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Abstract
The technological revolution brought by the internet, high performance computing, and artificial intel-
ligence has fundamentally changed and continues to alter the landscape of finance. These innovations,
if used with a malicious intent, can seriously destabilize the financial market. For this reason, counter-
measures in the form of new detection methods are needed. In this study, we propose a novel detection
framework that uses a model of fraudulent behavior to detect fraud from observed data. A similarity
measure is defined to decide if the recorded actions of a monitored trader are matching actions of the
fraudulent agent. We illustrate the framework on a simple form of manipulative trading in a simulation
environment of a market consisting of two exchanges. This demonstrative case study is inspired by a
price manipulation scheme that occurred on the Bitcoin market in 2017/18, where such simple forms
of manipulation were observed. Simulation results outline vulnerabilities in markets, where uneven
distribution of liquidity is present, as this can be exploited by pump-and-dump scheme.
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1. Introduction

Market fraud has been and continues to be a pressing issue of modern trading systems. Due
to relatively low number of observed instances and often high complexity of the fraudulent
behavior, the intrusion of the market is a challenging task to detect. Fraud can have wide
consequences on every socio-economical system. For instance, the issue of market manipulation
is especially present on cryptocurrency market [1] and other relatively immature markets.
Although advances using statistical or modern machine learning solutions for the purpose of
monitoring the market behavior have been achieved [2], the question of accurate and cost-
effective market monitoring remains unsolved.

In this study, we aim to address the question of detection on a more basic level. In principle,
every fraud is a manifestation of a behavioral scheme, and as such needs to be approached in
this way by considering a specific behavioral model. Agent-based simulations of economic
and social systems are gaining prominence in economy and finance. One might wonder if
agents designed to violate norms in these models could potentially be used to aid fraud analysts.
Moreover, to design suitable policies by accessing consequences of fraud on the market using
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the simulation environment. Assuming availability of a model of a fraudulent entity, we focus
in this study on the research question of how can such a model be applied for fraud detection.

1.1. Related research

Financial fraud has been intensely studied through decades [3]. In addition to tax evasion,
money laundering, or credit car fraud, the interest in study of market manipulation [4] has
increased due to the rise of pump-and-dump schemes on the cryptocurrency market [5]. In the
area of fraud detection, models based on deep neural networks appear to be successful [2], as
they are able to model correlations in higher dimensions. Although the performance of these
models on certain validation datasets was relatively high, the issue of explainability and the
legal groundings of these models remains a significant drawback in wider applicability in the
socio-economic domain.

Agent-based models appear to be a suitable tool for compliance modelling [6]. In the economic
setting, agent-based models are more flexible compared to traditional mathematical models,
because they can model various nuanced psychological aspects of individual traders [7, 8]. These
become relevant once an agent with the intent to take advantage of these aspects enters the
market. Application in the area of financial crime was limited to evaluation [9], or generation
of synthetic data [10]. Detection algorithms have been implemented as part of the agent-based
model [11], or in a distributed detection setting [12], but to our knowledge, no work has been
done in exploring how the model of a fraudulent agent can be used directly for detection of
fraudulent behavior.

1.2. Contribution

The goal of this study is to illustrate how a model of a fraudulent agent can be used to detect
manipulative trading from an observed sequence of trading actions, and motivate further
research on agents learning noncompliant behavior from a simulation environment. We discuss
how this methodology can be integrated into current practice of market surveillance, assuming
that a model of a noncompliant agent is already available.

The secondary contribution of this study is the implementation of a pump-and-dump market
manipulation scheme in a simulated market environment, that was observed on the Bitcoin
market in 2017/18 [13]. Recent agent-based analysis [14] suggested that the manipulation
scheme takes advantage of uneven distribution of liquidity, and the presence of trend-following
traders. We present new computational evidence that these two vulnerabilities of the Bitcoin
market significantly contributed to the success of the price manipulation efforts.

2. Simulation-detection framework

Consider a socio-economic system where traders can exchange their assets, and there exists
a rule describing what type of behavior is considered malicious. This rule is not enforced
unless a detection method is present to identify noncompliant behavior. Assume a model of this
system calibrated to observed data to reproduce standard behavior of the real system. In this
system model, a parametric model of noncompliant agent is included, together with a similarity



measure that measures the similarity between the fraudulent agent and observed data of the
monitored trader. Depending on the similarity, the system monitoring authority can decide to
intervene.

2.1. Class of noncompliant behaviors

Let 𝜋 denote the policy function of the fraudulent agent. The agent observes the current state
of the system, denoted by vector s. The state refers to publicly available variables, eg. public
information on a stock exchange, or possibly transactions on a blockchain.

The model of the fraudulent agent will typically have a number of parameters 𝜃, that define
a subclass of fraud among the class of fraudulent behaviors, eg. a pump-and-dump scheme with
parameters defining the frequency or amount of purchased assets, a time threshold after which
the price is dumped etc. Note that these parameters are not coefficients of a statistical model, eg.
a Bayesian network, or a neural network. This means the 𝜋𝜃 defines a class of noncompliant
behaviors parametrized with 𝜃, where for each choice 𝜃 the behavior remains noncompliant.1

2.2. Similarity score of fraudulent agent

Let us consider a window of observations 𝐽 , indexing the set of all states 𝑆 = {s𝑗 |𝑗 ∈ 𝐽} and
the set 𝑑𝑎𝑡𝑎 that denotes the set of actions 𝑎𝑗 taken by the monitored trader for 𝑗 ∈ 𝐽 . The
similarity measure between 𝑑𝑎𝑡𝑎 of the monitored trader and the fraudulent agent 𝜋𝜃 for given
observed states of the system is defined as:

𝑠𝑖𝑚[𝑑𝑎𝑡𝑎, 𝜋𝜃 | 𝑆] =
1

|𝐽 |

|𝐽 |∑︁
𝑗=1

𝑚[𝑎𝑗 , 𝜋𝜃(s𝑗)] (1)

where 𝑚 is a matching function between each action of the monitored trader and fraudulent
agent. This measure needs to be defined by (human) expert, and may depend on application
domain. We provide an example of the matching function later. For now, let us assume that
the function 𝑚 is equal to 1 if the observed action of the monitored trader and the supposed
action of the fraudulent trader are exactly the same, and is equal to zero if they are as different
as possible. Note that the window expressed through 𝐽 needs to be wide enough to include all
relevant evidence. If the fraudulent behavior is not entirely contained in the window, the score
still provides a valid indication of suspicious activities.

2.3. Inference

The fraudulent agent observes the observable state of the system s𝑡 at time 𝑡. The policy function
𝜋𝜃 maps the observable state and the internal attributes of the agent into an action. Since 𝜋𝜃
defines a class of noncompliant behaviors, one would be interested to find such parameters 𝜃
that maximize the probability that actions of some monitored trader correspond to the actions
of the fraudulent agent, ie. to localize the instance in the set {𝜋𝜃|𝜃 ∈ Θ} most similar to the

1Note that not all choices of 𝜃 need to be profitable for the agent.



monitored trader, where Θ is a feasible region. In other words, we solve the optimization
problem

𝜃* = argmax
𝜃∈Θ

𝑠𝑖𝑚[𝑑𝑎𝑡𝑎, 𝜋𝜃 | 𝑆] (2)

Compared to standard statistical models, where likelihood function is of central importance,
what we gain by developing a causal model we loose during the inference process. Since
agent-based models do not necessarily come with a mathematical functional expression, the
inference needs to be performed without this assumption. The only assumption we make is the
possibility to sample (execute) the model. So-called likelihood-free methods were developed to
perform inference on simulation-based models [15]. These methods typically require a similarity
measure between observed and generated data, and a prior distribution defined over the feasible
region Θ from which parameter values 𝜃 are sampled.

2.4. Model-predictive intervention

Once a solution to equation (2) is found, the (human) compliant analyst can decide to intervene
or not. This would be done by comparing the similarity measure (1) to a predefined intervention
threshold 𝛿. During the inference process, an implicit assumption is made that 𝜋 is reasonably
close to a true model of considered fraudulent behavior. This assumption is highly relevant for
calibration of an intervention threshold for the market surveillance system, because a model of
noncompliance that produces high similarity score for every observed behavior would have too
high false positive rate. For this reason, every model needs to be validated on data generated in
the simulation model of the socio-economic system, or on observational data of the system.

Performing monitoring of a trader can be done using the whole data history of the trader,
or in some predefined window. In our framework, with a model of fraudulent agent available,
it is possible to make rolling calculation of the score for the best estimated parameters. If the
fraudulent behavior is in progress, it is very common that there is insufficient evidence for
authorities to take action, ie. for an extended amount of time the behavior can be, although
suspicious, but still, fully compliant. For a realistic model of the fraudulent agent and correctly
defined similarity measure with calibrated intervention threshold value, it is desired that the
similarity score will be high for suspicious behavior and will surpass the threshold value only
after the fraudulent scheme is approaching its final steps. Ideally, right before the scheme
concludes is where it is needed to intervene. If a model of compliant behavior that is similar
to fraudulent behavior is available, then one can set 𝛿 to be higher than the similarity score
produced by the compliant behavior, but is lower than the score of the fraudulent behavior.
This can prevent unfair interventions on individuals that are compliant, but only slightly differ
from fraudulent instances of a particular fraud scheme.

3. Modelling pump-and-dump scheme

The prototypical example used to illustrate the proposed framework is based on a real event of
market manipulation that occurred on the Bitcoin market in 2017/18. This case was initially
analyzed in [13], where clustering methods were used to identify relevant addresses, and
statistical methods were used to provide evidence that flow of cryptocurrency through these



addresses was highly correlated with price increase. The market manipulator had access to
virtually unlimited amount of Tether, a so-called stable coin supposedly backed by dollar, that
was issued by Tether limited and was used to create artificial demand on the Bitcoin market.
This case of market manipulation was in-depth investigated in [14], where an order book market
model was developed with several simple trading agents, including a market manipulator agent.
Since Tether limited was bound to release audit statements proving that every issued Tether is
backed by one dollar, the manipulation scheme had to engage in massive selling at least once
per month, although evidence suggested that this liquidation process occurred roughly every
two months. This market behavior was likely even more impactful due to uneven distribution
of liquidity on various exchanges, so that the price pumping on a less liquid exchanger could
propagate through the whole system. Conversely, dumping the assets on a more liquid exchange
would result in a lower market impact.

Taking the discussion above into consideration, we develop a model of an agent executing a
pump-and-dump scheme in a simulation model of a market. In order to test if uneven distribution
of liquidity plays a significant role, we consider a model of two exchanges, where one exchange
is less liquid. Since the illustrated methodology is independent of the Bitcoin market and can be
applied to any type of trading system, we will refrain from talking specifically about Bitcoins,
and will talk about the assets in general.

3.1. Market model and response agents

We consider a simple order book market model based on [16]. An order book is a trading
mechanism with a bid side and an ask side that lists buy and sell orders, respectively. Each order
consists of limit price, asset amount to be bought or sold, and an expiration date. A trading day
𝜏 is discretized into 𝑇𝑡𝑖𝑐 time steps during which each agent can issue a buy or sell order. Let us
denote by 𝑝(𝑡) the price of the traded asset and 𝑂𝑡 the state of the order book at the time step 𝑡.
In our model, two orders are matched in the order book if the limit price of the top buy order
is higher or equal to the limit price of the top sell order. The new asset price on the exchange
is then calculated as an average between the two limit prices. To extend the idea to a market
consisting of two exchanges, the market price 𝑝(𝑡) of the asset at time 𝑡 is calculated as an
average weighted by daily traded volume of both exchanges 𝑝(𝑡) = 𝑣1(𝑡)𝑝1(𝑡)+𝑣2(𝑡)𝑝2(𝑡)

𝑣1(𝑡)+𝑣2(𝑡)
, where

𝑣1(𝑡), 𝑝1(𝑡) and 𝑣2(𝑡), 𝑝2(𝑡) are daily volume-price pairs on exchange one and two, respectively.
Two types of so-called response agents are trading in the simulation environment. These

agents are intended to model the response to the manipulation of the price. The simplest type of
agent is a Random agent. This agent issues a sell or buy order with equal probability every time
step on each exchange. At both exchanges 𝑖 = 1, 2 the random agent calculates the limit price
as 𝑝(𝑡− 1) ·𝑁(𝜇𝑖, 𝜎𝑖) for sell orders and 𝑝(𝑡−1)

𝑁(𝜇𝑖,𝜎𝑖)
for buy orders, where 𝑝(𝑡− 1) is the market

price from previous time step. The asset amount is a random value drawn from an exponential
distribution with rate parameter 𝜆𝑒 and the expiration time is drawn from a Poisson distribution
with parameter 𝜆𝑝. The values of all parameters are listed in Table 1. The second type of agent
trading on both exchanges is Chartist agent. This agent is active with 0.5 probability. Chartist
issues a buy order if the current price 𝑝(𝑡− 1) is higher than 7-day market price average and
sells otherwise. All other parameters are the same as for the random agent.

Parameter values of these agents are listed in Table 1. Note that due to different values of



Table 1
Parameters of the agents. The first five parameters belong to the response agents, 𝜆𝑒 belongs both to
the fraudulent and the response agents, and the last three parameters belong to the fraudulent agent
only. The response agents’ parameters are similar as in the initial study [14], where they were calibrated
on market data.

Parameter 𝜇1 𝜇2 𝜎1 𝜎2 𝜆𝑝 𝜆𝑒 𝑝𝐹𝐴 ℎ 𝑢𝑚𝑎𝑥

Value 1.01 1.05 0.01 0.05 1.0 5.0 0.20 55 0.1

pair 𝜇1, 𝜎1 compared to pair 𝜇2, 𝜎2, there is lower agreement about the price of the asset on
the second exchange.

3.2. Fraudulent agent

The observable state of the system is defined by a vector s(𝑡) = (𝑂1(𝑡), 𝑂2(𝑡), 𝑝1(𝑡), 𝑝2(𝑡), 𝑝(𝑡)),
where 𝑂1(𝑡) and 𝑂2(𝑡) are order books of exchanges one and two, respectively. The fraudulent
agent observes the state s(𝑡) and makes a decision according to policy 𝜋𝜃. The function 𝜋𝜃
implements a simple trade-based pump-and-dump scheme that takes advantage of uneven
distribution of liquidity on exchanges. The agent performs a sequence of aggressive buy orders
such that the price impact due to low liquidity is maximized. At time ℎ the price of the asset is
dumped by a sequence of sell orders, but this time issued so that the price impact is minimized
by targeting the more liquid ask order book. Two attributes of the agent are the capital balance
𝐶(𝑡) and the amount of assets 𝐴(𝑡) at time 𝑡. The agent aims to execute a pump-and-dump
scheme such that the capital balance is positive and the amount of assets is zero.

In more detail, the agent decides to issue a buy order before day ℎ with probability 𝑝𝐹𝐴.
The limit price, the amount of buy orders, and the expiration time is decided as in the case
of random agent. To choose which exchange to target, the fraudulent agent will estimate the
liquidity by calculating the immediate cost of buying or selling 10 units of its asset. If the agent
is buying, then the less liquid exchange is targeted. Conversely, the agent is selling on more
liquid exchange. The selling process is initiated after time threshold ℎ is reached. At each time
step a sell order is issued of 𝑈 · 𝐴(𝑡) asset amount, where 𝑈 is a random variable uniformly
distributed on the interval [0, 𝑢𝑚𝑎𝑥].

In the simulation environment, parameters can be identified that make the manipulation
scheme profitable in given market conditions. Chosen parameters for the fraudulent agent
are listed in Table 1. An example of market price influenced by agent’s actions is shown on
Figure 1a.

3.3. Action matching function

Consider a trader being monitored in the real market producing a sequence of trading actions.
The actions recorded into the set 𝑑𝑎𝑡𝑎 have a form: (order type, exchange ID, asset
amount, limit price, expiration time). By inspecting 𝜋𝜃 , it is easy to see that certain
parameters of the agent do not have to be estimated using likelihood-free inference. For example,
by having data of the monitored trader and known distributions used by the policy 𝜋𝜃 the



information about the distribution of limit prices or expiration times can be obtained using
standard distribution estimation methods, thus we omit measuring similarity with respect to
these parameters.2

Let 𝑎𝜋 = 𝜋𝜃(s𝑡) be the action of the fraudulent agent given observable state s𝑡 at time 𝑡, then
we define:

• Order type match: 𝐼𝑜𝑡(𝑎, 𝑎𝜋) = 1 if the order types of the monitored trader and the
fraudulent agent are equal; zero otherwise.

• Exchange match: 𝐼𝑒𝑥(𝑎, 𝑎𝜋) = 1 if the exchange choice of the monitored trader and the
fraudulent agent are equal; zero otherwise.

• Amount distance: 𝑔(𝑥𝑎, 𝑥𝑎𝜋) = 𝑒−(𝑥𝑎−𝑥𝑎𝜋 )
2

for the asset amount components 𝑥𝑎 and
𝑥𝑎𝜋 of 𝑎 and 𝑎𝜋 , respectively.

Summing up the above quantities, the action matching measure is defined as 𝑚(𝑎, 𝑎𝜋) =
𝑤𝑜𝑡𝐼𝑜𝑡(𝑎, 𝑎𝜋)+𝑤𝑒𝑥𝐼𝑒𝑥(𝑎, 𝑎𝜋)+𝑤𝑔𝑔(𝑥𝑎, 𝑥𝑎𝜋), where 𝑤 = (𝑤𝑜𝑡, 𝑤𝑒𝑥, 𝑤𝑔) are weights associated
with each summand. These weights can be used by the analyst if some patterns are suspected to
be more significant. The sequence of orders and selected exchanges provide more information
in our specific example, therefore we set the wight vector to 𝑤 = (0.4, 0.4, 0.2).

3.4. Inference using Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) [17] is a likelihood-free method capable to estimate
parameters of a model if the likelihood function is unknown. The main idea of ABC is based on
Bayes theorem 𝑃 (𝜃|𝐷) = 𝑃 (𝐷|𝜃)

𝑃 (𝐷) 𝑃 (𝜃) where the prior 𝑃 (𝜃) is chosen by selecting a particular
distribution 𝐺. Since the likelihood is not possible to evaluate, and we are only interested in
the relative posterior plausibilities of 𝜃, the normalizing constant 𝑃 (𝐷) can be also ignored.
All ABC methods approximate the likelihood by simulations that are compared to observed
data. The main premise of the method can be therefore expressed as 𝑃 (𝜃|𝐷) ≃ 𝜌𝜖(𝐷, �̂�)𝐺(𝜃)
where �̂� is a sample of considered parametric model. The model is executed for parameters
drawn from the prior distribution 𝐺, and the simulation outcome is compared to observed data
using a distance measure 𝜌 for a given acceptance threshold 𝜖.

In our case, the observed data are 𝐷 := 𝑑𝑎𝑡𝑎. The simulated data are obtained by evaluation
𝜋𝜃(s). The prior distribution 𝐺 is defined over the feasible set Θ by the domain expert. Since the
similarity measure is defined to be equal to the (maximum) value one when the observed and
generated action are identical, we set 𝜌 := 1− 𝑠𝑖𝑚[𝑑𝑎𝑡𝑎, 𝜋𝜃|𝑆]. As discussed in the previous
subsection, some parameters of the fraudulent agent are excluded from the likelihood free
inference, and therefore we let 𝜃 = (ℎ, 𝑢𝑚𝑎𝑥, 𝜆𝑒).

We use the simplest form of ABC algorithm, which is the rejection sampler. To infer the
parameters of the fraudulent agent, the algorithm consists of four simple steps:

1. Sample 𝜃 from prior distribution 𝐺(𝜃).
2. Simulate a dataset �̂� using 𝜋𝜃(𝑆).

2We omit information about these parameters completely only for the sake of simplifying the example, since the
focus is on the likelihood free inference. In practice, the information should be included in the scoring function,
possibly with smaller impact depending on prior expectation of its significance.



3. If 𝑠𝑖𝑚(𝑑𝑎𝑡𝑎, �̂�|𝑆) > 𝜖, accept 𝜃, and reject otherwise.
4. Return to step 1 unless termination criterion is met.

The termination of the algorithm is ensured by defining maximum number of iterations. At the
end of the sampling process, histograms of parameter values are generated.

4. Results

Applying inference to random, chartist, and fraudulent agent By solving (2) for each
agent, the parameters produced similarity scores much higher for the fraudulent agent than for
the random agent and the chartist agent. Therefore, the model can successfully differentiate
between fraudulent and non-fraudulent agents, which provides baseline evidence that the model
and the similarity measure are correctly defined3. In the case of the fraudulent agent, the ABC
algorithm converged for threshold 𝜖 = 0.8 only in parameter ℎ, while the distributions of
parameters 𝑢𝑚𝑎𝑥 and 𝜆𝑒 stayed roughly uniform, which was confirmed by low p-values of
Kolmogorov-Smirnov test for uniformity. The parameters that did not converge for predefined
number of iterations suggest that the amount distribution parameter is not an important
component of the similarity measure, as was initially suspected.

(a) Manipulated market price (b) Similarity to pump-and-dump scheme

Figure 1: The market price on the left resembles a typical pump-and-dump pattern. On the right, the
similarity estimates of the synthetic monitored trader to a fraudulent agent during the last days of the
pump-and-dump scheme.

Deciding the intervention threshold In general, assuming that we know what type of
compliant behavior is the most similar to the fraudulent agent, we can determine the threshold
values by computational experiment. Any pump-and-dump scheme has a minimum number of

3Clearly, in practice this testing would be done on real data of both compliant and fraudulent traders, but can be
also tested on various models of compliant agents to investigate which decision mechanisms tend to trigger false
positives.



days the price pumping process takes. Since the similarity measure (1) is an average over the
number of recorded actions, we can set without loss of generality ℎ = 55 days4.

Consider a scenario where each day parameters of the monitored trader are estimated. Let
us set 𝜖 to be the 95th percentile of the scoring distribution. On Figure 1b we can see the
average value of the similarity score calculated by sampling from the posterior. One can see
that the values of the score tend to be higher after the price dumping process starts on day 55.
Obviously, the intervention threshold 𝛿 should be higher than the similarity score of an agent
that is unreasonably buying assets on less liquid exchange, which an example of a compliant
agent similar to the fraudulent agent. Once the monitored trader starts the price dumping
process, the threshold 𝛿 should be low enough to identify the similarity as significant enough
to trigger a response from the authorities. This is why we set 𝛿 = 0.89, as can be observed
on Figure 1b. Until day 54 the trader appears to be compliant, but on the 55th day the selling
process stars, which means pump-and-dump scheme ought to be detected. The red line is the
value of intervention threshold 𝛿. To prevent false alarms, the detection threshold is set slightly
higher than the score of the compliant behavior. Credible intervals give us information about
the certainty of observed fraudulent behavior. For instance, the monitored trader on day 54 has
slightly less than 50% chance to be fraudulent, but on 55th day the certainty is much higher.

5. Conclusion

Design of agents capable to conduct a specific type of behavior in a real or simulated environment
is a central research question of artificial intelligence. In our study, we further motivate this
research by proposing a framework in which the model of a fraudulent agent can be used for
fraud detection. The proposed framework is illustrated on a market model where an agent
executing a simple pump-and-dump scheme is present. We use the agent to generate synthetic
data, and then to test the framework using the same model for detection. We also demonstrate
how the intervention threshold used by the market monitoring authorities can be decided by
considering similar but compliant sequences of actions. Moreover, our market model exemplifies
the vulnerability of markets where uneven distribution of liquidity is present on exchanges,
and provides additional evidence that this uneven distribution can be used to enhance pump-
and-dump schemes. Although this study was focused on trade-specific fraud, the proposed
methodology seems to be applicable to different areas. Abstraction of the methodology to
general norm learning agents along with the extension to coalition forming can be regarded as
future research directions.
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