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Abstract

Ontology-mediated query answering is an extensively studied paradigm, where the conceptual knowledge

provided by an ontology is leveraged towards more enhanced querying of data sources. A major advantage

of ontological reasoning is its interpretability, which allows one to derive explanations for query answers.

Indeed, explanations have a long history in knowledge representation, and have also been investigated

for ontology languages based on description logics and existential rules. Existing works on existential

rules, however, merely focus on understanding why a query is entailed, i.e., explaining positive query

answers. In this paper, we continue this line of research and address another important problem, namely,

explaining why a query is not entailed under existential rules, i.e., explaining negative query answers.

We consider various problems related to explaining non-entailments from the abduction literature, and

also introduce new problems. For all considered problems, we give a detailed complexity analysis for a

wide range of existential rule languages and complexity measures.
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1. Introduction

Ontology-based query answering enhances querying of data sources with an ontology encoding

domain knowledge. The idea is to view the ontology and the user query as a composite

query, called ontology-mediated query (OMQ), and the task of evaluating such queries is called

ontology-mediated query answering (OMQA) [2]. OMQA is an important paradigm in knowledge

representation with many application areas. Description logics (DLs) [3] and existential rules [4,

5] are two families of languages commonly used to formulate ontologies.
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With the increasing demand for more explainable systems, explanations for OMQA have

recently seen a surge in interest. The most basic problem is explaining why a query is entailed,

i.e., explaining positive query answers. This problem has been studied for ontology languages

based on DLs [6, 7, 8, 9] and existential rules [10]. The main idea is viewing an explanation as a

set of database facts, which, together with the ontology, are sufficient to entail the query.

The complementary problem of explaining why a query is not entailed, i.e., explaining

negative query answers, has only been studied for DLs [11], where the problem is modeled as

an abduction task. Abduction has been studied for several formalisms, such as propositional

logic [12], logic programs [13], default theories [14], probabilistic temporal logic [15], and DLs

[16, 17, 11]. The closest work to ours is [11]: for a given query that is not entailed from the

knowledge base, find a set of assertions (avoiding inconsistencies) such that, when added to the

ABox, the entailment holds.

In our paper, we continue this line of research, and address the problem of explaining negative

answers in OMQA based on existential rules (rather than DLs) as underlying ontology languages.

We provide a precise complexity picture of various computational tasks for a wide range of

existential rule languages and under different complexity measures.

2. Preliminaries

We briefly recall some basics on existential rules from the context of Datalog
±

[5].

General. We assume a set C of constants, a set N of labeled nulls, and a set V of variables. A

term 𝑡 is a constant, null, or variable. We assume a set of predicates, each associated with an arity.

An atom has the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is an 𝑛-ary predicate, and 𝑡1, . . . , 𝑡𝑛 are terms. An

atom containing only constants is called fact. Conjunctions of atoms are also identified with

the sets of their atoms. An instance 𝐼 is a (possibly infinite) set of atoms defined over constants

and nulls. A database 𝐷 is a finite instance containing only constants. A homomorphism is a

substitution ℎ : 𝐷∪N∪V ↦→ 𝐷∪N∪V that is the identity on𝐷 and maps N to𝐷∪N. With

a slight abuse of notation, homomorphisms are applied also to (sets/conjunctions of) atoms. A

conjunctive query (CQ) 𝑄 has the form ∃Y𝜑(X,Y), where 𝜑(X,Y) is a conjunction of atoms

without nulls. The answer to 𝑄 over an instance 𝐼 , denoted 𝑄(𝐼), is the set of all |X|-tuples

t over 𝐷 for which there is a homomorphism ℎ such that ℎ(𝜑(X,Y)) ⊆ 𝐼 and ℎ(X)= t. A

Boolean CQ (BCQ) 𝑄 is a CQ ∃Y𝜑(Y), i.e., all variables are existentially quantified; 𝑄 is true

over 𝐼 , denoted 𝐼 |= 𝑞, if 𝑄(𝐼) ̸= ∅, i.e., there is a homomorphism ℎ with ℎ(𝜑(Y)) ⊆ 𝐼 .

Dependencies. A tuple-generating dependency (TGD) 𝜎 is an FO formula ∀X∀Y𝜙(X,Y) →
∃Z 𝑝(X,Z), where X, Y, and Z are pairwise disjoint sets of variables, 𝜙(X,Y) is a conjunction

of atoms, and 𝑝(X,Z) is an atom, all without nulls. Classes of TGDs are also known as existential

rules, or Datalog
±

languages in the literature. An instance 𝐼 satisfies 𝜎, written 𝐼 |= 𝜎, whenever

there exists a homomorphism ℎ such that ℎ(𝜙(X,Y)) ⊆ 𝐼 , then there exists ℎ′ ⊇ ℎ|X, where

ℎ|X is the restriction of ℎ on X, such that ℎ′(𝑝(X,Z)) ∈ 𝐼 . A negative constraint (NC) 𝜈 is a

first-order formula ∀X𝜙(X) → ⊥, where X ⊆ V, 𝜙(X) is a conjunction of atoms without

nulls, and ⊥ denotes the truth constant false . An instance 𝐼 satisfies 𝜈, written 𝐼 |= 𝜈, if there

is no homomorphism ℎ such that ℎ(𝜙(X)) ⊆ 𝐼 . A program (or ontology) is a finite set Σ of

TGDs and NCs. An instance 𝐼 satisfies Σ, written 𝐼 |= Σ, if 𝐼 satisfies each TGD and NC of Σ.



Table 1

Complexity of BCQ answering under existential rules [20].

ℒ Data fp-comb. ba-comb. Comb.

L, LF, AF in ac
0

np np pspace

S, SF in ac
0

np np exp

A in ac
0

np nexp nexp

G p np exp 2exp

F, GF p np np exp

WS, WA p np 2exp 2exp

For brevity, we omit the universal quantifiers in front of TGDs and NCs, and use the comma

(instead of ∧) for conjoining atoms. For a TGD class C, C⊥ denotes the formalism obtained by

combining C with arbitrary NCs.

The Datalog
±

languages ℒ we consider guaranteeing decidability are among the most fre-

quently analyzed in the literature, namely, linear (L) [5], guarded (G) [4], sticky (S) [18], and

acyclic TGDs (A), along with the “weak” (proper) generalizations weakly sticky (WS) [18] and

weakly acyclic TGDs (WA) [19], as well as their “full” (i.e., existential-free) proper restrictions lin-

ear full (LF), guarded full (GF), sticky full (SF), and acyclic full TGDs (AF), respectively, and full

TGDs (F) in general. We also recall the following further inclusions: L⊂G and F⊂WA⊂WS.

We refer to [20] for a more detailed overview.

Ontology-Mediated Query Answering. An ontology-mediated query (OMQ) is a pair (𝑄,Σ),
where 𝑄 is a query, and Σ is an ontology. Let ℒ be a Datalog

±
language. If Σ ∈ ℒ, we say that

(𝑄,Σ) is an ℒ-OMQ. For a database 𝐷 and an OMQ (𝑄,Σ), the set mods(𝐷,Σ) of models of

(𝐷,Σ) is the set of instances {𝐼 | 𝐼 ⊇ 𝐷 ∧ 𝐼 |= Σ}; 𝐷 entails (𝑄,Σ), denoted 𝐷 |= (𝑄,Σ), if

𝐼 |= 𝑄 for every 𝐼 ∈ mods(𝐷,Σ). A different way to define the existential rules semantics is via

the concept of the Chase (see, e.g., [18, 21]). We say that (𝐷,Σ) is consistent if mods(𝐷,Σ) ̸= ∅,

otherwise (𝐷,Σ) is inconsistent. Ontology-mediated query answering (OMQA) is the task of

deciding whether 𝐷 |= (𝑄,Σ) for a given database 𝐷 and an OMQ (𝑄,Σ). When OMQA(ℒ) is

restricted to the case where (𝐷,Σ) is consistent, we talk of consistent-OMQA(ℒ).

Following Vardi [22], the combined complexity of BCQ answering considers the database,

the set of dependencies, and the query as part of the input. The bounded-arity-combined (or

ba-combined) complexity assumes that the arity of the underlying schema is bounded by an

integer constant. The fixed-program-combined (or fp-combined) complexity considers the sets

of TGDs as fixed; the data complexity also assumes the query fixed. Table 1 summarizes the

complexity results for OMQA in the different TGD classes here considered; OMQA(ℒ) denotes

the OMQA problem when restricted over ontologies belonging to ℒ.

An OMQ (𝑄,Σ) is FO-rewritable, if there exists a query 𝑄Σ such that, for all databases 𝐷,

we have that 𝐷 |= (𝑄,Σ) iff 𝐷 |= 𝑄Σ. In this case, 𝑄Σ is an FO-rewriting of (𝑄,Σ). A class of

programs ℒ is FO-rewritable, if it admits an FO-rewriting for every query and program in ℒ. All

languages from Table 1 with ac
0

data complexity are FO-rewritable.



3. Explanations for Negative Query Answers

In this section, we formally define (minimal) explanations for negative query answers in OMQA

along with several computational problems for them.

Definition 1. Let 𝐷 be a database, let (𝑄,Σ) be an OMQ, with 𝐷 ̸|= (𝑄,Σ), and let 𝐻 be a

finite set of facts. An explanation for𝐷 ̸|= (𝑄,Σ) w.r.t.𝐻 is a subset𝐸 of𝐻 such that (𝐷∪𝐸,Σ)
is consistent and 𝐷 ∪𝐸 |= (𝑄,Σ). A minimal explanation (or MinEX ) for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻
is an explanation 𝐸 for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻 that is inclusion-minimal, i.e., no set 𝐸′ ⊊ 𝐸 is an

explanation for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻 .

We now introduce the problems. A constraint on the input of all the problems is that the

database 𝐷 and the ℒ-OMQ (𝑄,Σ) are such that 𝐷 ̸|= (𝑄,Σ).
The first problem is deciding whether a set of facts is a minimal explanation.

Problem: Is-MinEX̸
|=

(ℒ).

Input: A database 𝐷, an ℒ-OMQ (𝑄,Σ), a finite set of facts 𝐻 , and 𝐸 ⊆ 𝐻 .

Question: Is 𝐸 a MinEX for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻?

Another problem is deciding whether there exists a minimal explanation.

Problem: MinEX-Exists̸
|=

(ℒ).

Input: A database 𝐷, an ℒ-OMQ (𝑄,Σ), and a finite set of facts 𝐻 .

Question: Is there a MinEX for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻?

Two other problems are recognizing relevant and necessary facts. A fact 𝜓 is relevant (resp.,

necessary) for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻 iff 𝜓 appears in at least one (resp., in every) MinEX for

𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻 .

Problem: MinEX-Rel̸
|=

(ℒ).

Input: A database 𝐷, an ℒ-OMQ (𝑄,Σ), a finite set of facts 𝐻 , and a fact 𝜓.

Question: Is 𝜓 relevant for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻?

Problem: MinEX-Nec
̸|=

(ℒ).

Input: A database 𝐷, an ℒ-OMQ (𝑄,Σ), a finite set of facts 𝐻 , and a fact 𝜓.

Question: Is 𝜓 necessary for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻?

The problems introduced so far are those commonly studied in the context of abductive

reasoning and negative answer explanations (see, e.g., [11]). We here introduce two novel

problems. The first asks whether a set 𝐻 ′
of facts contains exactly all the relevant facts. This

set is particularly interesting, as 𝐻 ′
can be seen as a minimal over-approximation of all MinEXs,

i.e., for every MinEX 𝐸, it holds that 𝐸 ⊆ 𝐻 ′
, and 𝐻 ′

is the smallest set enjoying this property.

Problem: MinEX-AllRel̸
|=

(ℒ).

Input: A database 𝐷, an ℒ-OMQ (𝑄,Σ), a finite set of facts 𝐻 , and 𝐻 ′ ⊆ 𝐻 .

Question: Does 𝐻 ′
contain exactly all the relevant facts for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻?

The second novel problem that we consider asks whether a set 𝐻 ′
contains exactly all the

necessary facts. Interestingly, 𝐻 ′
can be seen as a maximal under-approximation of all MinEXs,

i.e., for every MinEX 𝐸, it holds that 𝐻 ′ ⊆ 𝐸, and 𝐻 ′
is the biggest set enjoying this property.



Table 2

Complexity of Is-MinEX
̸|=
(ℒ) andMinEX-Exists

̸|=
(ℒ).

Is-MinEX̸
|=
(ℒ) MinEX-Exists

̸|=
(ℒ)

ℒ Data fp-comb. ba-comb. Comb. Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ in p d
p

d
p

pspace in p np Σp

2 pspace

S⊥, SF⊥ in p d
p

d
p

exp in p np Σp

2 exp

A⊥ in p d
p

d
exp

d
exp

in p np p
nexp

p
nexp

G⊥ p d
p

exp 2exp np np exp 2exp

F⊥, GF⊥ p d
p

d
p

exp np np Σp

2 exp

WS⊥,WA⊥ p d
p

2exp 2exp np np 2exp 2exp

Problem: MinEX-AllNec̸
|=

(ℒ).

Input: A database 𝐷, an ℒ-OMQ (𝑄,Σ), a finite set of facts 𝐻 , and 𝐻 ′ ⊆ 𝐻 .

Question: Does 𝐻 ′
contain exactly all the necessary facts for 𝐷 ̸|= (𝑄,Σ) w.r.t. 𝐻?

4. Is-MinEX̸
|=
and MinEX-Exists̸

|=

We start with Is-MinEX̸
|=

(ℒ), i.e., deciding whether a given set of facts is a minimal explanation

for a negative query answer. The following theorem proves all upper bounds in Table 2. The

intuition behind the result is: deciding whether a set 𝐸 of facts is a MinEX requires to carry

out essentially three tasks: (1) deciding whether (𝐷 ∪𝐸,Σ) is consistent; (2) deciding whether

𝐷 ∪ 𝐸 |= (𝑄,Σ); and (3) deciding whether 𝐸 is inclusion-minimal.

Theorem 2. For any language ℒ here considered, if OMQA(ℒ) is in 𝒞 in the combined (resp.,

ba-comb., fp-comb., data) complexity, then Is-MinEX̸
|=

(ℒ) can be decided with a 𝒞 check and a

linear number of co-𝒞 checks in the combined (resp., ba-comb., fp-comb., data) complexity.

All the hardness results for Is-MinEX
̸|=

(ℒ) in Table 2 descend from the hardness of deciding

minimal explanations of positive query answers [10].

We now focus on MinEX-Exists
̸|=

(ℒ), i.e., deciding the existence of (minimal) explanations for

negative query answers. The following theorem proves all the upper bounds in Table 2, but the

np and p ones, that need tighter statements. Intuitively, to decide whether there exists a minimal

explanation for a negative query answer, it suffices to check whether there is any explanations

for the negative query answers, i.e., there is no need to double check the minimality.

Theorem 3. For any language ℒ here considered, if OMQA(ℒ) is in 𝒞 in the combined (resp.,

ba-comb., fp-comb., data) complexity, then MinEX-Exists̸
|=

(ℒ) is in np
𝒞

in the combined (resp.,

ba-comb., fp-comb., data) complexity.

In the fp-combined setting, for the Datalog
±

languages here considered, checking whether a

set of facts is consistent is feasible in p, because the negative constraints are fixed. This allows

to obtain the following tighter result.

Theorem 4. MinEX-Exists
̸|=

(ℒ) is in np in the fp-combined complexity for all the languages ℒ
here considered.



Table 3

Complexity of MinEX-Rel
̸|=
(ℒ) andMinEX-AllRel

̸|=
(ℒ).

MinEX-Rel
̸|=
(ℒ) MinEX-AllRel

̸|=
(ℒ)

ℒ Data fp-comb. ba-comb. Comb. Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ in p Σp

2 Σp

2 pspace in p d
p

2 d
p

2 pspace

S⊥, SF⊥ in p Σp

2 Σp

2 exp in p d
p

2 d
p

2 exp

A⊥ in p Σp

2 p
nexp

p
nexp

in p d
p

2 p
nexp

p
nexp

G⊥ np Σp

2 exp 2exp d
p

d
p

2 exp 2exp

F⊥, GF⊥ np Σp

2 Σp

2 exp d
p

d
p

2 d
p

2 exp

WS⊥,WA⊥ np Σp

2 2exp 2exp d
p

d
p

2 2exp 2exp

For FO-rewritable languages, the MinEXs for positive query answers when the query and the

program are fixed can be computed in polynomial time [10]. By using this property, we can

obtain the p upper bounds in Table 2.

Theorem 5. If ℒ is FO-rewritable language, then MinEX-Exists
̸|=

(ℒ) is in p in the data complexity.

For the hardness results, the np-hardness results in the data complexity are via a reduc-

tion from Sat; the hardness results in the fp-comb., ba-comb., and combined complexity,

but the Σp

2-hardness and the p
nexp

-hardness, are obtained via a reduction from OMQA(ℒ) to

MinEX-Exists
̸|=

(ℒ); the Σp

2-hardness and the p
nexp

-hardness results are shown, respectively, via

reductions from QBF validity and from the problem ETP [23]: given a triple (𝑚,TP1,TP2),
where 𝑚 is a number in unary, and TP1 and TP2 are two tiling problems for the exponential

square 2𝑛 × 2𝑛, decide whether, for all initial tiling conditions 𝑤 of length 𝑚, TP1 has no

solution with 𝑤 or TP2 has a solution with 𝑤.

5. MinEX-Rel̸
|=
andMinEX-AllRel

̸|=

We start by looking at the problem MinEX-Rel̸
|=

(ℒ) of deciding whether a fact is relevant. The

following theorem proves all the upper bounds in Table 3, but those in the data complexity for

FO-languages. Intuitively, to decide whether 𝜓 is relevant, it suffices to guess a set 𝐸 of facts

containing 𝜓 (feasible in np), and then, via an oracle call, check that 𝐸 is a minimal explanation.

Theorem 6. For any language ℒ here considered, if Is-MinEX̸
|=

(ℒ) is in 𝒞 in the combined

(resp., ba-comb., fp-comb., data) complexity, then MinEX-Rel
̸|=

(ℒ) is in np
𝒞

in the combined (resp.,

ba-comb., fp-comb., data) complexity.

By a consideration similar to that for Theorem 5 we obtain the following.

Theorem 7. If ℒ is FO-rewritable language, then MinEX-Rel̸
|=

(ℒ) is in p in the data complexity.

All the hardness results for MinEX-Rel
̸|=

(ℒ) in Table 3 descends from the hardness of deciding

the fact relevance in MinEXs of positive query answers [10].

We now analyze the problem MinEX-AllRel̸
|=

(ℒ) of deciding whether a set contains all

and only the relevant facts. The following theorem proves all the upper bounds in Table 3.



Table 4

Complexity of MinEX-Nec
̸|=
(ℒ) andMinEX-AllNec̸

|=
(ℒ).

MinEX-Nec̸
|=
(ℒ) MinEX-AllNec̸

|=
(ℒ)

ℒ Data fp-comb. ba-comb. Comb. Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ ≤ p co-np Πp

2 pspace ≤ p d
p

d
p

2 pspace

S⊥, SF⊥ ≤ p co-np Πp

2 exp ≤ p d
p

d
p

2 exp

A⊥ ≤ p co-np p
nexp

p
nexp ≤ p d

p
p
nexp

p
nexp

G⊥ co-np co-np exp 2exp d
p

d
p

exp 2exp

F⊥, GF⊥ co-np co-np Πp

2 exp d
p

d
p

d
p

2 exp

WS⊥,WA⊥ co-np co-np 2exp 2exp d
p

d
p

2exp 2exp

Intuitively, 𝐻 ′
is the set of all and only the relevant facts iff all facts in 𝐻 ′

are relevant and all

facts outside 𝐻 ′
are not relevant.

Theorem 8. For any language ℒ here considered, if MinEX-Rel
̸|=

(ℒ) is in 𝒞 in the combined (resp.,

ba-comb., fp-comb., data) complexity, then MinEX-AllRel
̸|=

(ℒ) can be decided with a 𝒞 check and

a co-𝒞 in the combined (resp., ba-comb., fp-comb., data) complexity.

As for the hardness, the d
p
-hardness and the d

p

2-hardness results are shown via reductions,

respectively, from the Sat-Unsat problem and its generalization to the second level, i.e., decide

the validity of two QBF formulas Φ = ∃𝑋∀𝑌 ¬𝜑(𝑋,𝑌 ) and Ψ = ∀𝑋∃𝑌 𝜓(𝑋,𝑌 ) (to simplify

the reduction, 𝑋 and 𝑌 are assumed to be the same in 𝜑 and 𝜓 [24]). The remaining hardness

results are obtained via a reduction from MinEX-Exists̸
|=

(ℒ) to MinEX-AllRel̸
|=

(ℒ).

6. MinEX-Nec̸
|=
andMinEX-AllNec

̸|=

We now focus on the problem MinEX-Nec̸
|=

(ℒ) of deciding whether a fact is necessary. The

following theorem proves all upper bounds in Table 4, but the co-np and p ones. Intuitively, we

can disprove that a fact 𝜓 is necessary by checking that there is a (non-necessarily minimal)

explanation excluding 𝜓.

Theorem 9. For any language ℒ here considered, if OMQA(ℒ) is in 𝒞 in the combined (resp.,

ba-comb., fp-comb., data) complexity, then MinEX-Nec̸
|=

(ℒ) is in co-(np𝒞) in the combined (resp.,

ba-comb., fp-comb., data) complexity.

By a consideration similar to that for Theorem 4 we obtain the following.

Theorem 10. For any language ℒ here considered, MinEX-Nec
̸|=

(ℒ) is in co-np in the fp-combined

complexity.

By a consideration similar to that for Theorem 5 we obtain the following.

Theorem 11. If ℒ is FO-rewritable language, then MinEX-Nec
̸|=

(ℒ) is in p in the data complexity.



The hardness results of MinEX-Nec
̸|=

(ℒ) can be proven via a reduction from the complement

of MinEX-Exists̸
|=

(ℒ) to MinEX-Nec
̸|=

(ℒ).

We now study the problem MinEX-AllNec
̸|=

(ℒ) of deciding whether a set contains all and

only the necessary facts. The following theorem proves all upper bounds in Table 4. Intuitively,

𝐻 ′
is the set of all and only the necessary facts iff all facts in 𝐻 ′

are necessary and all facts

outside 𝐻 ′
are not necessary.

Theorem 12. For any language ℒ here considered, if MinEX-Nec̸
|=

(ℒ) is in 𝒞 in the combined

(resp., ba-comb., fp-comb., data) complexity, then MinEX-AllNec
̸|=

(ℒ) can be decided by a check

in 𝒞 and a check in co-𝒞 in the combined (resp., ba-comb., fp-comb., data) complexity.

As for the hardness, the d
p
-hardness and the d

p

2-hardness results are shown via reductions

from the Sat-Unsat problem and its second level generalization (see above), respectively.

The remaining hardness results are proven via a reduction from MinEX-Exists̸
|=

(ℒ) to the

complement of MinEX-AllNec
̸|=

(ℒ).

7. Summary and Outlook

We have addressed the problem of explaining why a query is not entailed in OMQA under

existential rules. We have conducted a detailed complexity analysis for various explanation

problems, for a wide range of existential rule languages and under different complexity measures.

Our work on explaining OMQA has been extended to the inconsistent setting [25, 26] and to

preferred explanations [27]. The explanation notion, in line with the inconsistent setting above,

can also be extended to the cases of cardinality-based repairs [28], generalized repairs [29], pre-

ferred repairs [30, 31], probabilistic approaches [32, 33], and repairs based on value updates [34].

Inspired by the idea of exploring preferences over explanations, we can also consider how more

elaborate preference models can be included in this framework [35, 36, 37, 38]. Another interest-

ing direction for future work is actually computing all explanations or relevant/necessary facts.
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