ 𝐶]

= Pr
u,u′

[u = 𝐹0(x),u′ = 𝐹0(x′) ∣ 𝐶] = 0 (10)

Now we can decompose the probability that 𝐷x,x′(u,u′) outputs 1 as follows:

Pr
u,u′

[𝐷x,x′(u,u′) = 1]

= Pr
u,u′

[𝐷x,x′(u,u′) = 1 ∣ 𝐴] ⋅ Pr
u,u′

[𝐴]

+ Pr
u,u′

[𝐷x,x′(u,u′) = 1 ∣ 𝐵] ⋅ Pr
u,u′

[𝐵]

+ Pr
u,u′

[𝐷x,x′(u,u′) = 1 ∣ 𝐶] ⋅ Pr
u,u′

[𝐶]. (11)

Plugging (6), (7), (9), (8), (10) into (11), we have

Pr
u,u′

[𝐷x,x′(u,u′) = 1] ≤ 1 ⋅ 1
2𝑛

+ 1 ⋅ 1
2𝑛(2𝑛 − 1)

+ 0

= 2𝑛 − 1 + 1
2𝑛(2𝑛 − 1)

= 1
2𝑛 − 1

. (12)

Finally, combining (3) and (12), we get

|Pr
k
[𝐷x,x′(𝐹k(x), 𝐹k(x′)) = 1] − Pr

u,u′
[𝐷x,x′(u,u′) = 1]|

≥ 1 − 1
2𝑛 − 1

,

which means that Alg. 1 is a poly(𝑛)-time distinguisher between the distribution of
[𝐹k(x), 𝐹k(x′)] and the distribution of two distinct random 𝑛-bit strings, and this concludes the
proof.

3. Empirical Verification of Assumption 1

Although Assumption 1 is motivated by the theoretical result of Liu et al. [1], to be more
convincing, we decided to test this assumption experimentally. To do this, we fixed two
arbitrary values x,x′ ∈ {0, 1}128, and generated uniformly at random ℓ keys k1, … ,kℓ. Feeding
x and x′ into AES-128 with keys {k𝑖}ℓ𝑖=1 we get a sample of pairs [𝐹k𝑖(x), 𝐹k𝑖(x

′)]ℓ𝑖=1. Next,
we test whether the distribution from which this sample was generated is 𝜖-close to uniform



Figure 1: Results of testing closeness of AES outputs to pairwise independence. Shaded region indicates
90% confidence band across 10 runs of the test for each of the bin sizes.

distribution over distinct pairs of 128-bit strings. In total there are 2128 ⋅ (2128 − 1) such pairs
and treating each of them as a bin is not tractable. Therefore, we split them into bins so that
the total number of bins allows for calculations on a regular desktop PC. Note that even after
this procedure, if the bins are not too large, the sample size ℓ is usually still much less than the
total number of bins 𝑚. And this means that classical tests based on the chi-square distribution
in this case are not suitable. Therefore, we used the test proposed by Paninski [4], which is
just suitable for the case ℓ ≪ 𝑚. Formally, let 𝑝(𝑗) be the true probability that a random vector
[𝐹k(x), 𝐹k(x′)] is in the 𝑗-th bin. Then to test the hypothesis

H0 ∶ 𝑝(𝑗) ≡
1
𝑚
, ∀𝑗 ∈ {1, … , 𝑚}

versus

H1 ∶
𝑚
∑
𝑗=1

|𝑝(𝑗) − 1
𝑚
| > 𝜖

we reject the null if

𝑇 ∶= ℓ (𝑚 − 1
𝑚

)
ℓ−1

− 𝐾1 > 𝑇𝜖,

where 𝑇 is the test statistic, 𝐾1 is the number of bins into which just one sample has fallen,
and 𝑇𝜖 is the critical value that depends on 𝜖 (we refer the reader to [4] for the details). In our
experiments, we set 𝜖 = 0.01, ℓ = 𝑚3/4, and vary 𝑚 from 210 to 225 with an exponential step. For
each 𝑚 we perform 10 runs, i.e. we take a sample of size ℓ 10 times, and compute the values of
test statistics for each run. The choice of x and x′ is specified in the code attached2. The results
2https://bit.ly/3AM77nf

https://bit.ly/3AM77nf


of evaluation are provided in Figure 1. The blue curve corresponds to the threshold value, and
the orange one indicates the average of 𝑇 accross 10 runs. The shaded band around the orange
curve is the 90% confidence band. As we see, the statistical test of [4] fails to reject the null,
especially when the number of bins grows, which supports Assumption 1.

4. Conclusion

Inspired by the recent result of Liu et al. [1] on statistical closeness of AES to pairwise indepen-
dence under randomness of all round keys, we make a relevant assumption on computational
closeness of AES to pairwise independence under randomness of just the initial key. Under
this assumption we prove the resistance of AES against attacks based on machine learning
algorithms that aim to recover AES key from pairs of ciphertexts. Our proof is elementary and
uses only college-level probability. We argue that Assumption 1 is realistic and is a reasonable
alternative to common cryptographic assumptions such as existence of a one-way function.
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