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Abstract 
Extremal properties of graphs CD(n, q) and A(n, q) can be efficiently used for the construction 

of LDPC codes and stream ciphers. Recently pseudorandom walks on these graphs were used 

for the constructions of key agreement protocols of postquantum cryptography. We use these 

graphs to introduce a new algorithm for the generation of unperiodical infinite string of field 

characters. Its input is selected as a finite “seed” of elements of a corresponding finite field. 

This algorithm has postquantum stability i.e., the adversary has to deal with the intractable 

problem of postquantum cryptography to get the seed. We combine this algorithm with the 

postquantum secure protocol of noncommutative cryptography for the elaboration of collision 

seed. This combination can be used for one-time pad delivery of pseudorandom or random 

sequence from one person involved in protocol to another one and constructions of new MACs. 

We introduce the generalization of these algorithms for the case of a general finite commutative 

ring. 
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1. Introduction 

In March 2021 it was announced that the 

prestigious Abel Prize will be shared by 

A. Wigderson and L. Lovasz. They contribute 

valuable applications of the theory of Extremal 

graphs [1, 2] and Expanding graphs [3] to 

Theoretical Computer Science. We have been 

working on applications of these graphs to 

Cryptography ([4, 5] and further references). 

The one-time pad is a practical implementation 

of the idea of absolutely secure encryption. A 

symbiotic combination of this encryption tool 

with key exchange Diffie–Hellman protocol was 

widely used. The appearance of the first versions 

of quantum computers and cryptanalysis of 

algorithms based on discrete logarithm problems 

demands a new algorithm of “post-quantum 

secure” generation of pseudorandom string S of 

characters of the chosen alphabet. Quantum 

technologies allow the production of genuine 

random string G of a chosen length. One-time pad 
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encryption of G with the key S will allow the safe 

delivery of string G from the correspondent to 

his/her partner [6–8]. 

In this paper, we use a sequence of known 

expanding graphs A(n, q) for the solution of 

described above task in the case of alphabet Fq. 

Analogs of these graphs defined over arbitrary 

commutative ring K allow the introduction 

algorithm of postquantum secure generation of S 

in the case of alphabet K. 

Our algebraic graphs-based technique differs 

from classical number-theoretical methods, you 

can compare our algorithms with those presented 

in [9–39]. 

These new algorithms are described in Section 

3 in terms of graphs A(n, K) with references to 

their known properties and properties of 

polynomial transformation groups GA(n, K) of 

affine space Kn related to A(n, K). The most 

important is the following “stability property” of 

GA(n, K). 
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In the chosen basis maximal degree of 

elements of GA(n, K) has degree 3. Notice that the 

composition of two randomly chosen nonlinear 

polynomial maps of degrees k and l in general 

position with the probability close to 1 will have 

degree kl. 

Required properties of graphs A(n, K) can be 

justified via an enveloping family of graphs 

D(n, K) and their connected components 

CD(n, K) (see Section 3 of the paper and further 

references). Known facts and conjectures about 

these graphs are presented there, and references 

on the usage of graphs in symmetric cryptography 

and the theory of LDPC codes are given. 

Section 3 also describes applications of the 

main algorithm to the construction of new 

postquantum secure Message Authentication 

Codes (MACs). These constructions are the 

generalization of MACs presented in [40], it gives 

new options to increase the level of avalanche 

effect. 

In Section 3 also a symbiotic combination of 

the main algorithm of generation of a potentially 

infinite string of characters with the postquantum 

secure Key Agreement Protocol based on 

computations in the group GA(n, K) is described. 

The initial data for this string generator are 

given via “seed of finite length” in the form of a 

tuple of characters of finite length. 

Correspondents can execute the Key Agreement 

Protocol with the collision map G from GA(n, K) 

and extract the required seed from G. 

We hope that this combination is capable to 

replace in the current postquantum reality a 

former symbiotic composition of the Diffie–

Hellman algorithm with a classical one-time pad. 

Application 3 from Section 3 gives an 

alternative to the one-time pad encryption 

symmetric encryption algorithm. Its password can 

be extracted from the output of the algorithm of 

generation of a potentially infinite string of 

characters from K. The complexity of this stream 

cipher is O(n). 

The encryption map of this algorithm is a 

polynomial map of unbounded degrees. It can be 

used similarly to a public key without the change 

of password for unlimited time. Implemented a 

simpler version of this algorithm with the 

encryption map of degree 3 can be used safely 

O(n2) times. Section 4 is dedicated to the idea of 

changing graphs A(n, K) on well-known graphs 

D(n, K). The results of the computer simulation 

are presented at the end of Section 4. Given 

densities of cubical maps allow us to evaluate the 

“usage interval” of encryption with a taken 

password. 

Correspondents can change passwords via an 

algorithm of generation of potentially infinite 

strings of characters. No need to repeat the 

GA(m, K) protocol which costs O(m13) elementary 

operation. Execution time for the generation of the 

element of GA(n, K) is useful for the time 

evaluation of the main algorithm of Section 3. 

Conclusions from Section 5. 

2. On Current State of Post Quantum 
Cryptography 

Prototype models of probabilistic machines 

known as Quantum computers already exist. They 

can produce genuine random sequences of bits 

that can be used in information security instead of 

pseudo-random strings. 

The perfect symbiosis of one-time encryption 

with Diffie–Hellman protocol for the key 

exchange can’t be used safely anymore because 

the Discrete logarithm problem can be efficiently 

solved with the usage of a Turing machine 

together with a Quantum Computer. A 

combination of these two machines can be used 

for effective cryptanalysis of RSA (the result of 

Peter Shor, 1995). 

Investigation of public keys with potential 

resistance to quantum attacks has been supported 

by U.S. NIST international project supporting 

Post Quantum standardization process since 2017. 

In July 2020 the third round started for the final 

further investigation of already selected 

algorithms. In the area of Multivariate 

Cryptography, only rainbow-like oil and vinegar 

digital signatures are selected for further 

investigation. They can’t be used as encryption 

algorithms. 

During Third Round, some cryptanalytic 

instruments to deal with ROUV were found [41]. 

That is why different algorithms were chosen at 

the final stage. In July 2022 first four winners of 

the NIST standardization competition were 

chosen. They all are lattice-based algorithms. 

This fact motivates different from public key 

directions of Multivariate Cryptography such as 

the search for Postquantum Secure Key 

Agreement Protocols able to substitute symbiotic 

combinations of Diffie–Hellman protocol and 

one-time pad. 
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3. Equations of Q-Regular Tree and 
String Processing 

The description of the q-regular tree Tq in 

terms of equations was introduced in [42] where 

graphs CD(n, q) were introduced. Tq coincides 

with well-defined projective limit CD(q) of 

graphs CD(n, q) where n tends to infinity. 

It was discovered later that special 

homomorphic images A(n, q) of CD(n, q) form a 

family of q-regular small world graphs in the 

sense of [1]. Well-defined projective limit A(n, q), 

n = 2, 3, … coincides with Tq. [4]. 

This construction allows introducing Tq as a q-

regular bipartite graph with points of kind 

(p) = (p1, p2, …, p1, …) 

and lines 

[l] = [l1, l2, …, li, …], 

where only a finite number of coordinates pi and li 

are different from zero and point (p) and line [l] 

are incident if and only if the following relations 

hold 

p2-l2 = l1p1, p3-l3 = p1l2, p4-l4 = l1p3, …., p2s-

l2s = l1p12s-1, p2s+1-l2s+1 = p1l2s-,… . 

Brackets and parenthesis allow us to 

distinguish points from lines. 

Projections of (p) and [l] onto (p1, p2, …, pn) 

and [l1, l2, …, ln] define graph homomorphism on 

graph A(n, q) with point set and line set 

isomorphic to (Fq)
n and the incidence is given by 

first n-1 equations in the definition of Tq. 

We can change finite field F in the given above 

construction for arbitrary commutative ring K 

with unity and get infinite graph TK together with 

bipartite graph A(n, K) for which two copies of Kn 

form partition sets. If K is the integrity ring then 

TK
  = A(K) is also an infinite tree but the existence 

of zero divisors leads to the appearance of cycles 

in these graphs. 

The first coordinates ῤ(p) = p1 and ῤ([l]) = l1 

are the natural colors of points (p) and [l] of 

graphs A(n, K) and A(K). 

The following linguistic property holds. For 

each vertex v there is a unique neighbor u of 

chosen color ῤ(u) = a. Let Na(v) be the operator of 

taking the neighbor of v with color a. 

The walk in the graph A(n, K), n = 2, 3, … of 

length m started at the given point p = (p1, p1, …) 

can be given by sequence a(1), a(2), …, a(m), this 

is a sequence 

(p), v1 = Na(1)(p), v2 = Na(2)(v1), …, vm = Na(m)(vm-1). 

We refer to string (a(1), a(2), ..., a(m)) as the 

direction of the walk. In the case of even m we 

consider transformation nC(a(1), a(2), …, a(m)) 

of Kn into itself defined in the following way. 

Take the list of variables x1, x2, …, xn and 

consider K[x1, x2, …, xn] together with new graph 

A(n, K[x1, x2, …, xn]) given by the same equations 

as in the case A(n, K). 

Take special starting point (x) = (x1, x2, …., xn) 

and colour string x1+a(1), x1+a(2), …, x1+a(m) 

compute 

(x), v1 = Na(1)+x(1) (p), v2 = Na(2)+x(1)(v1), …, vm =

 = Na(m)+x(1)(vm-1) where x1 = x(1). 

Finally take the polynomial transformation 

C(a(1), a(2), …, am)) of Kn into itself sending (x) 

to vm. This transformation is given by the rule 

(x) → (f1, f2, …fn) = vm. 

We see that each point-to-point walk w on 

vertices of such graph started in chosen origin (0 

points) can be given by its direction which is a 

tuple of kind w = (a1, a2, …, a2s) with ai ϵ K. With 

such direction we associate the tuple 
nC(w) = (f1, f2, …fn), 

where fi ϵ R = K[x1, x2, … , xn]. It can be proven 

that the maximal degree of fi ϵR such that degree 

deg(fi) is 3. We identify this tuple with the map 
nC(w) of kind xi → fi(x1, x2, …xn), I = 1, 2, …, n 

which is a bijective polynomial transformation of 

affine space (K)n. 

The natural composition of walks from 0 

origins can be formally given by the following 

rule. 

For w = (a1, a2, …a2s) and u = (u1, u2, …u2t) 

their composition w◦u is the tuple 

(a1, a2, …a2s, a2s +u1, a2s+u2, …, a2s +u2t). 

Let ∑(K) be the semigroup of all directions 

with the introduced above operation. This is a 

semi-direct product of free semigroup over 

alphabet K and additive group (K, +) which can 

be considered as a modification of a free product 

(K, +) with itself.  

It is easy to check that the composition nC(w) 

nC(u) coincides with nC(w◦u). So transformations 
nC(w), wϵ∑(K) form a subgroup GA(n, q) of group 

Aut K[x1, x2, …, xn] which acts on the affine space 

(K)n as group CG((K)n) (affine Cremona group) of 

all bijective polynomial maps of (K)n into itself. It 

means that the map ήn: ∑(K) → GA(n, K) sending 

w to nC(w) is a homomorphism and its image 

GA(n, K) is a stable one of degree 3, i.e. maximal 

degree of the map from this group is 3. 
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Similarly, we can define homomorphism ή of 

∑(K) onto GA(K) acting on points of infinite 

graph A(K). 

For studies of walks corresponding to 

directions (y) of length m we extend the field K to 

commutative ring K[y1, y2, …, ym] and consider 

the special direction (y) = (y1, y2, …, ym) of graph 

An(K[y1, y2, …, ym]) where m is even number. 

Elements of this group are ήn(C(y)) where ήn is 

a homomorphism of ∑(K[y1, y2, …, ym]) onto 

C((K[y1, y2, …, ym])n). Each of them can be 

written as a rule xi → fi(x1, x2, …, xn, y1, y2, …, ym), 

i = 1, 2, …, n. The degree of each polynomial in 

variables x1, x2, …, xn (degx) is bounded by 3. It 

possible to prove that degree of fi in variables 

y1, y2, …, ym (degy(fi)) is i. 

A(K) based string generation algorithm: 

Choose even parameters m and increasing 

sequence of even numbers n(1), n(2), n(k), where 

n(1) ≤ m, n(1) <n (2) < C3
n(1), n(2) < n(3) < C3

n(2

), …, n(2) <n(k) < C3
n(k-1). 

Consider the word (y) = (y1, y2, …, ym) and a 

string of characters b1, b2, …, bn from K*. Form 

affine transformation T of K n to K n given by the 

rule 

x1 → b1x1+b2x2+… bnxn, xi → xi, i = 1, 2, …, n. 

Step 1. Compute F(1) = Tήn(y)T-1 for n = n(1) 

given by tuple ( yf1, 
yf2, …  yfn) fn = f(y). Take 

polynomial f(y) = b1
yf1+b2 

yf2+ …+bn 
yfn and list 

(z1, z2, …, zt), t = C3
n of its coefficients in front of 

monomial terms xixjxk where i,j,k are different 

elements of {1, 2, …n}. Let 
3v(f(y)) = (z1, z2, …, zt) = y(1). 

Take operator Dn = d/dx1+ d/dx2+…+d/dxn. 

Let us list r = C2
n coefficients of D(f(y)) in front 

of xixj, i ≠ j and get 2v(f(y)) = (u1, u2, …, u1). 

Finally list coefficients of D2(f(y)) in front of xi and 

get 1v(f(y)) = (q1, q2, …, qn). 

Step 2. Notice that y(1) = 3v(f(y)) is an element 

(y’1, y’2, …, y’m(1)) of ∑(K[y1, y2, …, ym]). Select 

n(2). Consider the list of variables x1, x2, … xn(2) 

under the assumption that the indexes correspond 

to first n(2) triples of kind {k, r, s} accordingly to 

a lexicographical order. Let c be this 

correspondence. We set 1bi = brbsbk if 

c(i) = {r, s, k} and form linear transformation T(1) 

of kind x1 → 1b1x1+
1b2x2+…1bnxn(2), xi → xi, 

i = 2, 3, …, n(2). 

Compute F(2) = T(1)ήn(2)(
3v(f(y(1)))T(1) -

1, n < n(2) ≤ C3
n given via the tuple 

(y(1)
 f1, 

y(1)
 f2, …, y(1)

 fn(2)). 

Let f(y(1)) = y(1)fn(2) and 
3v(f(y(1)) = (2z1, 

2z2, …
2zt(1)) = y(2) be the list of 

coefficients in front of monomial terms xixjxk 

where i,j,k are different elements of 

{1, 2, …, n(2)}. 

Take operator Dn(2) = d/dx1+d/dx2+… d/dxn(2). 

List r = C2
 n(2) coefficients of Df(y(1)) in front of 

xixj, i ≠ j and get 2v(f(y(1))) = (2u1, 
2u2, …

2un(2). 

Finally list coefficients of D2
 n(2)f(y(1)) in front 

of xi and get 1v(f(y(1)) = (1u1, 
1u2, …

1un(2)). 

Step 3. Use n(3), n(2)<n(3)≤C3
n(2). Consider 

the list of variables x1, x2, … xn(3) under the 

assumption that the indexes correspond to first 

n(3) triples of kind {k, r, s} accordingly to a 

lexicographical order. Let c be this 

correspondence. We set 

2bi = 1br 
1bs 

1bk if c(i) = {r,s,k} 

and form linear transformation T(2) of kind 

x1 → 1b1x1+
1b2x2+…1bnxn(3), xi → xi, i = 

=2,3, … ,n(3). 

Compute F(3) = T(2)ήn(3)(
3v(f(y(2)))T(2) -1, 

n<n(2)≤C3
n given via the tuple 

(y(1)
 f1, 

y(1)
 f2, …, y(1)

 fn(2)). 

Let f(y(2)) = y(2)fn(3) and  
3v(f(y(2)) = (2z1, 

2z2, …
2zt(1)) = y(3) 

be the list of coefficients in front of monomial 

terms xixjxk where i,j,k are different elements of 

{1, 2, …, n(3)}. 

Continue this process till the last potentially 

infinite Step k. After the end of the computation 

process we have to take sequence 

e(1), e(2), …, e(k) with e(i)ϵ{12, 3} and 

concatenate e(1)v(f(y)), e(2)v(f(y(1)),…, e(k)v(f(y(k-

1)) to get tuple Rk as an output. 

Application 1. Correspondents use chosen 

Key Agreement Protocol to elaborate two 

collision strings of kind b = (b1, b2, …., bn), 

bi ϵ K-{0} and a = (a1, a2, …, am) such that 

ai ≠ ai+2, i = 1, 2, …, m-1, a2 ≠ 0. 

They specialize variables yi as y1 = a1, 

y2 = a2, …, ym = am, form affine transformation T 

corresponding to vector b, and execute “numerical 

implementation” of A(K) based string generation 

algorithm. The output contains cubical maps 

F(1), F(2), …, F(k) depending on n(i) variables. 

Alice and Bob agree on e(1), e(2), …, e(k) in 

an open way or with the usage of secure 

agreement protocol. So they can use 

concatenation C = (c1, c2, …, cl) of 

specializations 

e(1)v(f(y)), e(2)v(f(y(1)), …, e(k)v(f(y(k-1)) 

with yi = ai, i = 1, 2, … m as cryptographical 

stable string of polynomial length l = l(n, k). 

One of the correspondents can generate a 

random or quasirandom string produced by a 
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modern quantum device of characters 

P = (p1, p2, …, pl) to send 

P+C = (p1+c1, p2+c2, …, pn+cn) to his/her 

partner. So they can use substrings of C as 

passwords for one-time pad encryption. In [43] we 

present the results of computer simulation via the 

table of number monomial terms in polynomial 

maps F(i), i = 1, 2, …, n. 

Application 2. Correspondents use chosen 

Key Agreement Protocol to elaborate one 

collision string of kind b = (b1, b2, …, bn), b1 ϵ K-

{0}. They form affine transformation T 

corresponding to vector b. They use symbolic 

implementation of the presented above A(n, K) 

based string processing algorithm working with 

variables yi, i = 1, 2, …, m. The output of this 

algorithm is e(k)v(f(y(k-1)) =  e(k)d(y1, y2, …, ym), 

where e(k)ϵ{1, 2, 3}. 

They take text a1, a2, …, am of large length 

m, m>>n(k) apply following parity regularization 

procedure which produce string a’1, a’2, …, a’m 

such that a1 = a1’, a2’ = a2 if a2 ≠ 0 and a’2 = a2+1 

in opposite case, a’i+2 = aI+2 if ai+2 ≠ a’i and 

a’i+2 = ai+2+1 otherwise for i = 1, 2, …, m-2. 

Alice and Bob compute 
e(k)d(a’1, a’2, …, a’m) = dk(a), k = 1, 2, …, s and 

treat them as a sequence of digests of text a. Each 

of dk(a) is a Message Authentication Code (MAC) 

depending on the key b = (b1, b2, …, bn). The 

computer experiment described in [40] 

demonstrates a high avalanche effect of digest 

d1(a). A single change of character a implies the 

change of 98% of characters of the digest. The 

experiment shows the increase of avalanche effect 

for dk(a), k>1 with the growth of parameter i. The 

following algorithm is developed in the spirit of 

noncommutative cryptography [44–55]. 

The protocol [56]. For elaboration of string 

b1, b2, …, bn and a1, a2, …, am we use the 

following protocol which also uses 

homomorphism ήn of ∑(K) into GAn(K). 

Alice selects parameters n and m and words 

w1, w2, ... wk, k>1 and words u and z of finite even 

length from ∑(K). Let u = (a1, a2, …, as). We refer 

to Rev(u) = (-as+as-1, -as+as-2, …, -as+a1, -as) as a 

reversing string for u. It is easy to see that 

ηn(uRev(u)) is the unity of affine Cremona 

semigroup CG(Kn). Alice selects affine 

transformation T1
 ϵAGLn(K) and T2

 ϵAGLm(K) in 

“general position” and computes T1
-1 together 

with T2
-1. She forms Fi

 = T1ήn(uwiRev(u))T1
-1

 and 

Gi = T2ήn(zwiRev(z))T2
-1

 for i = 1, 2, ..., k. She 

sends pairs (Fi, Gi), i = 1, 2, ... k to Bob. He 

uses formal alphabet {x1, x2, ..., xk} to write 

word xi(1)
k(1) xi(2)

k(2) ... xi(s)
k(s) of finite length s. 

Bob computes specialisations 

F = Fi(1)
k(1) Fi(2)

k(2) ... Fi(s)
k(s) and 

G = Gi(1)
k(1) Gi(2)

k(2) ... Gi(s)
k(s). He sends F to 

Alice but keeps G for himself. 

Alice has to restore the standard form of G 

from F. She knows that the standard projection of 

A(n, K) onto A(m, K) induces the homomorphism 

μ of GA(n, K) onto GA(m, k) for which 

μ(ήn(wi)) = ήm(wi). Element F equals 

T1 ήn(u) ήn (w1(1)
 k(1) wi(2)

k(2) ... wi(s)
 k(s)) ήn(u)-1T1

1. 

So Alice computes ήn 

(w1(1)
 k(1 )wi(2)

k(2) ... wi(s)
k(s)) = F’ because of her 

knowledge about T1 and u. She applies μ to F’ and 

gets ήm (w1(1)
k(1) wi(2)

k(2) ... wi(s)
k(s)) = G’. Finally, 

Alice computes G as T2 ήm(z)G’ήm(Rev(z))T2
-1. 

The collision transformation G has standard form 

xi → gi(x1, x2, …, xm), i = 1, 2, …, m. 

So correspondents can take vectors b and a of 

length l and t as appropriate numbers of first 

coordinates of 3v(gi) and 3v(gj) for chosen distinct 

i and j (see also [57] for modifications of 

GA(n, K)). 

Complexity estimates. The theoretical 

complexity of the above-presented protocol 

O(n13) coincides with the complexity of 

computation of the superposition of two 

polynomial transformations of Kn of degree 3. 

The security of protocol rests on the post-

quantum hard problem of decomposition of an 

element from the group of bijective affine 

transformation of affine space Kn into a word of 

several generators. The output of this protocol is 

used as a “seed” of the fast algorithm (O(m)) for 

generating tuples of non-periodic potentially 

infinite length m. Their pseudo-random properties 

are currently under investigation. We hope that 

new MACs will be effectively used for the 

detection of file integrity. 

Application 3. Alice and Bob eject vectors b 

and a of the length n (potentially infinite number) 

and r (even constant) from the collision map of the 

presented protocol or use the presented above 

method of generation of potentially infinite non-

periodic strings. Without loss of generality we 

assume that b = (b1, b2, …, bn) ϵ (K*)n and for 

(a1, a2,…, ar) the following relations hold 

a2 ≠ 0, ai ≠ ai+2, i = 1, 2, …, n-2. Correspondents 

form transformation  

T(b): x1 → x1+b1x2+b2x1+…+bn-

1xn+bn, xi → xi, i = 1, 2, … n-1. 

Let f1(x), f2(x), …, fr(x) be a string of 

polynomials from K[x] of even length r and linear 

degree in variable n. We consider a transformation 

T[f1, f2, …, fr] of Kn onto Kn obtained via chain of 

vertices A(n, K) with initial point (x) = (x1, x2, …, xn) 
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and vertices [v1], (v2), [v3], ...,(v_r) of colours 

f1(x1), f2(x1) …, fr(x,). The map T[f1, f2, …, fr] sends 

(x1, x2, …, xn) to...(vr). It is easy to see that if 

equation fr(x) = a has a unique solution for 

arbitrary a then T[f1, f2, …, fr] is a bijection. 

So Alice and Bob can agree via open channel 

on sparse (i.e. computable in time O(1)) 

polynomials xgi of linear degree 

a(i)n+b(i), a(i) ≠ 0, i = 1, 2, ...r and select gr as 

αxt where α is an element of K*. They will use 

fi = xgi+ai and the map 

E = T(b)T[f1, f2, …, fr]T(b)-1 as the encryption 

map. This stream cipher is fast (time execution is 

O(n)), the password b1, b2, …, bn, a1, a2, …, ar is 

protected via postquantum secure protocol. That 

is why the adversary has the only remaining 

option to collect a lot of pairs of kind 

plaintext/ciphertext and try to approximate map E. 

It is unfeasible because the degree of the 

polynomial map is unbounded (≥βn for positive 

constant β). 

Practically we can use simple encryption maps 

of kind G = T(b)ή((a1, a2, …, ar)T(b)-1, i.e. gi = i 

for each i and a(i) = 1. In this case, both degrees 

of G and G-1 coincide with 3. So adversary has a 

chance to interpret O(n3) message and in time 

O(n10) approximate these maps via linearisation 

attacks. 

Noteworthy that there is a simple solution to 

prevent mentioned above attacks. The density 

d(G) of G of kind x1 → gi(x1, x2, …, xn), 

i = 1, 2, …, n is a total number of monomial 

expressions in polynomials gi. 

So correspondents can restrict a maximal 

number of messages for exchange by average 

density a(G) = d(G)/n. 

We find out that d(G) is depending on 

parameters n, r ann ring K. Results of computer 

simulations for the cases of finite fields Fq, 

arithmetical rings Zq and Boolean rings B(8), 

B(16), B(32) of cardinality q, where 

qϵ{28, 216, 232}. Evaluation of time for generation 

of transformation G gives a good approximation 

of the execution time of the encryption process. 

4. Connections of A(n, q) with Graphs 
D(n, q), Other Graph-based 
Algorithms 

The missing definitions of graph-theoretical 

concepts in the case of simple graphs which 

appears in this paper can be found in [1]. All 

graphs we consider are simple ones, i.e. 

undirected without loops and multiple edges. 

When it is convenient, we shall identify Γ with 

the corresponding anti-reflexive binary relation 

on V(Γ), i.e. E(Γ) is a subset of V(Γ)×V(Γ). The 

girth of a graph Γ, denoted by g = g(Γ), is the 

length of the shortest cycle in Γ. The diameter 

d = d(Γ) of the graph Γ is the maximal length of 

the shortest pass between its two vertices. 

Let gx = gx(Γ) be the length of the minimal 

cycle through the vertex x from the set V(Γ) of 

vertices in graph Γ. We refer to 

Cind(Γ) = max{gx, x ∈ V(Γ)} as the cycle 

indicator of the graph Γ. 

The family Γi of connected k-regular graphs of 

constant degree is a family of small world graphs 

if d(Γi)≤ clogk (vi), for some constant c, c>0. 

Recall that family of regular graphs Γi of 

degree k and increasing order vi is a family of 

graphs of large girth if g(Γi)≥clogk(vi), for some 

independent constant c, c>0. 

We refer to the family of regular simple graphs 

Γi of degree k and order vi as a family of graphs of 

large cycle indicator, if Cind(Γi)≥clogk(vi) for 

some independent constant c, c>0. 

Notice that for vertex—transitive graph its 

girth and cycle indicator coincide. Defined above 

families plays an important role in Extremal 

Graph Theory, the Theory of LDPC codes, and 

Cryptography (see [4] and further references). 

Below we consider an alternative definition of 

a family of graphs A(n, K) and introduce graphs 

D(n, K) where n>5 is a positive integer and K is a 

commutative ring. In the case of K = Fq we denote 

A(n, q) and D(n, q), respectively. We define these 

graphs as homomorphic images of infinite 

bipartite graphs A(K) and D(K) for which partition 

sets P and L are formed by two copies of Cartesian 

power KN, where K is the commutative ring and N 

is the set of positive integer numbers. Elements of 

P will be called points and those of L lines. To 

distinguish points from lines we use parentheses 

and brackets. If x ∈ V, then(x) ∈ P and [x] ∈ L. 

The description is based on the connections of 

these graphs with Kac-Moody Lie algebra with 

extended diagram A1. 

The vertices of D(K) are infinite-dimensional 

tuples over K. We write them in the following way  

(p) = (p0,1, p1,1, p1,2, p21, p22, p’22, p23, …, pi,i, p’i,i, 

pi,i+1, pi+1,i, …), 

[l] = [l1,0, l1,1, l1,2, l21, l22, l’22, l23, … ,li,i, l’i,i,li,i+1, li

+1,i, …]. We assume that almost all components of 

points and lines are zeros. The condition of 

incidence of point (p) and line [l] ((p)I[l]) can be 

written via the list of equations below. 
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li,I pi,i = l1,0 pi-1,i; l’i,i-p’i,i = li,i-1 p0,1; li,i+1-

pi,i+1 = li,i p0,1; li+1,i-pi+1,i = l1,0 p’i,i. These four 

relations are defined for i≥1, (p’1,1 = p1,1, l’1,1 = l1,1). 

Similarly, we define graphs A(K) on the vertex 

set consisting of points and lines 

(p) = (p0,1, p1,1, p1,2, p21, p22, p23, …, pi,i, pi,i+1, …), 

[l] = [l1,0, l1,1, l1,2, l21, l22, l23, …, li,i, li,i+1, …] 

such that point (p) is incident with the line 

[l] ((p)I[l], if the following relations between 

their coordinates hold: li,i-pi,i = l1,0 pi-1,i; li,i+1-

pi,i+1 = li,i p0,1. 

It is clear that the set of indices A = {(1; 0), 

(0; 1), (1; 1), (1; 2), (2; 2), (2; 3), …, (i-

1, i), (i, i), …} is a subset in D = {(1, 0), (0; 1), 

(1, 1), (1, 2), (2; 2), (2, 2)’, …, (i-1, i); (i; i-

1); (i, i); (i, i)’, …}. Points and lines of D(K) are 

functions from KD-{(1,0)} and KD-{(0,1) and their 

restrictions on A-{(1,0)} and A-{(0,1)} define 

homomorphism Ψ of graph D(K) onto A(K). 

For each positive integer m ≥2 we consider 

subsets A(m) and D(m) containing the first m+1 

elements of A and D concerning the above orders. 

Restrictions of points and lines of D(K) onto 

D(m)-{(1,0)} and D(m)-{(0,1)} define graph 

homomorphism D∆(m) with image denoted as 

D(n, K). Similarly restrictions of points and lines 

of A(K) onto A(m)-{(1, 0)} and A(m)-{(0, 1)} 

defines homomorphism A∆(m) of graph A(K) onto 

graph denoted as A(m, K). 

We also consider the map ∆(m) on vertices of 

graph D(m, K) sending its point (p)ϵK D(m)-{(1,0)} to 

its restriction into D(m)∩A-{(1, 0)} and its line [l] 

ϵKD(m)-{(0,1)} to its restriction onto D(m)∩A-{(0, 1)}. 

This map is a homomorphism of D(m, K) onto 

A(n, k), n = |D(m)∩A|-1. 

Graph D(q) = D(Fq) is a q-regular forest. Its 

quotients D(n, q) are edge transitive graphs. So 

their connected components are isomorphic. 

Symbol CD(n, q) stands for the graph which is 

isomorphic to one of such connected components. 

Family CD(n, q), n = 2, 3, … is a family of 

large girth for each parameter q, q>2 (see [42] 

and further references). 

The question “Whether or not CD(n, q) is a 

family of small world graphs” is still open. 

Graph A(q), q>2 is a q-regular tree. Graphs 

A(n, q) are not vertex-transitive. 

They form a family of graphs with a large cycle 

indicator, which is a q-regular family of small-

world graphs [58]. 

The question “Whether or not A(n, q), 

n = 2, 3, … is a family of large girth” is still open. 

Graphs CD(n, q) and A(n, q) are expanding 

graphs (see [59], [60], and [3] for basic 

definitions) with spectral gap q-2√q. 

Groups GD(n, K) and GA(n, K) of cubical 

transformations of affine space Kn associated with 

graphs D(n, K) and A(n, K) are interesting objects 

of algebraic transformation group theory because 

of the composition of two maps of degree 3 for the 

vast majority of pairs will have degree 9. 

Applications of these groups to Symmetric 

Cryptography are observed in [5], [43] (see also 

[61–63]). 

The illustration of densities of cubic map 

constructed with the usage of graphs A(n, Fq) and 

appropriate linear conjugators are given below 

detailed description of the simulation process 

reader can find in [64]. 

Table 1 
The number of monomial terms of the cubic map 

induced by the graph A(n, Fq), q=232. 
 length of the word 

𝑛 16 32 64 128 256 

16 5623 5623 5623 5623 5623 

32 53581 62252 62252 62252 62252 

64 454375 680750 781087 781087 781087 

128 3607741 6237144 9519921 10826616 10826616 

Table 2 
Generation time for the map (ms) (graph, 
A(n, Fq), case of usage of sparse linear 
conjugators) 
 length of the word 

𝑛 16 32 64 128 256 

16  20   60   128   260   540 

32  308   788   1776   3760   7716 

64  3193   8858   23231   53196   113148 

128  54031   137201   368460   950849   2164037 

Table 3 
Number of monomial terms of the cubic map 
induced by the graph A(n, Fq), case of dense 
linear conjugators 
 length of the word 

𝑛 16 32 64 128 256 

16  6544   6544   6544   6544   6544 

32  50720   50720   50720   50720   50720 

64  399424   399424   399424   399424   399424 

128 3170432  3170432  3170432  3170432  3170432 
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Table 4 
Generation time for the map (ms) case of dense 
linear conjugators 
 length of the word 

𝑛 16 32 64 128 256 

16  76   148   288   576   1148 

32  1268   2420   4700   9268   18405 

64  22144   40948   78551   153784   304240 

128  460200   819498   1532277   2970743   5836938 

5. Conclusions 

The main result of the paper is a complex 

cryptographical algorithm based on a highly 

noncommutative group of polynomial 

transformations GA(n, K) of Kn, n = 2, 3, … 

defined over finite commutative ring K with a 

unity. 

In current postquantum reality the idea to 

change the cyclic group of Diffie–Hellman 

protocol for a noncommutative group or 

semigroup with several generators can lead to safe 

protocols of Algebraic Postquantum 

Cryptography (APQ). 

We suggest using GA(m, K) for the safe 

elaboration of collision polynomial map G of 

degree 3 from Kn to Km. G is written in its standard 

form of Computer Algebra. We can use O(m4) of 

its coefficients for the extraction of some “seed” S 

of size s(m). 

The protocol costs O(m13) elementary 

operations. The security rests on the complexity 

of the known hard problem of APQ to find the 

decomposition of G into given generators from the 

affine Cremona group of polynomial 

transformations of Km. 

Correspondents can use a family of groups 

GA(n, K) for simultaneous construction of 

potentially infinite string R of characters from Kn 

of length n with the complexity O(n). Recovery of 

seed S is connected with the hard APQ problem of 

solving the system of nonlinear equations of 

unbounded degree. 

Parts of R can be used as one-time pad keys, 

passwords of symmetric stream ciphers, or in key-

dependent Message Authentication Codes. 

We also presented new APQ stable MACs and 

stream cipher to work with the text of length t in 

time O(t) defined in terms of graphs from the 

family A(n, K). 
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