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Abstract 
The article is devoted to methods and tools for generating software-oriented bit-sliced 

descriptions of bijective 4×4 S-Boxes with a reduced number of instructions based on a ternary 

logical instruction. Bitsliced descriptions generated by the proposed method make it possible 

to improve the performance and security of software implementations of crypto-algorithms 

using 4×4 S-Boxes on various processor architectures. The paper develops a heuristic 

minimization method that uses a ternary logical instruction, which is available in 86–64 

processors with AVX-512 support and some GPU processors. Thanks to the combination of 

various heuristic techniques (preliminary calculations, exhaustive search to a certain depth, 

refinement search) in the method, it was possible to reduce the number of gates in bit-sliced 

descriptions of S-Boxes compared to other known methods. The corresponding software in the 

form of a utility in the Python language was developed and its operation was tested on 225 S-

Boxes of various crypto-algorithms. It was established that the developed method generates a 

bit-sliced description with a smaller number of ternary instructions in 90.2% of cases, compared 

to the best-known method implemented in the sboxgates utility. 
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1. Introduction 

Given the ever-increasing volumes and speeds 

of data processing, a very important requirement 

for Cryptographic Algorithms (CA) is to provide 

sufficiently high performance for a wide class of 

microprocessor architectures [1, 2]. The no less 

important aspect for software implementation of 

cryptographic algorithms is the increased 

resistance to side-channel attacks: for low-end 

CPUs (8/16/32-bit microcontrollers) these are 

primarily energy consumption analysis attacks, 

and for high-end CPUs (86, ARM Cortex-A) are 

primarily time and cache attacks. To ensure the 

high performance of crypto-algorithms, various 

approaches to their software implementation are 

used. This includes the creation of precomputed 

tables (Lookup Tables, LUT) for certain 
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operations, the integration of hardware crypto-

accelerators into the processor (e.g. AES-NI in 

86 processors), the use of SIMD technology for 

parallelization of the encryption process (e.g. 

SSE/AVX2/AVX-512 vector instructions in 86–

64 CPU), the use of GPU computing power, etc. 

However, all these approaches have several 

limitations and cannot always be implemented in 

a specific processor. 

Bit-slicing [3] is one of the promising 

approaches that provide a high-performance 

constant-time implementation of a CA with 

immunity to time and cache attacks [4]. It makes 

the most of the capabilities of modern high-end 

microprocessors to increase performance due to 

the parallelization of both code execution and data 

processing and also allows adaptation for low-end 

CPU and hardware implementation on FPGA and 

ASIC. For many CAs, it is the bit-sliced approach 
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that provides the highest speed in software 

implementation (if hardware crypto accelerators 

are not used) for various types of processor 

architectures [3–9]. The absence of references to 

precomputed tables in memory and cache, as well 

as data-dependent conditional transitions, makes 

bit-sliced implementations invulnerable to time 

and cache attacks, at the same time complicating 

attacks through third-party channels. 

The basic idea of bit-slicing is to convert a 

cryptographic algorithm into a sequence of bit 

logical operations of the type AND, XOR, OR, 

NOT. In processors, each such logical operation 

can be represented by a corresponding instruction, 

and in hardware—by a corresponding gate (we 

will use the concepts of gate and instruction as 

synonyms in this work). The high speed of 

software bit-slicing is achieved because the CPU 

processes many cipher elements (bytes, blocks) in 

parallel, using fast logical instructions and easier 

execution of some operations (for example, bit 

permutations, shifts, etc.). For software-oriented 

bit-sliced implementations, in addition to classic 

ones, it is possible to use more complex logical 

instructions supported by a certain processor, and 

thus reduce their total number. So, for example, 

many processors support the AND-NOT 

instruction (86–64, ARM), some NOR and 

NAND (ARM), etc. [10]. 

In order to get the maximum speed, you need 

to minimize the number of logical operations 

included in the bit-sliced description of the crypto 

algorithm. Most cryptographic operations 

generate a single-valued description when going 

to a bit-sliced description or do not give much 

room for minimization except for nonlinear 

transformations. In CA, nonlinear replacement 

operations are specified in the form of n×m LUT-

tables, so-called S-Boxes, which are mostly 4×4 

(n = 4) or 8×8 (n = 8) bits in size. Tables of 4×4 

bits are typical for both lightweight crypto 

algorithms specially designed for efficient 

implementation on resource-constrained 

processors (e.g. block ciphers PRINCE, LED, 

Piccolo, hash functions PHOTON, Spongent) and 

general purpose crypto algorithms (e.g. block 

symmetric ciphers Serpent, Twofish, Magma, 

hash functions BLAKE, Whirlpool). 

Thus, the main resource for increasing 

performance in the bit-sliced implementation of 

the CA is the representation of S-Boxes with the 

minimum possible number of logic 

gates/instructions. This problem is NP-complete 

and allows an exact solution only for very simple 

cases (n ≤ 3 and some n = 4), so most modern 

methods and utilities for generating bit-sliced 

S-Boxes use heuristic approaches that do not 

guarantee that the obtained solution is optimal but 

provide a much better result compared to 

universal methods of minimizing logical 

functions (for example, the method of Carnot 

maps as well as the method of simple Quine-

McCluskey implicants). 

In addition to traditional dual-operand logic 

instructions, some processors support the ternary 

logic instruction ternary logic (a, b, c, imm8), 

which allows calculating an arbitrary Boolean 

function from the three operands a, b, c specified 

by the truth table in the 8-bit variable imm8 

(Fig. 1). 

 
Figure 1: The principle of operation of the ternary 
instruction ternary logic (a, b, c, imm8) 

The Ternary Instruction (TI) is present in the 

following processors: 

• 86–64 with support for 512-bit SIMD 

instructions from the AVX-512F extension. 

Since the vpternlogq zmm_a, zmm_b, zmm_c, 

imm8 instruction is included in the AVX-512F 

(Foundation) basic extension, it is supported 

by all processors with AVX-512 technology. 

• some GPU processors. For example, on 

an Nvidia GPU, this instruction has the form 

lop3.b32 d, a, b, c immLut, which calculates 

over the 32-bit operands lop3.b32 d, a, b, c 

immLut, the logical function given by the truth 

table in immLut and stores the result in d. 

One ternary instruction can replace several 

dual-operand logical instructions, so its use allows 

generating a bit-sliced description with a 

significantly smaller number of operations, and 

therefore increasing the speed of program 

implementation. However, in this case, even for  

4-bit S-Boxes, finding a guaranteed optimal 

representation is mostly impossible and it is 

necessary to use heuristic minimization methods. 

However, the existing heuristic minimization 
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methods are mostly focused on the use of dual-

operand instructions, so they cannot be directly 

used to generate a bit-sliced description based 

on TI. 

Therefore, the problem of finding the optimal 

bit-sliced representation based on the ternary 

instruction even for 4×4 S-Boxes is far from being 

solved, which requires the search for new 

heuristic approaches, one of which is presented in 

our work. 

2. Review of Literary Sources 

Let us analyze the methods and means for 

finding the bit-sliced description of 4×4 S-Boxes 

according to the Bitslice Gate Complexity (BGC) 

criterion, which denotes the optimal solution with 

the minimum number of operations. 

The bit-sliced approach to cryptographic 

representation was first proposed by E. Biham in 

[1] to speed up the software implementation of the 

DES cipher. In the same work, E. Biham 

described the algorithm of bit-sliced 

representation of DES S-Boxes (6×4) by logic 

gates XOR, AND, OR, NOT. In the algorithm, 

from six input variables, two input variables have 

been selected that form all possible combinations 

with the help of given logic gates, from which four 

output variables are then constructed. On average, 

with a bit-sliced description using this method, 

one DES S-Box requires 100 gates. 

In [8], M. Kwan proposed a much more 

efficient approach to finding a bit-sliced 

representation using DES S-Boxes as an example. 

It treats each S-Box output bit as a function of the 

six input bits, represented by a Carnot map, and 

placed in a 64-bit variable. All input and 

intermediate variables can also be considered as 

6-bit Carnot maps described by 64-bit numbers. 

Then the task is formulated as follows: it is 

necessary to combine the existing input and 

intermediate maps in such a way as to obtain the 

desired output variable. One input variable acts as 

a selector combining the functions of five 

variables. To find the representation of functions 

of five variables with the minimum number of 

gates, an exhaustive search (brute force) is used, 

and the gates are found in the previous steps. 

Depending on the order in which the search is 

carried out, 6! options are available for input 

variables, and 4! Options—for output variables. 

This gives a total of 17,280 search options, among 

which the option with the minimum number of 

gates is selected. As a result, the average number 

of gates for a bit-sliced description of one DES S-

Box decreased from 100 to 56. 

To minimize S-Boxes, the SAT-Solvers 

programs can be used, designed to effectively 

solve the feasibility problem of Boolean formulas 

(SATfeasibility problem, SAT). The object of the 

SAT problem is a Boolean formula consisting 

only of constants (0/1), variables, and AND, OR, 

and NOT operations. The problem is as follows: 

can all variables be assigned the values False and 

True so that the formula becomes true? 

Specialized SAT-Solvers programs, built on 

efficient solution algorithms, accept a set of 

equations as input and produce the result in the 

form of SAT if a solution is found and UNSAT if 

no solution is found. To find a logic circuit with a 

given number of gates, you can form an equation 

where the variables would specify all possible 

connections between gates and the operation and 

try to solve them with the help of SAT-Solvers. 

The advantage of this approach is that if a solution 

with n gates (SAT) is found and UNSAT is 

obtained for n—1 gates, then we are guaranteed to 

have found the minimum possible bit-sliced 

description. 

SAT-Solvers were used in the works [9, 10] to 

find the bit-sliced representation of some 4-bit 

S-Boxes. In general, the problem with SAT-

Solvers is that they do not always find solutions 

for “heavy” S-Boxes that require more than 12–13 

gates. For relatively simple S-Boxes with 11–13 

gates, SAT-Solvers cannot always prove that the 

found representation is minimal. 

The work [11] describes the open-source 

utility LIGHTER, which is currently the most 

effective utility for finding the bit-sliced 

description of 4×4-bit S-Boxes. LIGHTER can 

flexibly specify a set of two and three-inlet gates 

and their weighting factors, which are taken into 

account during minimization. This allows more 

realistic optimization in the case of hardware 

implementation, when different logic gates differ 

in crystal area, power consumption, delay, etc., 

due to the consideration of these parameters in the 

weighting factors. For a software implementation, 

when logical instructions are equivalent, it is 

enough to set the same weighting coefficients for 

all gates. 

The LIGHTER search algorithm itself 

combines two approaches: searching using the 

Breath-First-Search (BFS) algorithm and the 

Meet-In-The-Middle (MITM) strategy. That is, 

two graphs are built: one starts from the base 

vectors and performs a forward search, and the 

other starts from the searched vectors and 
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performs a backward search. Both graphs move 

toward each other using the given logical 

operations until they meet. Next, a path is selected 

that connects these two graphs with the minimum 

weight that takes into account the weighting 

factors for each gate. The utility demonstrates 

high time efficiency compared to SAT methods, 

and its results, although they cannot be considered 

optimal, are quite close to the results obtained by 

SAT utilities. 

In [12], the open-source utility Peigen 

(Platform for Evaluation, Implementation, and 

Generation of S-boxes) is described, which makes 

it possible to find a bit-sliced description of 

S-Boxes in various logical bases, applying the 

specified minimization criteria for hardware and 

software implementations. Peigen’s bit-sliced 

description search algorithms are based on 

algorithms from the LIGHTER utility, but their 

time efficiency has been improved, in particular, 

recalculation and several additional techniques 

have been used. However, even with the 

improvements made, the utility only works 

effectively with 4-bit S-Boxes. 

Generating an optimized bit-sliced 

implementation of the CA requires considerable 

time spent on writing and debugging the code and 

requires a good knowledge of processor 

architecture, low-level tools, and optimization 

techniques at the hardware and software levels. 

Therefore, in [13], the high-level Usuba language 

is presented, which makes it possible to describe 

a symmetric cryptographic primitive, and the 

Usuba compilator itself will generate a highly 

optimized, parallelized, and vectorized bit-sliced 

code. However, to generate the bit-sliced 

description of the S-Box, either a simple 

minimization algorithm is used, which gives a far 

from the optimal result, or a ready-made 

optimized description is taken from the database 

included in Usuba if the S-Box is present in it. 

Thus, description generation for S-Box is a weak 

point of the Usuba bit-sliced compiler. 

The considered methods and utilities form a 

bit-sliced description using mainly two-input 

logic elements and do not support a ternary logic 

instruction. The only utility known to us today for 

generating bit-sliced descriptions of S-Boxes 

based on the ternary instruction is sboxgates [14]. 

This open-source utility implements the M. Kwan 

algorithm with some improvements and is able to 

generate a bit-sliced description for arbitrary 

S-Boxes up to and including 8×8. Many 

optimizations of M. Kwan’s algorithm in 

sboxgates are borrowed from the 

SBOXDiscovery project, which was intended 

exclusively for generating bit-sliced descriptions 

of DES S-Boxes. The utility allows you to specify 

an arbitrary set of two-input gates, use a ternary 

logic instruction, specify the number of iterations 

of the search algorithm, parallelize the search 

between processor cores, etc. [15,16]. In the case 

of 4×4 S-Boxes, sboxgates produce results that, as 

the article will show, can be greatly improved, 

which is a price for versatility. 

3. Setting Objectives 

The purpose of our article is to present a 

method and a utility for generating a bit-sliced 

description of bijective 4×4 S-Boxes based on a 

ternary logical instruction, which provides better 

results compared to existing ones, and this will 

make it possible to increase the speed and security 

of hardware and software implementations of a 

wide range of cryptographic algorithms, which 

use S-Boxes of a given type. 

S-Boxes representation format for bit-sliced 

implementation 

In the specifications of cryptographic 

algorithms, S-Boxes are mostly specified in the 

form of LUT tables. For example, the 4×4 S-Box 

of the PRESENT cipher has the form shown in 

Table 1

Table 1 

LUT-table of S-Box of the PRESENT cipher 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2 
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In the bit-sliced representation, LUT tables are 

treated as logical functions defined by truth tables. 

For example, the S-Box of the PRESENT cipher 

will have the form shown in Table 2.

 

Table 2 

Bitsliced-oriented representation of S-Box of the PRESENT cipher 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex 

x0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0xff00 
x1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0xf0f0 
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0xcccc 
x3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0xaaaa 

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2  

y0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0x0ed9 
y1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0x3687 
y2 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0xa74c 
y3 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0x659a 

So, a compact representation of this S-Box in 

the form of a truth table will have the following 

form: S(x) = y, where x = {x0, x1, x2, x3} = 

{0xff00, 0xf0f0, 0xcccc, 0xaaaa}— input bit-

sliced variables, y = {y0, y1, y2, y3} = {0x0ed9, 

0x3687, 0xa74c, 0x659a}—the output bit-sliced 

variables defining a specific substitution table, 

and we will call the 16-bit numbers that specify x 

and y as vectors. The task of finding a bit-sliced 

S-Box representation according to the BGC 

criterion can be formulated as follows: given four 

base vectors base = {x0, x1, x2, x3}, you need to 

find the vectors y = {y0, y1, y2, y3} using the 

minimum number of ternary logical instructions 

ternary logic (a, b, c, imm8). 

4. Preliminary Calculations 

At the pre-computation stage, certain data are 

found and stored once, which are then repeatedly 

used in our bit-sliced description search 

algorithm. This data is of two types: 

1. For each 16-bit vector v there is a 

BGC(v)—the minimum number of ternary 

instructions required for its representation, the so-

called “complexity” of the vector. 

Since vectors are represented as 16-bit 

numbers, there are 65536 vectors in total, four of 

which are based vectors base = {x0-x3} and two 

are logical constants const = {0x0000, 0xffff} to 

denote 0 and 1 for which BGC is 0, so there 

remain 65530 vectors whose complexity needs to 

be estimated. Table 3 presents the found 

distribution of vectors according to their BGC 

value. 

Table 3 
Distribution of 16-bit vectors by BGC 

BGC 0 1 2 3 

Number of 
vectors 

6 936 34250 30344 

As can be seen from Table 3, a maximum 

complexity is 3, meaning that any 16-bit vector 

can be represented using no more than 3 ternary 

instructions. This gives an upper estimate of the 

bit-sliced complexity of an arbitrary S-Box 

described by four vectors y0-y3 equal to 12th TI. 

For an indirect preliminary assessment of the 

“complexity” of the S-Box, such an indicator as 

the total value of the complexity of the vectors 

y0-y3 can be used: the closer the total value is to 

12, the more TI should be expected in the bit-

sliced description and vice versa. For example, S-

Box UDCIKMP11 (bit-sliced description requires 

4 instructions) has the minimum total value of 6 

of all S-Boxes considered in the article, and S-Box 

mCrypton_S0 has the maximum total value of 12 

(bit-sliced description requires 8 instructions). 

2. Construction of a LUT table for 

representing all graphs to a depth of ge = 2 

instructions. 

The table is built step by step. In the first step, 

the table q0 is built, which contains all possible 

values that can be obtained from the base vectors 

х0-х3 with the help of one ternary instruction and 

which are not included in base and const. For this, 

the VECT_SQUARE algorithm is used, which 

forms all possible combinations from the input 

vectors using TI. 

There are a total of 936 such vectors. The 

generated values are entered into the table, and the 

х0-х3 values are not stored in the table to save 

memory, although they are implicitly present for 
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each row. Therefore, the table 

q0 = VECT_SQUARE ({x0, x1, x2, x3}) has a 

dimension of 936×1 (Fig. 2). 

 
Figure 2: Formation of the table q0 

Each ith line of the table q0 can be considered 

as a new basis {x0-x3, q0[i]}, which is used to 

generate all possible vectors in the next step, and 

the LUT lines of the tables themselves will be 

called graphs. 

So, in particular, in the second step, the table 

q1 = GEN_TABLE(q0) is generated, for which the 

VECT_SQUARE algorithm again generates from 

each row of the table q0 all possible values that can 

be obtained from the base vectors х0-х3 and q0[i] 

using one ternary instruction, lines are formed 

from two vectors and added to the general table. 

After that, logically equivalent graphs are filtered: 

if the rows of table q1 contain the same values in 

any order, then only one row remains (Fig. 3).

 
Figure 3: Formation of the table q1 

Table q1 has a dimension of 438312×2, and the 

branching coefficient when going from table q0 to 

q1 is equal to 438312/936 = 468.3. The obtained 

step-by-step results are presented in Table 4. 

Table 4 
Qualities of LUT-tables q0-q1 

Тable q0 q1 

Dimensionality  936×1 438312×2 
Branching - 468.3 

Further construction of the tables is 

impractical, as they require too much memory due 

to the large value of the branching coefficient. 

Table q1 will be used to form all possible unique 

graphs for the representation of vectors у. 

5. Search Algorithm of Bitsliced 
Representation 

At the top level of the search algorithm, all 

values у0-у3 are sorted, the matrix of candidate 

graphs gri = STEP_0(yi) is generated for each of 

them from the precomputed LUT-table q1 and 

transferred to the depth-first search algorithm 

FIND_BS(gri). 

The depth-first search algorithm FIND_BS 

finds the remaining values у trying to use the 

minimum TI and returns the constructed 

complement matrices of graphs gr0-gr3. From the 

obtained results, the graph with the minimum 

BGC value is selected (Fig. 4). 

MIN_BGC grmin

STEP_0y0 FIND_BS
gr0 gr0

STEP_0y1 FIND_BS
gr1 gr1

STEP_0y2 FIND_BS
gr2 gr2

STEP_0y3 FIND_BS
gr3 gr3

 
Figure 4: Generalized structure of the S-Box bit-

sliced description search algorithm 

So, the search algorithm performs four 

iterations, starting with different values of у. Let 

us denote this initial value by уstart. At the stage 

gri = STEP_0(уstart), using the LUT table q1, the 

matrix of graphs gri, is generated, containing all 

possible graphs with the vector уstart at a certain 

depth dstart of the gates. Depending on which BGC 

group the уstart vector belongs to, heuristically 

selected dstart values are presented in Table 5 to 

ensure acceptable calculation time and amount of 

required memory. 
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Table 5 
Depth of generation of graphs containing ystart in 
STEP_0 

BGC-group уstart 1 2 3 

dstart 2 3 3 

So, if, for example, BGC(y0) = 2, then the 

matrix of graphs gr0 after STEP_0 will contain all 

possible graphs with a length of 3 instructions 

(dstart = 3) in which the vector у0 occurs. 

Next, the candidate graphs in gri are sorted into 

three groups: gr_1y, gr_2y, gr_3 with the same 

number of vectors y in each graph of the group—

1, 2, and 3, respectively. We denote this number 

by y _find. Next, the search is conducted for each 

non-empty group separately according to Fig. 5. 

gr

gr_1y 
y_find = 1

gr_2y 
y_find = 2

gr_3y 
y_find = 3

ESTIMATE_DEPTH GEN_DEPTH y_find == 4

No

Yes gr 
gr gr

dmin y_find += 1

FIND_NEXT

gr

MIN_BGC

FIND_NEXT

FIND_NEXT

FIND_NEXT

grmin

FIND_BS

gr0

gr1

gr2

 
Figure 5: Generalized scheme of searching bit-

sliced representation by FIND_BS algorithm 

The FIND_NEXT algorithm makes alternate 

searches уі until all four values у0-у3 are found. 

The matrix of graphs gr in the form of an n×m 

table, each row of which contains y_find values 

from the set {у0-у3}, is given to the input. Each 

row of the table stores m vectors explicitly and 

vectors х0-х3 implicitly. 

First, for group gr, the minimum distance dmin 

is estimated, at which the closest value of уx is 

located among all graphs—ESTIMATE_DEPTH. 

For this purpose, the FAST_FIND function of 

comprehensive forward search to a given depth of 

1/2/3 steps has been developed. The search and 

selection of options are carried out using the 

algorithm of depth-first search with iterative 

deepening—IDDFS (Iterative Deepening Depth-

First Search). 

After the dmin estimate is found using the 

GEN_DEPTH algorithm, a transition is made 

from the set of graphs with y_find = n_y to the set 

of graphs with y_find = n_y + 1. 

For this, the graphs with the found value dmin 

are selected from the group gr and a step forward 

gr = GEN_TABLE(grmin) is made. For the 

generated set gr, graphs with the found value 

d = dmin—1 are selected again, a step forward is 

made for them, and so on, until d becomes equal 

to 0. After that, only graphs containing n_y + 1 

values of y are selected for the group. Then these 

steps are repeated until all values of y are found. 

The most computationally intensive 

procedures ESTIMATE_DEPTH and 

GEN_DEPTH are implemented by using GPU 

and OpenCL technology, which makes it possible 

to significantly parallelize calculations and reduce 

the algorithm’s operating time. 

At each step, the FIND_BS algorithm 

evaluates the minimum distance dmin, at which the 

nearest value of уx is located, and generates the 

corresponding graphs. As shown in Fig. 6, this 

route starts with the graphs containing ya, 

generated using STEP_0, from which the nearest 

value yb is located at the distance dab of the gates, 

then we go to yс located at the minimum distance 

dbc from yb and at the distance dcd we find the last 

vector yd. 

However, not always moving in minimum 

steps along the trajectory from vector ya to yd gives 

the optimal result in general (although it is so in 

most cases). There may be a situation when 

choosing the minimum value of d in the first steps 

leads to larger values of d in the following steps 

and, as a result, to a non-optimal logical 

representation. 

For example, let’s assume that at the first step, 

we got dab = 1, at the second dbc = 2, and at the 

third—dcd = 2, that is, the route will be a total of 5 

TIs (Fig. 6). But it is possible that if at the first 

step, we followed a different route and graphs 

with dab = 2 would be selected, then in the second 

step it would be possible to find the value of ус 

with dbc = 1 and in the third step yd with dcd = 1, 

and we would get a shorter total route with 4 TIs. 

Hence, the second route resulted in a bit-sliced 

representation with a lower BGC value. 

 
Figure 6: Finding the bit-sliced description for 

different routes  

To take into account different possible routes 

in the search algorithm, refinement searches are 

carried out according to the scheme presented in 

Fig. 7. If we have a set of graphs containing 3 out 

of 4 possible values of у, then the search for the 

fourth value is always carried out at the minimum 
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possible depth dmin (SEARCH_3Y). For graphs 

with two values in у (y_find = 2), the third value 

is searched for by two routes: dmin і dmin+1, after 

which the SEARCH_3Y search is applied to the 

found graphs with y_find = 3. For graphs with one 

value in у (y_find = 1) , the search for the second 

value takes place along three routes: dmin, dmin+1 і 

dmin+2 , after which the SEARCH_2Y search is 

applied to the found graphs with y_find = 2.

gr_3y 
y_find = 3

(ya, yb, yc)

SEARCH_3Y

yddmin

dmin
yc

gr_2y 
y_find = 2
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Figure 7: Refinement search scheme in the FIND_BS algorithm 

 

6. Results 

The method proposed in the work was 

implemented in the Python language, and to 

ensure speed, the main data processing functions 

are implemented based on the numpy and 

pyopencl libraries. 

To evaluate our algorithm, 225 4×4 S-Boxes of 

various cryptographic algorithms were taken. The 

open-source sboxgates project was used to obtain 

a BGC estimate for selected S-Boxes and to be 

able to compare with our results. Bitsliced 

descriptions of S-Boxes obtained by our method 

are available at the link [15]. 

The results are presented in Table 6. Column 

data in Table 6 should be interpreted as follows: 

LUT is a representation of S-Box in the tabular 

form, where the line ‘0123456789abcdef’ should 

be understood as S(x) = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 14, 15. 

BS—representation of S-Box in bit-sliced-

format. The line ‘0ed9_3687_a74c_659a’ should 

be understood as: y0 = 0x0ed9, y1 = 0x3687, 

y2 = 0xa74c, y3 = 0x659a. 

CY is BGC of vectors у0-y3. The line ‘2133’ 

should be interpreted as follows: BGC(y0) = 2, 

BGC(y1) = 1, BGC(y2) = 3, BGC(y3) = 3. 

OURS contains BGC values obtained using the 

method described in the article. 

SG contains the BGC value obtained using the 

sboxgates utility; the number of iterations for the 

search was set to 1000 [9]. The red color in the SG 

column indicates the S-Boxes that have a higher 

BGC value compared to the one obtained by our 

algorithm. The yellow ones have the same BGC 

value as our algorithm.

Таble 6 
BGC comparison for different S-Boxes 

S-Box LUT BS CY OURS SG 

Piccolo e4b238091a7f6c5d aaa5_fc03_1e1d_cd94 1123 4 4 
Piccolo-1 68341eca5792df0b b4e2_3369_aaa5_b714 3213 4 4 
LAC e9f0d4ab128376c5 44d7_f035_3ac5_9996 2222 5 6 
Prost 048f15e927acbd63 3ccc_6a6a_d748_b2b8 1132 4 4 
Rectangle 65ca1e79b03d8f42 39ac_6867_a569_2dd2 3222 6 9 
Rectangle-1 94fae106c7382b5d a91d_c396_369c_e625 3223 6 8 
Minalpher b34128cf5de069a7 66e1_97c4_d493_a38b 2333 8 9 
Skinny c6901a2b385d4e7f aaa5_fc03_e1e2_cd94 1123 4 4 
TWINE c0fa2b9583d71e64 256d_ec85_6a3c_1ee4 3322 7 8 
PRINCE bf32ac916780e5d4 5473_f322_131f_62c7 2223 7 8 
Lucifer_S0 cf7aedb026319458 907b_6237_075e_5c66 3233 7 8 
Lucifer_S1 72e93b04cd1a6f85 6b2c_b385_3837_a639 3323 8 9 
Present c56b90ad3ef84712 0ed9_3687_a74c_659a 3332 7 7 
Present-1 5ef8c12db463079a c19e_2697_ad46_69a5 3332 7 9 
JH_S0 904bdc3f1a26758e c2b9_b8b4_9ec8_31d9 3233 7 8 
JH_S1 3c6d5719f204bae8 f18a_493e_7325_11f9 3332 8 9 
Iceberg_S0 d7329ac1f45e60b8 c971_1f43_592e_4597 3223 7 8 
Iceberg_S1 4afc0d9be6173582 41ee_2b2d_9b86_3ce4 2333 7 8 
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Luffa de015a76b39cf824 3d23_98d3_53e2_1759 3333 6 8 
Noekeon 7a2c48f0591e3db6 6a6a_a959_d847_7741 1232 6 6 
Hummingbird_1_S1 865f1ca9eb2470d3 43e9_592e_974a_d29c 2233 7 9 
Hummingbird_1_S2 07e15b823ad6fc49 b664_7c16_1ba6_953a 3332 8 9 
Hummingbird_1_S3 2ef5c19ab468073d 89d6_a61e_6587_e16c 3333 8 9 
Hummingbird_1_S4 0734c1afde6b2895 6bd0_879a_1ec6_c9a6 3333 8 9 
Hummingbird_1_S1-1 d4afb21c07695e83 689d_368b_a63c_9a59 3322 7 9 
Hummingbird_1_S2-1 0378e4b16f95da2c b658_9b34_6356_1ec6 3333 8 9 
Hummingbird_1_S3-1 c50e93adb6784f12 29d9_368b_a768_65b2 2333 8 8 
Hummingbird_1_S4-1 05c23fa1de6b4897 6b64_9726_8e78_c9b2 2333 8 9 
Hummingbird_2_S1 7ce9215fb6d048a3 658e_16c7_c395_85e9 3323 8 9 
Hummingbird_2_S2 4a168f7c30ed59b2 6cb2_1ce9_c56a_7964 3323 8 9 
Hummingbird_2_S3 2fc156ade8340b97 63c6_89b6_a563_e49a 2323 7 9 
Hummingbird_2_S4 f4589721a30e6cdb e919_7827_9b61_c2b5 2233 7 9 
Hummingbird_2_S1-1 b54fc690d3e81a27 2d59_853e_e629_934b 3333 8 9 
Hummingbird_2_S2-1 92f80c364d1e7ba5 6a2d_9ba4_78c6_b645 3333 8 9 
Hummingbird_2_S3-1 c30ab45f9e6d2781 4b99_2ee1_369a_a9d2 2233 7 8 
Hummingbird_2_S4-1 a76912c5348fdeb0 7c49_3ac6_6927_599a 3232 7 9 
DES_S1_0 e4d12fb83a6c5907 2ae5_9c27_8771_b16c 3232 7 8 
DES_S1_1 0f74e2d1a6cb9538 9d52_265e_4b36_78c6 3333 7 8 
DES_S1_2 41e8d62bfc973a50 279c_4b35_39e4_5d92 2323 7 8 
DES_S1_3 fc8249175b3ea06d 9a27_c993_5e89_87e1 3232 8 9 
DES_S2_0 f18e6b34972dc05a 992d_5a99_8679_4b63 2223 7 8 
DES_S2_1 3d47f28ec01a69b5 69d2_919e_58b9_e41b 2232 7 9 
DES_S2_2 0e7ba4d158c6932f 965a_8d66_e81e_b1cc 2332 7 8 
DES_S2_3 d8a13f42b67c05e9 c927_6e61_47b4_a539 2222 7 9 
DES_S3_0 a09e63f51dc7b428 964d_2ed8_5879_1be4 3332 8 9 
DES_S3_1 d709346a285ecbf1 7a89_5c63_69d2_e41b 3222 7 9 
DES_S3_2 d6498f30b12c5ae7 6939_d827_e562_9369 2232 7 8 
DES_S3_3 1ad069874fe3b52c 9666_a794_5e92_3aa5 2223 7 9 
DES_S4_0 7de3069a1285bc4f b4c6_e827_92ad_994b 3332 8 9 
DES_S4_1 d8b56f03472c1ae9 e827_4b39_66b4_92ad 3323 8 9 
DES_S4_2 a690cb7df13e5284 49b5_99d2_2d63_17e4 3233 8 9 
DES_S4_3 3f06a1d8945bc72e 99d2_b64a_e81b_2d63 2333 8 9 
DES_S5_0 2c417ab6853fd0e9 d962_5a96_4cf1_9e58 3233 7 8 
DES_S5_1 eb2c47d150fa3986 6c4b_8579_9c27_35e2 3323 7 9 
DES_S5_2 421bad78f9c5630e 87b8_9d61_b15a_2b6c 2333 8 9 
DES_S5_3 b8c71e2d6f09a453 1aa7_63ac_9369_ca99 3223 8 9 
DES_S6_0 c1af92680d34e75b 929d_7a49_b46c_e61a 2233 7 9 
DES_S6_1 af427c9561de0b38 ac63_0db6_691b_66d2 2332 7 9 
DES_S6_2 9ef528c3704a1db6 6867_a54e_c996_718d 2323 7 9 
DES_S6_3 432c95fabe17608d c3d8_9a69_1bc6_8d72 3222 7 9 
DES_S7_0 4b2ef08d3c975a61 26da_5a99_691e_9d92 3222 7 9 
DES_S7_1 d0b7491ae35c2f86 69a5_ad19_b38c_266d 2323 7 8 
DES_S7_2 14bdc37eaf680592 4b9c_26da_87e4_626d 3332 8 9 
DES_S7_3 6bd814a7950fe23c 994e_9aa5_78c3_4b96 3222 7 9 
DES_S8_0 d2846fb1a93e50c7 4b65_d839_8d72_96e1 3322 7 9 
DES_S8_1 1fd8a374c56b0e92 691e_27c6_ac72_4a67 2333 7 8 
DES_S8_2 7b419ce206adf358 9c72_5a65_36c3_781b 2223 7 9 
DES_S8_3 21e74a8dfc90356b 87e4_639c_d12d_b58a 3223 7 9 
Serpent_S0 38f1a65bed42709c c396_9764_19b5_52cd 2333 7 8 
Serpent_S1 fc27905a1be86d34 2e93_b44b_568d_6359 3233 7 8 
Serpent_S2 86793cafd1e40b52 25e9_4da6_a4d6_639c 2332 7 9 
Serpent_S3 0fb8c963d124a75e 913e_e952_b4c6_63a6 3333 8 9 
Serpent_S4 1f83c0b6254a9e7d b856_e692_69ca_d24b 2332 7 9 
Serpent_S5 f52b4a9c03e8d671 1ce9_7493_662d_d24b 3322 7 9 
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Serpent_S6 72c5846be91fd3a0 5b94_196d_69c3_3e89 3323 7 9 
Serpent_S7 1df0e82b74ca9356 1cb6_c716_a9d4_7187 2333 8 9 
Serpent_S0-1 d3b0a65c1e47f982 7295_1ee1_9a36_3947 3233 7 8 
Serpent_S1-1 582ef6c3b4791da0 695a_2679_45bc_3d91 2333 7 8 
Serpent_S2-1 c9f4be12036d58a7 6837_9c2d_c6b4_9a56 3332 7 8 
Serpent_S3-1 09a7be6d35c248f1 64b6_56e8_497c_c39a 3332 8 9 
Serpent_S4-1 5083a97e2cb64fd1 66b4_7ac1_2dd8_e469 2323 7 9 
Serpent_S5-1 8f2941deb6537ca0 61cb_36d2_5b86_1d6a 2332 7 9 
Serpent_S6-1 fa1d536049e72c8b e60b_2d59_9c63_8a3d 3323 7 9 
Serpent_S7-1 306d9ef85cb7a142 16f8_4b6c_9c65_2d59 3333 8 9 
GOST_1 4a92d80e6b1c7f53 2ab6_7991_b38a_f614 3333 8 8 
GOST_2 eb4c6dfa23810759 84eb_607d_23d3_ea62 3322 7 8 
GOST_3 581da342efc7609b c71a_1f49_9bb0_ca2d 3333 8 9 
GOST_4 7da1089fe46cb253 19e6_4f83_b585_d0cb 2223 7 8 
GOST_5 6c715fd84a9e03b2 4ee2_0977_ea25_647c 3233 8 9 
GOST_6 4ba0721d36859cfe f486_ea91_c336_59d2 3323 8 8 
GOST_7 db413f590ae7682c a6a3_9c65_5e32_08fb 2332 7 8 
GOST_8 1fd057a4923e6b8c e946_98b6_3e62_2537 3332 7 9 
LBlock_S0 e9f0d4ab128376c5 44d7_f035_3ac5_9996 2222 5 6 
LBlock_S1 4be9fd0a7c562813 22be_0f35_9996_c53a 2222 5 7 
LBlock_S2 1e7cfd06b593248a c53a_22be_9996_0f35 2222 5 7 
LBlock_S3 768b0f3e9acd5241 0fac_5ca3_22eb_9969 2222 5 7 
LBlock_S4 e5f072cd1849ba63 3ac5_44d7_f035_9996 2222 5 6 
LBlock_S5 2dbcfe097a631845 22be_c53a_0f35_9996 2222 5 7 
LBlock_S6 b94e0fad6c573812 22eb_0fac_9969_5ca3 2222 5 7 
LBlock_S7 daf0e49b218375c6 44d7_f035_9996_3ac5 2222 5 6 
LBlock_S8 87e5fd06bc9a2413 0f35_22be_9996_c53a 2222 5 7 
LBlock_S9 b5f0729d481cea36 3ac5_9996_f035_44d7 2222 5 6 
SC2000_4 25ac7f1bd609483e a9ac_933a_c2b5_49f2 2333 8 8 
MIBS 4f38dac0b57e2619 897a_2e53_3d26_c716 3333 8 9 
KLEIN 74a91fb0c3268ed5 716c_e923_2e65_c279 3333 8 9 
Panda 0132fc9ba6875ed4 65f0_fa30_2b9c_58d6 2233 7 8 
MANTIS cad3ebf789150246 0377_c8d5_a0fa_0eec 2212 6 8 
GIFT 1a4c6f392db7508e c6aa_9a3c_8d72_1ee1 2222 6 6 
UDCIKMP11 086d5f7c4e2391ba d2aa_03fc_ce64_7878 2121 4 4 
Luffa_v1 7dbac4835f60912e 925e_8733_c68d_3387 2232 7 9 
Enocoro_S4 139a5e72d0cf486b ad2c_5d70_c8ea_8957 3323 7 9 
Qarma_sigma0 0e2a9f8b6437dc15 30fa_bb22_0dae_dcb0 2123 7 8 
Qarma_sigma1 ade6f735980cb124 1b17_88be_507d_31f2 2222 7 9 
Qarma_sigma2 b68fc09e3745d21a 90dd_1e9a_a38b_5b49 2333 7 8 
Midori_Sb0 cad3ebf789150246 0377_c8d5_a0fa_0eec 2212 6 8 
Midori_Sb1 1053e2f7da9bc846 3f50_d1d4_8af8_0dcd 2222 7 8 
Anubis_S0 d7329ac1f45e60b8 c971_1f43_592e_4597 3223 7 8 
Anubis_S1 4afc0d9be6173582 41ee_2b2d_9b86_3ce4 2333 7 8 
Khazad_P 3fe054bcda967821 27c6_19b6_5a47_9553 3333 8 9 
Khazad_Q 9e56a23cf04d7b18 a993_1d8e_317a_7945 3333 8 9 
Fox_S1 2519eac8647fdb03 38f8_1f52_ad31_bc0e 2333 7 8 
Fox_S2 b41f03eda875c296 53c9_9cca_a569_4cad 3323 6 8 
Fox_S3 dab14389572cf06e 98c7_db11_d626_13ad 3323 8 9 
Whirlpool_E 1b9cd6f3e874a250 135e_4d78_35e2_44d7 3332 8 9 
Whirlpool_R 7cbde49f638a2510 0cde_21bb_1b95_62cd 2233 7 9 
SMASH_256_S1 6dc7f13a8b5024e9 c396_641f_52d9_867a 2333 7 8 
SMASH_256_S2 1b60ed5ac29738f4 65b2_c974_5a96_5c63 3322 7 9 
SMASH_256_S3 429c81e7f50b6a3d a95c_93c9_79c2_cba4 2233 7 9 
CS_cipher_G a602be18d453fc79 b1b1_7722_583b_dd50 1132 6 6 
GOST2_1 6af43850de712bc9 e326_474d_3617_ad54 3233 8 9 
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GOST2_2 e0817a56d2493fcb e925_65d1_b2b1_b958 2323 8 9 
Magma_1 c462a5b9e8d703f1 47d1_4d27_695c_ece0 3332 7 9 
Magma_2 68239a5c1e47bd0f b2b2_aec1_9a2d_b958 1333 7 8 
Magma_3 b3582fade174c960 31e9_5da4_4573_26a7 3333 8 9 
Magma_4 c821d4f670a53e9b e453_29f1_b5c4_d958 3333 8 9 
Magma_5 7f5a816d093eb42c 9a9a_a8c7_5c4b_16a7 1333 7 8 
Magma_6 5df692cab78143e0 45d6_524f_63ac_2b17 3322 7 8 
Magma_7 8e25691cf4b0da37 35a3_939a_e516_d568 3333 8 9 
Magma_8 17ed05834fa69cb2 764c_2b2e_ce86_52ab 3223 8 8 
CLEFIA_SS0 e6ca872fb14059d3 619d_54a7_81eb_f3a0 3332 7 8 
CLEFIA_SS1 640d2ba39cef8751 1f68_6e0b_2cf1_e9a8 3332 7 9 
CLEFIA_SS2 b85ea64cf72310d9 c19b_43ec_0f39_db05 3323 7 9 
CLEFIA_SS3 a26d345e0789bfc1 7c89_62ec_3297_ba58 3333 7 8 
Golden_S0 035869c7dae41fb2 6768_2dd4_e692_71a6 2333 8 9 
Golden_S1 03586cb79eadf214 1f68_9ab4_36d2_59c6 3333 8 9 
Golden_S2 03586af4ed9217cb c768_63d4_a972_b646 3332 8 9 
Golden_S3 03586cb7a49ef12d 9d68_9ab4_59d2_b4c6 3333 8 9 
Twofish_Q0_T0 817d6f320b59eca4 7a29_b43c_52f4_0e6e 3232 7 8 
Twofish_Q0_T1 ecb81235f4a6709d c50f_9b83_1d65_d1d4 2332 7 9 
Twofish_Q0_T2 ba5e6d90c8f32471 076b_653c_5c1b_cc65 3232 7 8 
Twofish_Q0_T3 d7f4126e9b3085ca d385_60cf_86e6_2717 3232 7 8 
Twofish_Q1_T0 28bdf76e31940ac5 649e_c8f8_21f5_873c 3222 7 9 
Twofish_Q1_T1 1e2b4c376da5f908 b62a_1bb2_15ce_3ac9 3332 7 8 
Twofish_Q1_T2 4c75169a0ed82b3f aec2_862f_f2a4_e45c 3333 7 9 
Twofish_Q1_T3 b951c3de647f208a c8d3_0fd4_9da1_0c6f 3232 7 9 
Serpent_type_S0 03567abcd4e9812f 9de0_879c_c47a_a956 3332 7 7 
Serpent_type_S1 035869a7bce21fd4 6768_e694_2dd2_71a6 2323 7 9 
Serpent_type_S2 035869b2d4e1af7c b568_e714_74d2_6966 3332 6 8 
Serpent_type_S3 03586af4ed9217cb c768_63d4_a972_b646 3332 8 9 
Serpent_type_S4 03586cb79eadf214 1f68_9ab4_36d2_59c6 3333 8 9 
Serpent_type_S5 03586cb7a49ef12d 9d68_9ab4_59d2_b4c6 3333 8 9 
Serpent_type_S6 03586cb7ad9ef124 1f68_9ab4_59d2_36c6 3332 7 8 
Serpent_type_S7 03586cb7dae41f29 a768_2db4_66d2_b1c6 3222 7 8 
Serpent_type_S8 03586cf1a49edb27 3d68_9a74_e952_b4c6 2233 7 9 
Serpent_type_S9 03586cf2e9b7da41 3768_5974_2dd2_9e46 3323 7 9 
Serpent_type_S10 03586df19c2ba74e 9b68_e274_bc52_29e6 3333 7 9 
Serpent_type_S11 03586df274eba19c dc68_8774_1dd2_6966 3222 7 9 
Serpent_type_S12 03586df2c9a4be17 3768_a974_b4d2_d266 3222 7 8 
Serpent_type_S13 03586fa179e4bcd2 7668_6d34_9572_53a6 3332 7 9 
Serpent_type_S14 0358749ef62badc1 79c8_63b4_1f92_a956 3332 7 9 
Serpent_type_S15 035879beadf4c261 17e8_5e94_65d2_8676 2332 7 9 
Serpent_type_S16 03589ce7adf46b12 2778_1ee4_b5c2_6696 2232 7 7 
Serpent_type_S17 0358ad94f621cb7e b178_d3a4_e712_6966 3332 6 8 
Serpent_type_S18 0358bc6fe9274ad1 63b8_59e4_2dd2_ca96 3323 7 8 
Serpent_type_S19 035a7cb6d429e18f d968_93b4_94da_a956 3332 7 9 
BLAKE_1 ea489fd61c02b753 127b_62e5_b8a3_f170 2332 7 8 
BLAKE_2 b8c052fdae367194 43c7_9ad4_1f61_74d1 2332 7 9 
BLAKE_3 7931dcbe265a40f8 c8f2_56b1_4bc5_445f 2332 7 9 
BLAKE_4 905724afe1bc683d adc1_99ac_55d8_c68d 3323 7 8 
BLAKE_5 2c6a0b834d75fe19 b26a_3f06_34ad_dea0 3232 7 9 
BLAKE_6 c51fed4a0763928b d0b9_067b_ae98_9a2e 3333 7 9 
BLAKE_7 db7ec13950f4862a 949b_2d1d_e44e_05e7 2223 7 7 
BLAKE_8 6fe9b308c2d714a5 459e_ad07_4a37_9c3a 3233 7 9 
BLAKE_9 a2847615fb9e3cd0 6f05_69b8_1b33_57d0 2323 7 9 
GOST_IETF_1 96328b17a4efc0d5 5d31_de82_0dae_c8e5 3323 8 9 
GOST_IETF_2 37e98af0526cb4d1 587c_6d46_1667_d14b 3333 7 9 
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GOST_IETF_3 e462b3d8cf5a0719 8bd1_2747_2a3d_e670 3333 8 9 
GOST_IETF_4 e7acd13902b4f856 349d_d81b_9647_54f2 3333 8 9 
GOST_IETF_5 b5198df0e423c7a6 5179_b362_ed41_286f 2233 7 9 
GOST_IETF_6 3adc120b75948fe6 748e_eb0c_e1a3_2795 3233 7 8 
GOST_IETF_7 1d297a608c45f3be d32a_9e52_f074_781b 3223 7 8 
GOST_IETF_8 baf50ce8623917d4 48e7_e16c_2747_7c0d 3333 8 9 
Kuznyechik_nu0 253b69ea04f18dc7 74e8_e652_84dd_ac2e 3323 8 8 
Kuznyechik_nu1 76c90f8145bed23a 9c6c_1b27_ec23_56a9 2222 5 5 
Kuznyechik_sigma cd048bae3952f167 12f3_d48b_d9e0_b722 2332 7 8 
Optimal_S0 012d47f68bc93ea5 6f48_a4f8_72e4_9a6a 3232 7 8 
Optimal_S1 012d47f68be359ac e748_94f8_4ee4_3a6a 3322 6 7 
Optimal_S2 012d47f68be3ac59 b748_64f8_1ee4_ca6a 2322 7 8 
Optimal_S3 012d47f68c53aeb9 f348_26f8_78e4_cc6a 2332 7 8 
Optimal_S4 012d47f68c9bae53 3f48_62f8_b8e4_cc6a 2332 7 8 
Optimal_S5 012d47f68cb9ae35 3f48_a2f8_74e4_cc6a 2232 7 8 
Optimal_S6 012d47f68cb9ae53 3f48_62f8_b4e4_cc6a 2322 7 7 
Optimal_S7 012d47f68ceba935 3f48_86f8_5ce4_e86a 2333 8 8 
Optimal_S8 012d47f68e95ab3c b748_8af8_72e4_6c6a 2233 6 7 
Optimal_S9 012d47f68eb359ac e748_92f8_4ee4_3c6a 3322 7 8 
Optimal_S10 012d47f68eb5a93c b748_8af8_56e4_6c6a 2233 7 8 
Optimal_S11 012d47f68eba59c3 6f48_52f8_8ee4_b46a 3233 7 9 
Optimal_S12 012d47f68eba93c5 5f48_c2f8_2ee4_b46a 2233 7 9 
Optimal_S13 012d47f68ec95ba3 6f48_16f8_e2e4_b86a 3333 7 9 
Optimal_S14 012d47f68ecb395a af48_46f8_9ae4_786a 2333 8 9 
Optimal_S15 012d47f68ecb93a5 5f48_86f8_6ae4_b86a 2333 8 9 
Num1_DL_04_0 0bc5619a3ef8d427 1ec6_b61c_c792_956a 3222 7 7 
Num1_DL_04_1 0cda5be7f6213894 616e_83d6_17e8_59b4 2223 7 8 
Num1_DL_13_0 0c9761f23b4ed8a5 7a46_9c5a_4bd8_936c 3232 7 9 
Num1_DL_13_1 0c97f2613b4ea5d8 da16_6c5a_1b78_639c 2232 7 9 
Num1_DL_13_2 0b85fc36e47921da c936_47b8_95d2_6c5a 2232 7 8 
Num1_DL_13_3 0d4b7e926a3581fc d26a_c936_47b8_6c5a 3222 7 8 
Num1_DL_22_0 0d82eb75f63c419a c936_1bd2_8778_65e2 2323 6 8 
Num1_DL_22_1 0be1a7d46c9f5832 2e56_1be4_c936_5c6a 3223 6 8 
Num1_DL_22_2 0b69c53ed7842af1 659a_4bb4_72c6_c36a 2232 6 8 
Num1_DL_22_3 0e95f8a73b6c41d2 4a76_5c9a_87d2_639c 3322 7 9 
mCrypton_S0 4f38dac0b57e2619 897a_2e53_3d26_c716 3333 8 9 
mCrypton_S1 1c7a6d53fb20849e d32a_a176_879c_43e5 3333 8 9 
mCrypton_S2 7ec209da3f5864b1 4ae6_3647_538b_c761 3333 8 9 
mCrypton_S3 b0a7d642ce3915f8 cb15_6378_46ad_7c19 3333 8 9 

    Σ=1582 Σ=1867 

In general, as evidenced by the results in 

Table 7, the method we developed showed 

significantly better results compared to the 

competitor represented by the sboxgates utility. 

For 203 S-Boxes out of 225 (90.2%), our 

method provides a bit-sliced description with 

fewer TIs. The total number of ternary 

instructions to represent all 225 S-Boxes in our 

method is 1582, which is 15.3% less compared to 

1867 instructions for the sboxgates utility. The 

sboxgates utility did not generate a bit-sliced 

description with fewer instructions than 

obtained by our method for any S-Box, and for 

only 22 S-Boxes (9.8%) it was able to generate a 

bit-sliced description with the same BGC value as 

our algorithm. 

7. Conclusions 

The paper presents a method for generating a 

bit-sliced description of arbitrary 4×4 bijective  

S-Boxes with a reduced number of ternary logic 

instructions. The obtained descriptions make it 

possible to generally increase the speed of 

software implementations of the corresponding 

crypto-algorithms on any processors that support 

the 3-operand ternary logic instruction 
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(CPU/GPU). To date, the method proposed in the 

article is the most effective method known to us 

according to the BGC criterion, which confirms 

the research results presented in the work. The 

method combines heuristic techniques at various 

stages of searching a bit-sliced representation, in 

particular: recalculation, exhaustive search to a 

depth of up to 3 gates using GPU, IDDFS 

algorithm for searching and cutting options, 

refinement search, which by this set of measures 

ensure its efficiency and acceptable speed of 

action. 
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